Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = Scope 3 emissions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 526 KiB  
Article
Greenhouse Gas Emissions and the Financial Stability of Insurance Companies
by Silvia Bressan
J. Risk Financial Manag. 2025, 18(8), 411; https://doi.org/10.3390/jrfm18080411 - 25 Jul 2025
Viewed by 315
Abstract
The recent losses and damages due to climate change have destabilized the insurance industry. As global warming is one of the most critical aspects of climate change, it is essential to investigate to what extent greenhouse gas emissions affect the financial stability of [...] Read more.
The recent losses and damages due to climate change have destabilized the insurance industry. As global warming is one of the most critical aspects of climate change, it is essential to investigate to what extent greenhouse gas emissions affect the financial stability of insurers. Insurers typically do not emit substantial greenhouse gases directly, while their underwriting and investment activities play a substantial role in enabling companies that do. This article uses panel data regressions to analyze companies in all insurance segments and in all geographic regions of the world from 2004 to 2023. The main finding is that insurers that increase their greenhouse gas emissions become financially unstable. This result is consistent in all three scopes (scope 1, scope 2, and scope 3) of emissions. Furthermore, the findings reveal that this impact is related to reserves and reinsurance. Specifically, reserves increase with greenhouse gas emissions, while premiums ceded to reinsurers decline. Thus, high-emissions insurers retain a significant share of carbon risk and eventually become financially weak. The results encourage several policy recommendations, highlighting the need for instruments that improve the assessment and disclosure of insurers’ carbon footprints. This is crucial to achieving environmental targets and improving the stability of both the insurance market and the economic system. Full article
(This article belongs to the Special Issue Featured Papers in Climate Finance)
Show Figures

Figure 1

16 pages, 3325 KiB  
Article
Promoting Carbon Reduction in Universities Through Carbon Footprint Assessments: A Framework and Case Study of a University in Northeast China
by Zhijian Xiao, Shijiu Ma, Dehua Kou, Yu Zhang and Jianmin Gao
Energies 2025, 18(14), 3788; https://doi.org/10.3390/en18143788 - 17 Jul 2025
Viewed by 293
Abstract
To respond to the challenge of global climate change, universities should engage in carbon footprint research to identify effective strategies for mitigating greenhouse gas emissions. In this research, a comprehensive framework tailored for the study of carbon footprints in universities was constructed and [...] Read more.
To respond to the challenge of global climate change, universities should engage in carbon footprint research to identify effective strategies for mitigating greenhouse gas emissions. In this research, a comprehensive framework tailored for the study of carbon footprints in universities was constructed and used in a university in Northeast China for a case study, based on the GHG Protocol and emission factor methodology. The sources of GHG emissions at this university were identified by the GHG Protocol. Activity data were collected through questionnaire surveys and field visits. The results show that the university’s annual carbon footprint in 2022 stands at 172,473.77 t CO2-eq, with the contributions of Scope 1, 2, and 3 accounting for 2.35%, 64.69%, and 32.96%, respectively. Based on the carbon footprint quantification results, campus carbon reduction strategies were put forward from four perspectives: individual activities, building energy management, energy-loss reduction, and carbon sink, in order to enhance the sustainability of this university. An important difference between this work and previous studies is the explicit emphasis on the necessity of the indicative role of the carbon footprint in carbon reduction efforts. The case demonstrates the application of research framework and methods, providing methodologies and case references for future research on the carbon footprint of universities. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

