Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,121)

Search Parameters:
Keywords = Si/G/C

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1921 KB  
Article
Anti-HIV-1 Activity of the Integrase Strand Transfer Inhibitor ACC017
by Meng-Di Ma, Rong-Hua Luo, Chun-Yan Li, Guan-Cheng Huang, Xin-Yan Long, Feng-Ying He, Liu-Meng Yang, He-Liang Fu and Yong-Tang Zheng
Viruses 2026, 18(1), 33; https://doi.org/10.3390/v18010033 - 24 Dec 2025
Abstract
HIV-1 integrase strand transfer inhibitors (INSTIs) are pivotal to antiretroviral therapy. However, the emergence of drug-resistant mutations necessitates the development of new agents. Here, we present ACC017 as a novel INSTI candidate. ACC017 demonstrated potent activity against the laboratory-adapted HIV-1IIIB strain (EC [...] Read more.
HIV-1 integrase strand transfer inhibitors (INSTIs) are pivotal to antiretroviral therapy. However, the emergence of drug-resistant mutations necessitates the development of new agents. Here, we present ACC017 as a novel INSTI candidate. ACC017 demonstrated potent activity against the laboratory-adapted HIV-1IIIB strain (EC50 = 0.59 nM; SI > 34,525) and maintained efficacy against a panel of drug-resistant strains (EC50 range from 0.34 to 9.12 nM) and clinical isolated strains (EC50 range from 0.11 to 1.78 nM). Mechanism of action studies confirmed its ability to inhibit the integrase enzyme (IC50 = 9.19 nM) and effectively block viral genome integration. Notably, in vitro resistance selection primarily yielded D232N and R263K mutations, without the emergence of G140S/A/C/R or Q148H/R/K. This promising profile, combined with synergistic interactions with other antiretroviral drugs, positions ACC017 as a potential therapeutic option. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

23 pages, 3746 KB  
Article
Preparation of Boron Nitride Nanotube/Aluminum Matrix Composites and Their Application in Automotive Connecting Rods
by Yong Huang, Bingzhan Zhang, Han Zhao, Qingtao Li and Jianbo Bi
Materials 2026, 19(1), 48; https://doi.org/10.3390/ma19010048 - 22 Dec 2025
Abstract
In order to address the urgent demand for high-performance materials in the field of automotive lightweighting, there is a need for solutions to the interface instability and performance degradation of traditional reinforcing phases (e.g., SiC, CNT) at elevated temperatures. The present study prepared [...] Read more.
In order to address the urgent demand for high-performance materials in the field of automotive lightweighting, there is a need for solutions to the interface instability and performance degradation of traditional reinforcing phases (e.g., SiC, CNT) at elevated temperatures. The present study prepared BNNTs/Al composites via the stirred casting method for automotive connecting rods. The microstructure, interface characteristics, phase evolution, and high-temperature wettability were systematically characterised using a range of analytical techniques, including SEM, TEM, XRD, and DSC. A study was conducted to assess the mechanical properties of the composites in comparison to those of conventional 40Cr steel. This investigation enabled an evaluation of the material’s comprehensive performance for use in automotive connecting rods. The study successfully achieved uniform dispersion of BNNTs within the aluminium matrix, forming tightly bonded, semi-coherent interfaces such as Al/AlN and Al/AlB2. It was found that complete wetting was achieved at 675 °C, with interface reactions generating AlN and AlB2 phases that significantly enhanced performance. The prepared connecting rod demonstrates a specific strength that significantly exceeds that of 40Cr steel. The experimental investigation conducted in a controlled setting yielded notable outcomes. The empirical evidence demonstrated a 6.5% enhancement in braking performance and a 5.8% reduction in fuel consumption. Through the optimisation of interface design and process control, the BNNTs/Al composite achieves a balanced compromise between high strength, low density, and excellent thermal stability. The material’s potential for use in lightweight automotive connecting rods is significant, offering a novel approach to the eco-friendly manufacturing of related components. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

25 pages, 7054 KB  
Article
Comparative Study of Biochar from Different Biomass Feedstocks: Toward Sustainable Resource Utilization and Environmental Applications
by Nina Đukanović, Tamara Apostolović, Jasmina Anojčić, Sanja Mutić, Tijana Marjanović Srebro, Gábor Kozma, Cora Deák, Snežana Maletić and Jelena Beljin
Molecules 2026, 31(1), 37; https://doi.org/10.3390/molecules31010037 - 22 Dec 2025
Abstract
This study examines the structural, chemical, and thermal properties of biochars from slow pyrolysis of hardwood (HW), corn cob (CC), and wheat straw (WS) at 400 °C and 700 °C, evaluating their potential in environmental and industrial applications. A combination of spectroscopic, crystallographic, [...] Read more.
This study examines the structural, chemical, and thermal properties of biochars from slow pyrolysis of hardwood (HW), corn cob (CC), and wheat straw (WS) at 400 °C and 700 °C, evaluating their potential in environmental and industrial applications. A combination of spectroscopic, crystallographic, thermal, and microscopic techniques was employed to monitor the degradation of biomass components and the development of the carbonaceous matrix. The results show that pyrolysis temperature has a significant impact on the properties of biochar. Higher temperatures (700 °C) increased the pH (up to 10.3 for WS700), the carbon content (e.g., 89.8% for HW700), the ash content (up to 24.8% for WS700), and the specific surface area (e.g., 306.87 m2/g for CC700) while decreasing polar functional groups and volatile matter (as confirmed by FTIR). SEM showed enhanced porosity at 700 °C, which was supported by BET analysis. XRD and Raman showed increased graphitization and structural order with temperature, especially for HW and CC biochars, while WS biochars retained mineral components like SiO2 and CaCO3. TGA analysis showed improved thermal stability at 700 °C only for biochar derived from wheat straw, while HW and CC biochars showed similar total mass loss regardless of pyrolysis temperature. These biochars exhibit high potential for soil remediation (high pH), water purification (large surface area), and carbon storage (high aromaticity), with HW700 and CC700 also suitable for high-temperature industrial applications due to their stability. Full article
Show Figures

Figure 1

21 pages, 11307 KB  
Article
Dual-Targeting CSC Therapy: Acid-Responsive Cisplatin/CaCO3@siRNA Nanoplatform Overcomes HCC Chemoresistance
by Fei Wang, Ming Lin, Yong Liu, Han Wang, Bin Li, Tan Yang and Weijie Li
Pharmaceuticals 2026, 19(1), 22; https://doi.org/10.3390/ph19010022 - 22 Dec 2025
Viewed by 20
Abstract
Background: Cisplatin resistance is a major obstacle in the treatment of Hepatocellular carcinoma (HCC), characterized by reduced intracellular drug accumulation and altered DNA repair/apoptosis signaling. Methods: To address this challenge, we developed an acid-responsive nanoplatform consisting of a cisplatin-loaded CaCO3 core with [...] Read more.
Background: Cisplatin resistance is a major obstacle in the treatment of Hepatocellular carcinoma (HCC), characterized by reduced intracellular drug accumulation and altered DNA repair/apoptosis signaling. Methods: To address this challenge, we developed an acid-responsive nanoplatform consisting of a cisplatin-loaded CaCO3 core with a lipid coating that enables surface adsorption of Bmi1 siRNA, termed LCa/C@B. Results: These nanoparticles are subsequently coated with positively charged phospholipids, facilitating the absorption of Bmi1 siRNA. In vitro, LCa/C@B markedly enhanced intracellular cisplatin accumulation, downregulated Bmi1 and cancer stem cell (CSC) markers, and restored chemosensitivity in HepG2/MDR cells. In vivo, LCa/C@B achieved improved tumor localization, significant Bmi1 knockdown, suppression of CSC populations, and robust inhibition of tumor growth in a primary HCC model. Importantly, the dual-targeting design produced a synergistic therapeutic effect superior to free cisplatin or single-component formulations. Conclusions: This hybrid drug delivery system, combining calcium carbonate and cisplatin with Bmi1 siRNA, presents a promising approach for overcoming chemotherapy resistance in HCC. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