22 pages, 434 KiB  
Systematic Review
Are Sustainable Supply Chains Managing Scope 3 Emissions? A Systematic Literature Review
by Miriam Borchardt, Giancarlo Pereira, Gabriel Milan, Elisabeth Pereira, Leandro Lima, Renata Bianchi and Annibal Scavarda do Carmo
Sustainability 2025, 17(13), 6066; https://doi.org/10.3390/su17136066 - 2 Jul 2025
Viewed by 652
Abstract
The sustainable supply chain management (SSCM) literature does not directly address Scope 3 emissions despite their role as primary drivers of greenhouse gas emissions. This study aims to provide an overview of the main themes through which the SSCM literature has considered Scope [...] Read more.
The sustainable supply chain management (SSCM) literature does not directly address Scope 3 emissions despite their role as primary drivers of greenhouse gas emissions. This study aims to provide an overview of the main themes through which the SSCM literature has considered Scope 3 emissions and identify further avenues for research. A systematic literature review (SLR) was conducted. Scopus and Web of Science were the databases considered. Sixty-one papers were included in the analysis. Most papers focus on assessing and estimating Scope 3 emissions, followed by papers that discuss the reporting of Scope 3 emissions. These papers shed light on how firms may not report Scope 3 emissions if the information is negative to improve investors’ perception of the firm. The last group of papers discusses practices and strategies to manage Scope 3 emissions. The main challenge identified in establishing strategies to manage Scope 3 emissions is engagement with stakeholders, as, generally, only one or two tiers of the value chain cooperate. This study is the first to organize the literature on Scope 3 emissions under the lens of SSCM. If supply chains are to become more sustainable, focal enterprise coordination must be effective and leverage practices such as Scope 3 emissions metrics and measurement, data sharing, and green product development for all stakeholders. Full article
(This article belongs to the Section Sustainable Management)
Show Figures

Figure 1

11 pages, 831 KiB  
Article
Assessment of Carbon Footprint for Organization in Frozen Processed Seafood Factory and Strategies for Greenhouse Gas Emission Reduction
by Phuanglek Iamchamnan, Somkiat Saithanoo, Thaweesak Putsukee and Sompop Intasuwan
Processes 2025, 13(7), 1990; https://doi.org/10.3390/pr13071990 - 24 Jun 2025
Viewed by 416
Abstract
This study aims to assess the carbon footprint for the organization of frozen processed seafood manufacturing plants and propose sustainable strategies for reducing greenhouse gas emissions. Organizational activity data from 2024 were utilized to evaluate the carbon footprint and develop targeted mitigation measures. [...] Read more.
This study aims to assess the carbon footprint for the organization of frozen processed seafood manufacturing plants and propose sustainable strategies for reducing greenhouse gas emissions. Organizational activity data from 2024 were utilized to evaluate the carbon footprint and develop targeted mitigation measures. The findings indicate that Scope 1 emissions amounted to 12,685 tons of CO2eq, Scope 2 emissions amounted to 15,403 tons of CO2eq, and Scope 3 emissions amounted to 31,564 tons of CO2eq. The total greenhouse gas emissions across all three scopes were 59,652 tons of CO2eq, with additional greenhouse gas emissions recorded at 34,027 tons of CO2eq. Mitigation measures were considered for activities contributing to at least 10% of emissions in each scope. In Scope 1, the use of R507 refrigerant in the production cooling system accounted for 9907 tons of CO2eq, representing 78.10% of emissions. In Scope 2, electricity consumption contributed 15,403 tons of CO2eq, constituting 100% of emissions. In Scope 3, the procurement of surimi (processed fish meat) was responsible for 20,844 tons of CO2eq, accounting for 66.04% of emissions. Based on these findings, key mitigation strategies were proposed. For Scope 1, reducing emissions involves preventive maintenance of cooling systems to prevent leaks, replacing corroded pipelines, installing shut-off valves, and switching to alternative refrigerants with no greenhouse gas emissions. For Scope 2, energy-saving initiatives include promoting electricity conservation within the organization, maintaining equipment for optimal efficiency, installing energy-saving devices such as variable speed drives (VSD), upgrading to high-efficiency motors, and utilizing renewable energy sources like solar power. For Scope 3, emissions can be minimized by sourcing raw materials from suppliers with certified carbon footprint labels, prioritizing purchases from producers committed to carbon reduction, and selecting suppliers closer to manufacturing sites to reduce transportation-related emissions. Implementing these strategies will contribute to sustainable greenhouse gas emission reductions. Full article
(This article belongs to the Special Issue Sustainable Waste Material Recovery Technologies)
Show Figures

Figure 1

13 pages, 2141 KiB  
Article
Guidelines for Reducing the Greenhouse Gas Emissions of a Frozen Seafood Processing Factory Towards Carbon Neutrality Goals
by Phuanglek Iamchamnan, Somkiat Saithanoo, Thaweesak Putsukee and Sompop Intasuwan
Processes 2025, 13(7), 1989; https://doi.org/10.3390/pr13071989 - 24 Jun 2025
Viewed by 457
Abstract
This research aims to calculate the Carbon Footprint for Organization of a plant manufacturing frozen processed seafood and propose strategies to reduce greenhouse gas (GHG) emissions following the Net-Zero Pathway, using 2024 as the baseline year. The findings indicate that Scope 1 emissions [...] Read more.
This research aims to calculate the Carbon Footprint for Organization of a plant manufacturing frozen processed seafood and propose strategies to reduce greenhouse gas (GHG) emissions following the Net-Zero Pathway, using 2024 as the baseline year. The findings indicate that Scope 1 emissions amounted to 12,685 tons of CO2 eq, Scope 2 emissions totaled 15,403 tons of CO2eq, and Scope 3 emissions reached 31,564 tons of CO2eq, leading to a combined total of 59,652 tons of CO2eq across all scopes, with an additional 34,027 tons of CO2eq from other GHG sources. To achieve net-zero emissions by 2050, annual reductions of 3.46% per category are required. The short-term target for 2028f aims to reduce emissions to 10,929 tons of CO2eq for Scope 1, 13,270 tons of CO2eq for Scope 2, and 27,194 tons of CO2eq for Scope 3, resulting in total emissions of 51,392 tons of CO2eq. The proposed reduction strategies include optimizing Scope 1 emissions by preventing leaks in R507 refrigerant systems, replacing corroded pipelines, installing shut-off valves, and switching to low-GHG refrigerants. For Scope 2, measures focus on reducing electricity consumption through energy conservation initiatives, carrying out regular machinery maintenance, installing Variable Speed Drives (VSDs), upgrading to high-efficiency motors, and integrating renewable energy sources such as solar power. For Scope 3, emissions from raw material procurement can be minimized by sourcing from certified suppliers with established product carbon footprints, prioritizing carbon reduction labeling, and selecting nearby suppliers to reduce transportation-related emissions. These strategies will support the organization in achieving carbon neutrality and progressing toward the net-zero goal. Full article
(This article belongs to the Special Issue Sustainable Waste Material Recovery Technologies)
Show Figures

Figure 1

25 pages, 4556 KiB  
Article
Toward Carbon Neutrality: A Methodological Approach for Assessing and Mitigating Urban Emissions at the Neighborhood Level, Applied to Benicalap, Valencia
by Carlos Vargas-Salgado, Carla Montagud-Montalvá, David Alfonso-Solar and Lucía Izquierdo-De-Andrés
Sustainability 2025, 17(11), 5150; https://doi.org/10.3390/su17115150 - 3 Jun 2025
Viewed by 535
Abstract
This study presents a methodology for estimating the carbon footprint of urban neighborhoods as a necessary step in proposing and evaluating potential GHG reduction measures to enhance the sustainability of cities. Additionally, this method has been applied to Benicalap, a district in Valencia, [...] Read more.
This study presents a methodology for estimating the carbon footprint of urban neighborhoods as a necessary step in proposing and evaluating potential GHG reduction measures to enhance the sustainability of cities. Additionally, this method has been applied to Benicalap, a district in Valencia, Spain. This research employs the Datadis, QGIS, and HOMER tools to assess emissions across Scopes 1, 2, and 3. Tailored mitigation strategies are proposed, primarily focusing on reducing emissions in Scopes 1 and 2. While previous studies have extensively examined CO2 emissions at broader geographic scales, like nations, regions, and cities, this study emphasizes the importance of neighborhood-level analysis to address localized environmental challenges effectively. The results reveal that Benicalap’s emissions contribute 28.69 ktCO2 (15.56%) to Scope 1, 13.71 ktCO2 (7.43%) to Scope 2, and 142 ktCO2 (77%) to Scope 3. By 2030, targeted interventions could reduce emissions from Scopes 1 and 2 by 19,885 ktCO2, representing a 50.69% reduction. Among the proposed measures, sustainable transportation improvements and photovoltaic deployment stand out, contributing to 25.39% and 24.87% of the reduction, respectively. Enhancements in public lighting and nature-based solutions would offer a minor decrease of 0.43%. These insights underscore the need for strategic, localized interventions to achieve meaningful emission reductions and support sustainable urban development efforts. Full article
Show Figures