13 pages, 2934 KB  
Article
TAS1R3 Regulates GTPase Signaling in Human Skeletal Muscle Cells for Glucose Uptake
by Joseph M. Hoolachan, Rekha Balakrishnan, Karla E. Merz, Debbie C. Thurmond and Rajakrishnan Veluthakal
Int. J. Mol. Sci. 2026, 27(1), 103; https://doi.org/10.3390/ijms27010103 - 22 Dec 2025
Viewed by 41
Abstract
Taste receptor type 1 member 3 (TAS1R3) is a class C G protein-coupled receptor (GPCR) traditionally associated with taste perception. While its role in insulin secretion is established, its contribution to skeletal muscle glucose uptake, a process responsible for 70–80% of postprandial glucose [...] Read more.
Taste receptor type 1 member 3 (TAS1R3) is a class C G protein-coupled receptor (GPCR) traditionally associated with taste perception. While its role in insulin secretion is established, its contribution to skeletal muscle glucose uptake, a process responsible for 70–80% of postprandial glucose disposal, remains unclear. TAS1R3 expression was assessed in skeletal muscle biopsies from non-diabetic and type 2 diabetes (T2D) donors using qPCR and immunoblotting. Functional studies in human LHCN-M2 myotubes involved TAS1R3 inhibition with lactisole or siRNA-mediated knockdown, followed by the measurement of insulin-stimulated glucose uptake using radiolabeled glucose assays. Rac1 activation and phospho-cofilin were analyzed by G-LISA and Western blotting, and Gαq/11 involvement was tested using YM-254890. TAS1R3 mRNA and protein levels were significantly reduced in T2D skeletal muscle. Pharmacological inhibition or the knockdown of TAS1R3 impaired insulin-stimulated glucose uptake in myotubes. TAS1R3 regulates skeletal muscle glucose uptake through a non-canonical insulin signaling pathway involving Rac1 and phospho-cofilin, independent of IRS1-AKT and Gαq/11 signaling. These findings identify TAS1R3 as a key determinant of Rac1-mediated glucose uptake and a potential therapeutic target for improving insulin sensitivity in T2D. Full article
Show Figures

Figure 1

13 pages, 3358 KB  
Article
Thermal Insulation and Compressive Strength of Lightweight Geopolymer Foam Concrete Exposed to Accelerated Weathering by Carbonation, Salt Fog and UV Light
by Gabriela A. de la Rosa-Corral, Ramón Corral-Higuera, Susana P. Arredondo-Rea, Andrés Castro-Beltrán, Anabel De la Cruz-Delgado, Alfredo Martinez-Garcia and Víctor M. Orozco-Carmona
Materials 2026, 19(1), 12; https://doi.org/10.3390/ma19010012 - 19 Dec 2025
Viewed by 138
Abstract
This study investigates the deterioration of the thermal and mechanical properties of geopolymer foam concrete (GFC) subjected to accelerated weathering through carbonation, salt fog, and UV radiation. GFC blocks were synthesized using metakaolin as the aluminosilicate precursor, activated with an alkaline solution consisting [...] Read more.
This study investigates the deterioration of the thermal and mechanical properties of geopolymer foam concrete (GFC) subjected to accelerated weathering through carbonation, salt fog, and UV radiation. GFC blocks were synthesized using metakaolin as the aluminosilicate precursor, activated with an alkaline solution consisting of 8 M NaOH and sodium silicate (Na2SiO3) at a NaOH/Na2SiO3 ratio of 0.51 wt.%. A 30% (v/v) H2O2 solution served as the foaming agent, and olive oil was used as the surfactant. Accelerated carbonation tests were conducted at 25 ± 3 °C and 40 ± 3 °C, under 60 ± 5% relative humidity and 5% CO2, with carbonation depth, carbonation percentage, density, porosity, and thermal conductivity evaluated over a 7-day period. In parallel, specimens were exposed to salt fog and UV radiation for 12 weeks in accordance with ASTM B117-19 and ASTM G154-23, respectively. Compressive strength was monitored every week throughout the exposure period. Results show that carbonation temperature governs the type and kinetics of carbonate formation. The carbonation process, at 40 °C for 7 days, increased the density and reduced the porosity of GFC, resulting in a ~48% increase in thermal conductivity. Salt fog exposure led to severe mechanical degradation, with NaCl penetration reducing compressive strength by 69%. In contrast, UV radiation caused only minor deterioration, decreasing compressive strength by up to 7%, likely due to surface-level carbonation. Full article
(This article belongs to the Special Issue Advances in Sustainable Construction Materials, Third Edition)
Show Figures