Figure 1

19 pages, 5766 KiB  
Article
Tree-to-Me: Standards-Driven Traceability for Farm-Level Visibility
by Ya Cho, Arbind Agrahari Baniya and Kieran Murphy
Agronomy 2025, 15(5), 1074; https://doi.org/10.3390/agronomy15051074 - 28 Apr 2025
Viewed by 621
Abstract
Traditional horticultural information systems lack fine-grained, transparent on-farm event traceability, often providing only high-level post-harvest summaries. These systems also fail to standardise and integrate diverse data sources, ensure data privacy, and scale effectively to meet the demands of modern agriculture. Concurrently, rising requirements [...] Read more.
Traditional horticultural information systems lack fine-grained, transparent on-farm event traceability, often providing only high-level post-harvest summaries. These systems also fail to standardise and integrate diverse data sources, ensure data privacy, and scale effectively to meet the demands of modern agriculture. Concurrently, rising requirements for global environmental, social, and governance (ESG) compliance, notably Scope 3 emissions reporting, are driving the need for farm-level visibility. To address these gaps, this study proposes a novel traceability framework tailored to horticulture, leveraging global data standards. The system captures key on-farm events (e.g., irrigation, harvesting, and chemical applications) at varied resolutions, using decentralised identification, secure data-sharing protocols, and farmer-controlled access. Built on a progressive Web application with microservice-enabled cloud infrastructure, the platform integrates dynamic APIs and digital links to connect on-farm operations and external supply chains, resolving farm-level data bottlenecks. Initial testing on Victorian farms demonstrates its scalability potential. Pilot studies further validate its on-farm interoperability and support for sustainability claims through digitally verifiable credentials for an international horticultural export case study. The system also provides a tested baseline for integrating data to and from emerging technologies, such as farm robotics and digital twins, with potential for broader application across agricultural commodities. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

32 pages, 3616 KiB  
Article
Can Urban Rail Transit in China Reduce Carbon Dioxide Emissions? An Investigation of the Resource Allocation Perspective
by Shengyan Xu, Yibo Chen and Miao Liu
Sustainability 2025, 17(9), 3901; https://doi.org/10.3390/su17093901 - 25 Apr 2025
Viewed by 689
Abstract
The construction of urban rail transit plays a crucial role in improving traffic conditions in large cities, promoting green urban development, and reducing carbon dioxide emissions. Based on Chinese urban data, this paper employs a time-varying difference-in-difference model combined with the Heckman two-step [...] Read more.
The construction of urban rail transit plays a crucial role in improving traffic conditions in large cities, promoting green urban development, and reducing carbon dioxide emissions. Based on Chinese urban data, this paper employs a time-varying difference-in-difference model combined with the Heckman two-step method to control the sample selection problem. The objective of this methodology is to ascertain whether urban rail transit exerts a traffic creation effect or a traffic substitution effect. The following results were found: (1) Urban rail transit notably reduces the bus ridership per capita and the carbon dioxide emissions per capita in cities, a finding which passes a series of robustness tests, and the traffic substitution effect increases as the number of urban rail transit lines increases. (2) Heterogeneity analysis reveals that the traffic substitution effect in terms of carbon reduction in urban rail transit is greater in non-resource-based cities, cities with large carbon emissions, and cities with low fiscal pressure. (3) Urban rail transit reduces the carbon dioxide emissions per capita by improving the allocation efficiency of factor resources and further generating technological innovation and structural upgrading effects. (4) Spatial econometric analysis shows that urban rail transit has a significant spatial spillover effect on the reduction in carbon dioxide emissions per capita in neighboring cities. In short, urban rail transit can reduce the carbon dioxide emissions per capita by improving resource allocation and support the attainment of carbon peak and carbon neutrality goals. This effect is greater in large cities where urban rail transit networks have been established. Therefore, cities should actively promote the construction of metro and other rail transit within the scope of urban financial resources and make full use of the carbon reduction and efficiency enhancement functions of urban rail transit. In this way, urban rail transit can become an effective tool for the realization of sustainable development. Full article
Show Figures