Figure 1

14 pages, 4914 KB  
Article
Demonstration of 2D Optoelectronic THz-Wave Beam Steering
by Bo Li, Hussein Ssali, Yuanhao Li, Ming Che, Shenghong Ye, Yuya Mikami and Kazutoshi Kato
Electronics 2025, 14(24), 4980; https://doi.org/10.3390/electronics14244980 - 18 Dec 2025
Viewed by 133
Abstract
Advanced two-dimensional (2D) beam steering is essential for unlocking the full potential of terahertz (THz) systems in future 6G communications and high-resolution imaging. However, achieving wide-angle, high-speed, and high-precision 2D beam control within a compact THz platform remains a significant challenge. In this [...] Read more.
Advanced two-dimensional (2D) beam steering is essential for unlocking the full potential of terahertz (THz) systems in future 6G communications and high-resolution imaging. However, achieving wide-angle, high-speed, and high-precision 2D beam control within a compact THz platform remains a significant challenge. In this work, we experimentally demonstrate an optoelectronic 2×2 THz antenna array that enables flexible 2D beam steering, beam hopping, and beam scanning around the 300 GHz band. This work employs a 2×2 microstrip patch antenna (MPA) array directly driven by InGaAs/InP UTC-PDs on a silicon carbide (SiC) substrate. The relative phases of the four radiating elements are precisely programmed using an optical phased array (OPA), which provides fully decoupled and low-latency phase control in the optical domain. Experimentally, we demonstrate 2D beam steering and 2D beam hopping among three representative directions at a polar angle of 25 and azimuth angles of 60, 180, and 300. Furthermore, continuous 2D beam scanning at a fixed polar angle of 25 is achieved, enabling a full 360 azimuth sweep within 0.43 s while maintaining high beam quality. These results confirm that the proposed UTC-PD based 2×2 MPA array provides a practical and robust approach for 2D THz beam manipulation, and offers strong potential for future 6G wireless links and THz imaging applications. Full article
Show Figures

Figure 1

24 pages, 5850 KB  
Article
Effect of Promoters on Co/Al2O3 Catalysts for Partial Oxidation of Methane: Structure–Activity Correlations
by Khaled M. Banabdwin, Abdulaziz A. M. Abahussain, Amal BaQais, Ahmed A. Bhran, Alaaddin M. M. Saeed, Nawaf N. Alotaibi, Mohammed Abdullh Al Sudairi, Ahmed A. Ibrahim, Sunit Kumar Singh and Ahmed S Al-Fatesh
Catalysts 2025, 15(12), 1176; https://doi.org/10.3390/catal15121176 - 18 Dec 2025
Viewed by 233
Abstract
The development of cost-effective non-noble metal catalysts for the partial oxidation of methane (POM) remains a key strategy for producing hydrogen-rich syngas while mitigating greenhouse gas emissions. In this study, cobalt-supported alumina (Co/Al2O3) catalysts were prepared using 5 wt.% [...] Read more.
The development of cost-effective non-noble metal catalysts for the partial oxidation of methane (POM) remains a key strategy for producing hydrogen-rich syngas while mitigating greenhouse gas emissions. In this study, cobalt-supported alumina (Co/Al2O3) catalysts were prepared using 5 wt.% of Co and calcined at 600, 700, and 800 °C. Subsequently, Co/Al2O3 catalysts were promoted with 10 wt.% Mg, Si, Ti, and Zr at the optimized calcination temperature. The catalysts were systematically characterized by FT-IR, XRD, N2 physisorption, H2-TPR, and XPS analyses. Catalytic activity tests for POM of CH4 were conducted at 600 °C (CH4/O2 = 2 and GHSV = 14,400 mL g−1 h−1). Catalysts calcined at 700 °C (5Co/Al_700) exhibited the highest activity among unpromoted samples, with CH4 conversion of 43.9% and H2 yield of 41.8%. The superior performance was attributed to its high surface area and the abundance of reducible Co3+ species, generating a greater number of Co0 active sites. XPS results confirmed the structural stability of γ-Al2O3 and preserved Co–Al interactions across calcination temperatures, while promoters mainly modulated Co dispersion and redox accessibility. Among the promoted catalysts, the activity order followed: 5Co/10ZrAl > 5Co/10MgAl> unpromoted-5Co/Al_700 > 5Co/10SiAl > 5Co/10TiAl. Si and Ti promoted catalysts acquired less concentration of active sites and less activity as well. The concentration of reducible species as well as initial activity towards POM are comparable over Zr and Mg-promoted catalysts. However, earlier one has a higher edge of reducibility and sustained constant activity over time in a stream study. The Zr-promoted catalyst exhibited superior reducibility and remarkable stability, achieving 47.3% CH4 conversion and 44.4% H2 yield sustained over 300 min time-on-stream. TEM analysis of spent 5Co/10ZrAl indicated that Zr promotion suppressed graphitic carbon formation. Full article
Show Figures