Figure 1

23 pages, 8115 KiB  
Review
Current Progress and Future Trends in Carbon Sources and Sinks in Farmland Ecosystems: A Bibliometric Analysis (2002–2023)
by Yugong Pang, Menghao Zhang, Hesen Zhong, Tibihenda Cevin, Chuanzhun Sun, Shoutao Zhang, Xinyu Li, Jun Dai, Chengshuai Liu and Chi Zhang
Biology 2025, 14(4), 365; https://doi.org/10.3390/biology14040365 - 2 Apr 2025
Viewed by 925
Abstract
Farmland ecosystems, as the most active carbon pool, are integral to global climate change and carbon cycling. Therefore, systematically studying the roles of carbon sources and sinks in farmland ecosystems is essential to deepening our understanding of the carbon cycle and meeting the [...] Read more.
Farmland ecosystems, as the most active carbon pool, are integral to global climate change and carbon cycling. Therefore, systematically studying the roles of carbon sources and sinks in farmland ecosystems is essential to deepening our understanding of the carbon cycle and meeting the goals of “peak carbon emissions” and “carbon neutrality” in agriculture. Using the Web of Science database, this study reviewed 1411 articles (2002–2023) via bibliometric analysis to identify key research themes, trends, future priorities and address suggestions for future directions in farmland ecosystem carbon sources and sinks. The main results include the following: (1) Over the past 22 years, global research in this field has shown a consistent growth trend, with remarkably rapid expansion in the past three years. China, the United States, and Germany are the most influential countries. As the research scope has expanded, the field has evolved into an interdisciplinary domain. (2) The diversity of this research area has become enriched, and the research content is becoming more refined and systematic. The main research topics focus on carbon sequestration, soil organic carbon (SOC), farmland management, greenhouse gas (GHG) emissions, carbon stocks, ecosystem services, land use changes, climate change, and spatiotemporal heterogeneity. (3) Current research hotspots primarily focus on studying soil microbial carbon sequestration mechanisms, the application of remote sensing technologies, and reducing GHG emissions to achieve “carbon neutrality”. While existing studies have systematically elucidated carbon sequestration mechanisms mediated by soil aggregates, microorganisms, and minerals, critical knowledge gaps persist. Regional disparities in the relative contributions of these mechanisms remain unresolved, compounded by methodological inconsistencies in carbon assessment that introduce substantial uncertainties. Although farmland management practices are identified as pivotal drivers of carbon flux variation, the interactive effects of anthropogenic interventions and natural factors on ecosystem-scale carbon balance require further mechanistic exploration. This review provides a comprehensive reference for further study on carbon sources and sinks of farmland ecosystems and devising effective emission reduction strategies. Full article
Show Figures

Figure 1

22 pages, 1400 KiB  
Article
Towards a Climate-Neutral Campus: Carbon Footprint Assessment in Higher Education Institutions
by Tania Rus, Raluca-Paula Moldovan, Dorin Beu, Maria Pop and Andrei Ceclan
Appl. Sci. 2025, 15(7), 3695; https://doi.org/10.3390/app15073695 - 27 Mar 2025
Cited by 1 | Viewed by 1091
Abstract
Embracing a greener future requires understanding our carbon footprint. This study analyses the greenhouse gas emissions of the Technical University of Cluj-Napoca (TUCN) across all three emission scopes (1, 2, and 3) over a two-year period (2022–2023), employing the GHG Protocol methodology and [...] Read more.
Embracing a greener future requires understanding our carbon footprint. This study analyses the greenhouse gas emissions of the Technical University of Cluj-Napoca (TUCN) across all three emission scopes (1, 2, and 3) over a two-year period (2022–2023), employing the GHG Protocol methodology and One Click LCA software. In 2022, TUCN reported total greenhouse gas emissions of 7445.1 tonnes of CO2 equivalent (tCO2e), with a significant emphasis on Scope 3 emissions (28.3% of the total). This figure decreased slightly to 7229.1 tCO2e in 2023. On a per-person basis, emissions decreased from 0.378 tCO2e per person in 2022 to 0.362 tCO2e per person in 2023. The emissions per square meter also decreased from 31.2 kgCO2e/m2 in 2022 to 30.3 kgCO2e/m2 in 2023. Stationary fuel use (primarily natural gas) remained the largest contributor to emissions, accounting for approximately 62.7% and 66.9% in 2022 and 2023, respectively. TUCN aims for an 80% emissions reduction by 2030, fostering positive environmental impacts through education, energy efficiency, community engagement, and partnerships. This study provides a foundation for achieving carbon neutrality, benchmarking Romanian institutions, and contributing to national climate mitigation. The research’s findings are valuable for those seeking to integrate sustainable practices within higher education and broader urban contexts. Full article
(This article belongs to the Special Issue Sustainable Building Design: Challenges and Opportunities)
Show Figures

Figure 1

32 pages, 4979 KiB  
Article
Climate Neutrality Strategies for the Chemical Industry Using a Novel Carbon Boundary: An Austrian Case Study
by Maedeh Rahnama Mobarakeh and Thomas Kienberger
Energies 2025, 18(6), 1421; https://doi.org/10.3390/en18061421 - 13 Mar 2025
Viewed by 972
Abstract
The chemical industry is a key driver of economic growth and innovation but remains one of the largest contributors to greenhouse gas (GHG) emissions. Achieving sustainability demands advancements in green chemistry and cleaner production methods. This study investigates emission reduction strategies across Scope [...] Read more.
The chemical industry is a key driver of economic growth and innovation but remains one of the largest contributors to greenhouse gas (GHG) emissions. Achieving sustainability demands advancements in green chemistry and cleaner production methods. This study investigates emission reduction strategies across Scope 1, Scope 2, and Scope 3 by applying both top-down and bottom-up approaches within four system boundaries. The Austrian chemical sector, with a focus on ammonia, methanol, and olefins, serves as a case study. Results highlight the potential of abatement technologies and alternative feedstocks—such as low-carbon hydrogen and methanol—to significantly reduce emissions. Hydrogen-based production for ammonia and methanol, along with low-carbon methanol in olefin production, could reduce Scope 1 and Scope 2 emissions by approximately 80% compared to conventional methods. However, Scope 3 emissions remain challenging due to embedded carbon in feedstocks and CO2 use in production, particularly in product use and end-of-life phases. A comprehensive life cycle assessment is crucial to addressing these impacts. To evaluate Scope 3 emissions, this study explores three decarbonization scenarios: the reference scenario—relies on fossil-based production with high emissions; the geogenic scenario—integrates abatement technologies and geogenic CO2 feedstock, reducing emissions by about 46%; and the bio-based scenario—combines abatement technologies with biogenic CO2 feedstock, achieving an 80% reduction in total emissions at the national level. The findings emphasize the need for a system-wide approach that integrates bio-based solutions and circular economy strategies to achieve climate neutrality. However, uncertainties in climate policy, bio-resource availability, and data gaps in Scope 3 emissions must be addressed to ensure effective decarbonization and alignment with climate goals. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