Figure 1

15 pages, 2987 KB  
Article
A Novel Phenolic Resin Aerogel Modified by SiO2-ZrO2 for Efficient Thermal Protection and Insulation
by Yifan Zhan, Chunhui Zhang, Liangjun Li, Mengle Huang, Sian Chen, Yonggang Jiang, Junzong Feng, Yijie Hu and Jian Feng
Gels 2025, 11(12), 1018; https://doi.org/10.3390/gels11121018 - 18 Dec 2025
Viewed by 162
Abstract
Phenolic aerogel holds great promise for applications in thermal protection against ablation, and constructing inorganic–organic hybrid networks is an effective strategy to enhance its oxidation and ablation resistance. This study introduces a stepwise hybridization strategy for the preparation of SiO2–ZrO2 [...] Read more.
Phenolic aerogel holds great promise for applications in thermal protection against ablation, and constructing inorganic–organic hybrid networks is an effective strategy to enhance its oxidation and ablation resistance. This study introduces a stepwise hybridization strategy for the preparation of SiO2–ZrO2–phenolic resin aerogels (SZPA). First, nano-silica sol and nanometer-scale zirconia were physically blended to form a uniformly dispersed mixture. Subsequently, the modified silica was incorporated into a phenolic resin solution to construct a three-dimensional hybrid silica–phenolic network framework. Nano-sized zirconia was then uniformly dispersed within the matrix as a physical reinforcing phase through high-shear dispersion. Finally, the SZPA with a hierarchical nanoporous structure was obtained via ambient-pressure drying. Owing to its unique hybrid network structure, the aerogel exhibits markedly improved properties: the thermal conductivity is as low as 0.0419–0.0431 W/(m·K) (a reduction of approximately 24%), and the specific surface area is as high as 190–232 m2/g (an increase of approximately 83%). Meanwhile, the inorganic network considerably enhances the residual mass at elevated temperatures, as well as the oxidation resistance and thermal stability of the matrix. Among the tested materials, the SZPA-4 exhibited outstanding thermal insulation capability at high temperatures; its back surface temperature reached only 74.4 °C after 600 s of exposure to a 1200 °C butane flame. This study provides a feasible route for the preparation of high-performance phenolic-based composite aerogels for aerospace thermal protection systems, thereby expanding their potential applications in extreme thermal environments. Full article
(This article belongs to the Section Gel Processing and Engineering)
Show Figures