23 pages, 7177 KiB  
Article
Renewable Portfolio Standards, Carbon Emissions Trading and China Certified Emission Reduction: The Role of Market Mechanisms in Optimizing China’s Power Generation Structure
by Shining Yang and Feng Mi
Energies 2025, 18(4), 894; https://doi.org/10.3390/en18040894 - 13 Feb 2025
Viewed by 802
Abstract
To promote the low-carbon energy transition, China is implementing renewable energy (RE) development policies such as renewable portfolio standards (RPSs), carbon emissions trading (CET) and China certified emission reduction (CCER) trading. However, using China’s current CET price to accurately reflect market information is [...] Read more.
To promote the low-carbon energy transition, China is implementing renewable energy (RE) development policies such as renewable portfolio standards (RPSs), carbon emissions trading (CET) and China certified emission reduction (CCER) trading. However, using China’s current CET price to accurately reflect market information is difficult, which is not conducive to guiding low-carbon investment. Additionally, as RE power enters the era of grid parity, more revenues are needed to maintain generator operations. Therefore, in this study, we construct a system dynamics model to explore whether and how market mechanisms can optimize the power generation structure, and sensitivity analyses of CCER policy parameters are carried out to identify the impact and scope for improvement. The results show that (1) the market mechanism, especially the RPS mechanism, adjusts the profits of power generators, eliciting a surge in RE generation and optimizing the power generation structure; (2) CET and CCER prices change in the opposite direction of tradable green certificates (TGCs) and show a significant improvement effect on the on-grid electricity price; (3) successful implementation of the CCER mechanism can effectively energize the CET market. A lower CCER benchmark price, higher CCER offset ratio and CET fines can accelerate the growth of CCER and CET prices. Therefore, the government should promote TGC separation from power trading and rationally design CCER policies by lowering the CCER credit ratio, increasing CET fines, and expanding CCER market capacity to ensure that the guiding role of the market mechanism is better utilized. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

22 pages, 1127 KiB  
Article
Evaluating GHG Emissions and Renewable Energy Use in the Italian Energy Sector: Monitoring, Reporting, and Objectives
by Stefano Castelluccio, Silvia Fiore and Claudio Comoglio
Environments 2025, 12(2), 55; https://doi.org/10.3390/environments12020055 - 6 Feb 2025
Cited by 1 | Viewed by 1035
Abstract
This study investigates the greenhouse gas (GHG) and renewable energy use reporting practices among thermal power plants (TPPs), waste incinerators (WIs), and hydropower plants (HPPs) in Italy, as reflected in their EMAS environmental statements. The analysis focuses on GHG emissions (Scope 1, 2, [...] Read more.
This study investigates the greenhouse gas (GHG) and renewable energy use reporting practices among thermal power plants (TPPs), waste incinerators (WIs), and hydropower plants (HPPs) in Italy, as reflected in their EMAS environmental statements. The analysis focuses on GHG emissions (Scope 1, 2, and 3) and renewable energy utilization reporting, and on the objectives set by the companies for reducing emissions and fossil fuels use. TPPs and WIs reported positive Scope 1 emissions extensively but reporting on Scope 2 and Scope 3 resulted inconsistent for all facilities. Negative emissions reporting was generally lacking, except for HPPs. Renewable energy use reporting was also limited, especially in TPPs and WIs, despite some facilities producing energy from renewable sources. The study also evaluated the objectives set by the companies on GHG reduction and renewable energy use increase, finding that GHG reduction was prioritized over renewable energy use. However, both were often a secondary goal integrated into planned operational improvements. The findings highlight that, to ensure transparency of sustainability data and the possibility of performances benchmarking in the energy production sector, there is the need for defining stronger reporting guidelines on GHG emissions, especially regarding Scope 3 emissions, and to prioritize increasing the share of renewable energy among strategic objectives. Future research should investigate factors affecting reporting behavior and the barriers to renewable energy adoption in fossil fuel-reliant sectors. Full article
(This article belongs to the Special Issue Greenhouse Gas Emission Reduction and Green Energy Utilization)
Show Figures

Figure 1

32 pages, 4103 KiB  
Review
Strategic Selection of a Pre-Reduction Reactor for Increased Hydrogen Utilization in Hydrogen Plasma Smelting Reduction
by Bernhard Adami, Felix Hoffelner, Michael Andreas Zarl and Johannes Schenk
Processes 2025, 13(2), 420; https://doi.org/10.3390/pr13020420 - 5 Feb 2025
Cited by 4 | Viewed by 1552
Abstract
The hydrogen plasma smelting reduction process has the potential to drastically reduce the CO2 emissions of the steel industry by using molecular, atomic and ionized hydrogen as a reducing agent for iron ores. To increase the hydrogen and thermal efficiency of the [...] Read more.
The hydrogen plasma smelting reduction process has the potential to drastically reduce the CO2 emissions of the steel industry by using molecular, atomic and ionized hydrogen as a reducing agent for iron ores. To increase the hydrogen and thermal efficiency of the process, a pre-reduction and pre-heating stage should be incorporated in a future upscaling of an existing HPSR demonstration plant within the scope of the “SuSteel follow-up” project to a target capacity of 200 kg/h of iron ore. The determination of the optimal process parameters is followed by a review of possible reactor types. A fluidized bed cascade, a cyclone cascade and a rotary kiln are compared for this purpose. Their applicability for the hydrogen plasma smelting is discussed, based on their fundamental design and operational procedures. Additionally, critical features of the different reactor types are outlined. A cyclone cascade with at least 3 stages is proposed to be the optimal reactor for pre-heating and pre-reducing the input material for the upscaled hydrogen plasma smelting reduction demonstration plant, based on the assessment. Full article
Show Figures

Figure 1

29 pages, 14563 KiB  
Article
Multi-Scale Mapping of Energy Consumption Carbon Emission Spatiotemporal Characteristics: A Case Study of the Yangtze River Delta Region
by Kangjuan Lv, Qiming Wang, Xunpeng Shi, Li Huang and Yatian Liu
Land 2025, 14(1), 95; https://doi.org/10.3390/land14010095 - 6 Jan 2025
Cited by 1 | Viewed by 1006
Abstract
Climate issues significantly impact people’s lives, prompting governments worldwide to implement energy-saving and emission-reducing measures. However, many areas lack carbon emission data at the lower administrative divisions. Additionally, the inconsistency in the standards, scope, and accuracy of carbon dioxide emission statistics across different [...] Read more.
Climate issues significantly impact people’s lives, prompting governments worldwide to implement energy-saving and emission-reducing measures. However, many areas lack carbon emission data at the lower administrative divisions. Additionally, the inconsistency in the standards, scope, and accuracy of carbon dioxide emission statistics across different regions makes mapping carbon dioxide spatial patterns complex. Nighttime light (NTL) data combined with land use data enable the detailed spatial and temporal disaggregation of carbon emission data at a finer administrative level, facilitating scientifically informed policy formulation by the government. Differentiating carbon emission data by sector will help us further identify the carbon emission efficiency in different sectors and help environmental regulators implement the most cost-effective emission-reduction strategy. This study uses integrated remote-sensing data to estimate carbon emissions from fossil fuels (CEFs). Experimental results indicate (1) that the regional CEF can be calculated by combining NTL and Landuse data and has a good fit; (2) the high-intensity CEF area is mainly concentrated in Shanghai and its surrounding areas, showing a concentric circle structure; (3) there are obvious differences in the spatial distribution characteristics of carbon emissions among different departments; (4) hot spot analysis reveals a three-tiered distribution in the Yangtze River Delta, increasing from the west to the east with distinct spatial characteristics. Full article
Show Figures

Figure 1

Back to TopTop