Figure 1

19 pages, 3608 KB  
Article
Transforming Low-Value Quartz into Electronic-Grade Spherical SiO2 via a Morphology-Directed Hydrothermal Alkaline Process
by Yiqin Zhang, Hongjuan Sun, Tongjiang Peng, Saeed Rehman, Shize Chen, Lingyan Chu and Tao Chen
Minerals 2025, 15(12), 1296; https://doi.org/10.3390/min15121296 - 11 Dec 2025
Viewed by 287
Abstract
The conventional production of electronic-grade, high-purity, spherical silicon dioxide (SiO2) faces challenges of high raw material costs and poor control over particle morphology. This study presents an alternative route using low-cost, powdered quartz as a starting material. The quartz was first [...] Read more.
The conventional production of electronic-grade, high-purity, spherical silicon dioxide (SiO2) faces challenges of high raw material costs and poor control over particle morphology. This study presents an alternative route using low-cost, powdered quartz as a starting material. The quartz was first purified by flotation to remove any associated minerals, such as talc. Subsequently, deep purification was achieved through a hydrothermal alkaline process, which leveraged the distinct leaching kinetics of SiO2 and impurity ions (Al3+, Ca2+, Fe3+) under precisely controlled hydrothermal conditions (10 mL/g liquid-to-solid ratio, 3 mol/L NaOH, 200 °C, 8 h). This step yielded a sodium silicate solution with a purity of 99.999%. Spherical SiO2 particles were then synthesized from solutions of varying moduli via chemical precipitation. The condensation kinetics of silicate anionic species (Qn) during acidification were investigated, revealing how the Qn distribution governs the final particle size and morphology. The optimal product exhibited excellent characteristics: a sphericity ≥ 0.98, a median particle size (D50) of 400–500 nm, and a narrow particle size distribution (polydispersity index, PDI of 0.178–0.192). These properties surpass the requirements for the QYG-H Type 002 grade specified in the Chinese National Standard GB/T 32661-2016 (“Spherical Silica Powder”) and meet the standard for electronic-grade spherical SiO2. This work provides a fundamental insight into morphology control and a feasible technical pathway for the value-added utilization of powdered quartz and the production of electronic-grade spherical SiO2 with a narrow particle size distribution. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Graphical abstract

27 pages, 3043 KB  
Review
Recent Advances and Techno-Economic Prospects of Silicon Carbide-Based Photoelectrodes for Solar-Driven Hydrogen Generation
by Dina Bakranova, Abay Serikkanov, Farida Kapsalamova, Murat Rakhimzhanov, Zhanar Mukash and Nurlan Bakranov
Catalysts 2025, 15(12), 1159; https://doi.org/10.3390/catal15121159 - 10 Dec 2025
Viewed by 519
Abstract
Silicon carbide (SiC) has attracted increasing attention as a robust photoelectrode material for solar water splitting due to its exceptional chemical stability, mechanical strength, and resistance to photocorrosion. Recent advances in nanostructuring—particularly the development of nanoporous SiC architectures—have dramatically improved light absorption, charge [...] Read more.
Silicon carbide (SiC) has attracted increasing attention as a robust photoelectrode material for solar water splitting due to its exceptional chemical stability, mechanical strength, and resistance to photocorrosion. Recent advances in nanostructuring—particularly the development of nanoporous SiC architectures—have dramatically improved light absorption, charge separation, and charge transport in this material. This review summarizes current strategies to enhance the PEC performance of SiC, including hierarchical nanostructuring, defect engineering (e.g., doping to tailor band structure), heterojunction formation with co-catalysts, and incorporation of plasmonic nanoparticles. Remaining challenges are discussed, notably the wide band gap of common SiC polytypes (limiting visible-light utilization) and rapid charge-carrier recombination. In addition, we examine the techno-economic prospects for SiC-based PEC systems, outlining the efficiency and durability benchmarks required for commercial hydrogen production. Finally, we propose future research directions to achieve efficient, durable SiC photoelectrodes and to guide the development of scalable PEC water-splitting devices. This review uniquely integrates material design strategies with techno-economic evaluation, providing a roadmap for SiC-based PEC systems. Full article
(This article belongs to the Section Photocatalysis)
Show Figures

Graphical abstract

19 pages, 4104 KB  
Article
Valorization of Silicon-Rich Solid Waste into Highly Active Silicate Adsorbents for Heavy Metal Removal
by Shaojun Jiang, Xurong Huang, Huayi Chen, Jiahe Miao, Xinsheng Xiao, Yueying Zhuo, Xiang Li and Yong Chen
Toxics 2025, 13(12), 1062; https://doi.org/10.3390/toxics13121062 - 9 Dec 2025
Viewed by 363
Abstract
Waste stone powder is a major solid waste byproduct of stone operations. This study developed a novel “alkali activation-calcination” process that efficiently converts waste stone powder into high-value-added silicon-based materials (SSM). This study elucidated the morphological evolution of silicon during the conversion process [...] Read more.
Waste stone powder is a major solid waste byproduct of stone operations. This study developed a novel “alkali activation-calcination” process that efficiently converts waste stone powder into high-value-added silicon-based materials (SSM). This study elucidated the morphological evolution of silicon during the conversion process and revealed the formation mechanism of active silicon. Through further integration of batch adsorption experiments and multi-technique characterization analysis, the immobilization efficacy of this material for heavy metals cadmium/lead was elucidated, revealing both direct and indirect interfacial reaction mechanisms. The results demonstrate that in-creasing the calcination temperature, alkali activator concentration, and calcination duration enhances the reactive silica content in SSM. NaOH as activator, the calcination process significantly reduces both the thermal decomposition temperature of raw materials and the initial temperature required for silicon conversion. Under optimized conditions (WG:MD:activator = 1:0.8:0.32, temperature = 800 °C, time = 1 h), the reactive silica content reached 24.30%. The generation rate of reactive silica is governed by the combined effects of interfacial chemical reactions and solid-phase product layer diffusion. Under idealized laboratory conditions, the maximum adsorption capacities (Qm) of SSM were determined to be 57.40 mg/g for cadmium and 496 mg/g for lead, which are significantly higher than those of many other adsorbents. Continuous desorption experiments and characterization analyses confirm that Cd and Pb adsorption by SSM is primarily driven by electro-static interactions, complexation, precipitation, and coordination, while ion ex-change plays a secondary role. Highly reactive silica facilitates interactions between Cd/Pb and oxygen-containing functional groups (e.g., -OH, ≡Si-OH, Si-O-Si), promoting precipitate formation for effective heavy metal removal. This work offers theoretical guidance for valorizing silica-rich waste rock powder. It is important to note, however, that while the adsorption capacity of SSM is encouraging, its practical implementation requires resolving key issues identified during the lab-to-application transition. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Graphical abstract

28 pages, 2167 KB  
Article
Comprehensive Investigations on the Effects of Heat on “Illite–Zeolites–Geo-Polymers–Sand” Composites: Evolutions of Crystalline Structures, Elemental Distributions and Si/Al Environments
by Abdel Boughriet, Grégory Tricot, Bertrand Revel, Viviane Bout-Roumazeilles, Sandra Ventalon and Michel Wartel
Ceramics 2025, 8(4), 149; https://doi.org/10.3390/ceramics8040149 - 8 Dec 2025
Viewed by 241
Abstract
This research constitutes a novel experimental approach to valorizing an industrial by-product: the ‘brick’. Studies put emphasis on the importance of detailed structural characterization of brickminerals and their chemical evolution upon heating, contributing rationally to the design and development of new glass–ceramic forms [...] Read more.
This research constitutes a novel experimental approach to valorizing an industrial by-product: the ‘brick’. Studies put emphasis on the importance of detailed structural characterization of brickminerals and their chemical evolution upon heating, contributing rationally to the design and development of new glass–ceramic forms that would be suitable for efficiently encapsulating radio-nuclides. The brick used is a complex material composed of metakaolinite, illite, sand and impurities such as rutile and iron oxides/hydroxides. Raw brick was first activated with a range of sodium hydroxide concentrations, and, second, cured at different temperatures from 90 °C to 1200 °C. Alkali-brick frameworks gradually decomposed during the firing, and turned into crystalline ceramic phases (analcime and leucite) embedded inside an amorphous silica-rich phase. After each heating stage, the cured-brick sample was exhaustively characterized by using a variety of advanced analytical techniques, including powder X-ray diffraction, ESEM/EDS microscopy and 29Si-27Al-MAS-NMR spectroscopy. Ultra-high magnetic field NMR (28.2 T) was used to distinguish and quantify Al(IV), Al(V) and Al(VI) configurations, and to better follow distinctive changes in 27Al environments of brickminerals under thermal effects. Glass-ceramized brick exhibited high specific density (~2.6 g·cm−3), high compactness and good corrosion resistance under static, mild and aggressive conditions, attesting to its high solidification and chemical durability. Full article
(This article belongs to the Special Issue Advances in Ceramics, 3rd Edition)
Show Figures

Figure 1

13 pages, 6228 KB  
Article
Comprehensive Optimization of the Thermoelectric Properties of p-Type SiGe-Based Materials via In-Situ Decomposition of B4C
by Xiangqi Lu, Hongbo Chen, Yufei Gu, Jun-Liang Chen, Jie Gao, Kun Hu, Weijiang Gan, Zhongmin Wang, Huajun Lai and Lei Miao
Inorganics 2025, 13(12), 402; https://doi.org/10.3390/inorganics13120402 - 7 Dec 2025
Viewed by 276
Abstract
Silicon-based thermoelectric (TE) materials are demonstrating advanced capacity in environmental waste heat recovery. However, intrinsically high lattice thermal conductivity hinders the improvement of TE conversion efficiency. In the present work, a study of B4C composite for in situ nano-inclusions was carried [...] Read more.
Silicon-based thermoelectric (TE) materials are demonstrating advanced capacity in environmental waste heat recovery. However, intrinsically high lattice thermal conductivity hinders the improvement of TE conversion efficiency. In the present work, a study of B4C composite for in situ nano-inclusions was carried out to enhance the TE properties of p-type Si80Ge20 materials. During sintering, B4C was demonstrated to form the SiC and B-rich ternary with a SiGe-based matrix, and the in situ formation of diverse nano-inclusions and the B dopant significantly reduced lattice thermal conductivity without deteriorating power factor (PF), weakening the coupling relationship between thermal and electrical transport properties to a certain extent. The carrier concentration of SiGe alloy samples was significantly increased, resulting in a 7.8% enhancement of PF for Si80Ge20B0.5-(B4C)0.3 at 873 K, while a low lattice thermal conductivity of 0.69 W m−1 K−1 is achieved. The optimal ZT is 1.08, which increased ~50% compared to the pristine sample, and an excellent average ZTavg of 0.62 is obtained among recent p-type SiGe-based TE materials’ works. Our research provides a new perspective for the optimization and practical application of p-type silicon germanium TE materials. Full article
(This article belongs to the Special Issue Advances in Thermoelectric Materials, 2nd Edition)
Show Figures

Figure 1

19 pages, 1863 KB  
Article
Degradable Polymer-Based Oil–Water Separation Materials Prepared by High Internal Phase Emulsion Templating Method and Silica-Modification
by Yunpeng Hu, Jianqiao Lu, Maoning Li, Qingyuan Du, Jing Zhao, Dandan Li, Xiangrui Meng, Yu Nan, Zhi Zhang and Dazhi Sun
Polymers 2025, 17(24), 3254; https://doi.org/10.3390/polym17243254 - 6 Dec 2025
Viewed by 346
Abstract
The development of oil–water separation materials that combine high separation efficiency, robust mechanical properties, and environmental degradability remains a significant challenge. This study presents a novel degradable and superhydrophobic porous material fabricated via a multi-step process. A porous foam was first synthesized from [...] Read more.
The development of oil–water separation materials that combine high separation efficiency, robust mechanical properties, and environmental degradability remains a significant challenge. This study presents a novel degradable and superhydrophobic porous material fabricated via a multi-step process. A porous foam was first synthesized from degradable poly(ε-caprolactone-co-2-ethylhexyl acrylate) using a high internal phase emulsion templating technique. The foam was subsequently modified through in situ silica (SiO2) deposition via a sol–gel process, followed by grafting with hydrophobic hexadecyltrimethoxysilane (HDTMS) to produce the final oil–water separation porous materials. Various characterization results showed that the optimized material featured a hierarchical pore structure in micro scales and the porosity of the foam remained ~90% even after the 2-step modification. Mechanical tests indicate that the modified material exhibited significantly enhanced compressive strength and the water contact angle measurements revealed a superhydrophobic surface with a value of approximately 156°. The prepared material demonstrated excellent oil/water separation performance with notable absorption capacities ranging from 4.11 to 4.90 g/g for oils with different viscosity. Additionally, the porous material exhibited exceptional cyclic stability, maintaining over 90% absorption capacity after 10 absorption-desorption cycles. Moreover, the prepared material achieved a mass loss of approximately 30% within the first 3 days under alkaline hydrolysis conditions (pH 12, 25 °C), which further escalated to ~70% degradation within four weeks. The current work establishes a feasible strategy for developing sustainable, high-performance oil–water separation materials through rational structural design and surface engineering. Full article
(This article belongs to the Special Issue Eco-Friendly Polymer-Based Materials: Design and Applications)
Show Figures

Graphical abstract

Back to TopTop