Can Urban Rail Transit in China Reduce Carbon Dioxide Emissions? An Investigation of the Resource Allocation Perspective
Abstract
1. Introduction
2. Theoretical Analysis and Research Hypotheses
2.1. Creation or Substitution Effects of Urban Rail Transit
2.2. Urban Rail Transit, Resource Allocation Efficiency, and Carbon Dioxide Emissions
3. Research Design
3.1. Model Selection
3.1.1. Time-Varying Difference-in-Difference Model
3.1.2. Heckman Models
3.2. Variables and Data
3.2.1. Explained Variables: Bus Ridership per Capita and Carbon Dioxide Emissions per Capita
3.2.2. Explanatory Variable: Urban Rail Transit
3.2.3. Control Variables
4. Results and Discussion
4.1. Baseline Results
4.2. Robustness Checks
4.2.1. Parallel Trend Test
4.2.2. Placebo Test
4.2.3. Goodman-Bacon Decomposition
4.2.4. Heterogeneity Robust Estimators
4.2.5. Alternative Robustness Tests
4.3. Impact of the Development Level of Urban Rail Transit
5. Further Discussion
5.1. Heterogeneity Analyses
5.1.1. Resource Endowments
5.1.2. Carbon Emission Scale
5.1.3. Fiscal Pressure
5.2. Channels Analysis
5.2.1. Land Factor Allocation Effect
5.2.2. Capital Factor Allocation Effect
5.2.3. Labor Factor Allocation Effect
5.3. Spatial Effects Analyses
5.3.1. Spatial Econometric Model
5.3.2. Spatial Autocorrelation Test
5.3.3. Analysis of Spatial Econometric Results
6. Conclusions and Policy Recommendations
6.1. Conclusions
6.2. Policy Recommendations
6.3. Research Shortcomings and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, W.-S.; Tran, T.M.; Yu, L.B. Green infrastructure and air pollution: Evidence from highways connecting two megacities in China. J. Environ. Econ. Manag. 2023, 122, 102884. [Google Scholar] [CrossRef]
- Sun, C.; Zhang, W.; Fang, X.; Gao, X.; Xu, M. Urban public transport and air quality: Empirical study of China cities. Energy Policy 2019, 135, 110998. [Google Scholar] [CrossRef]
- Zhang, Y.; Mi, Z. Environmental benefits of bike sharing: A big data-based analysis. Appl. Energy 2018, 220, 296–301. [Google Scholar] [CrossRef]
- Dai, Y.; Wang, X.; Tong, X. From the Sharing Economy to the Low Carbon Economy: Evidence from the Entry of Bicycle Sharing Platforms. J. Quant. Technol. Econ. 2024, 41, 111–130. (In Chinese) [Google Scholar] [CrossRef]
- Si, L.; Cao, H.; Wang, J. The impact of a low-carbon transport system policy on total factor carbon emission performance: Evidence from 283 cities in China. Socio-Econ. Plan. Sci. 2024, 96, 102091. [Google Scholar] [CrossRef]
- Zhao, R.; Jiang, Y.; Wang, X.; Wei, X. Does green transportation affect carbon emission efficiency? Evidence from a quasi-experimental study in China. J. Environ. Manag. 2024, 370, 122815. [Google Scholar] [CrossRef]
- Sun, T.-t.; Zhao, B. Steering towards sustainability: How does low-carbon transportation policy impact urban carbon emissions in china? Environ. Dev. Sustain. 2024. [Google Scholar] [CrossRef]
- Classification of Urban Rail Transit <Standard No. GB/T 44413-2024>. Available online: https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=5ACDACDEDD662B962D8A61E3530814F7 (accessed on 1 December 2024).
- Gu, Y.; Jiang, C.; Zhang, J.; Zou, B. Subways and Road Congestion. Am. Econ. J. Appl. Econ. 2021, 13, 83–115. [Google Scholar] [CrossRef]
- Gonzalez-Navarro, M.; Turner, M.A. Subways and urban growth: Evidence from earth. J. Urban Econ. 2018, 108, 85–106. [Google Scholar] [CrossRef]
- Gendron, C.N.; Gonzalez, N.M.; Polloni, S.; Turner, M.A. Subways and Urban Air Pollution. Am. Econ. J. Appl. Econ. 2022, 14, 164–196. [Google Scholar] [CrossRef]
- Chen, Y.; Whalley, A. Green Infrastructure: The Effects of Urban Rail Transit on Air Quality. Am. Econ. J. Econ. Policy 2012, 4, 58–97. [Google Scholar] [CrossRef]
- Xiao, D.; Li, B.X.; Cheng, S.X. The effect of subway development on air pollution: Evidence from China. J. Clean Prod. 2020, 275, 10. [Google Scholar] [CrossRef]
- Spears, S.; Boarnet, M.G.; Houston, D. Driving reduction after the introduction of light rail transit: Evidence from an experimental-control group evaluation of the Los Angeles Expo Line. Urban Stud. 2017, 54, 2780–2799. [Google Scholar] [CrossRef]
- Boarnet, M.G.; Wang, X.Z.; Houston, D. Can new light rail reduce personal vehicle carbon emissions? A before-after, Experimental-Control Evaluation in Los Angeles. J. Reg. Sci. 2017, 57, 523–539. [Google Scholar] [CrossRef]
- Shinde, A.M.; Dikshit, A.K.; Soni, A. Environmental life cycle assessment of underground metro rail: A case study in Mumbai Metropolitan Region, India. Environ. Impact Assess. Rev. 2024, 106, 107501. [Google Scholar] [CrossRef]
- Goel, D.; Gupta, S. The Effect of Metro Expansions on Air Pollution in Delhi. World Bank Econ. Rev. 2015, 31, 271–294. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, F.; Fujiyama, T. Carbon emission from urban passenger transportation in Beijing. Transp. Res. D Transp. Environ. 2015, 41, 217–227. [Google Scholar] [CrossRef]
- Zhang, S.Y.; Zhao, J.M. Low-carbon futures for Shenzhen’s urban passenger transport: A human-based approach. Transp. Res. D Transp. Environ. 2018, 62, 236–255. [Google Scholar] [CrossRef]
- Duranton, G.; Turner, M.A. Urban Growth and Transportation. Rev. Econ. Stud. 2012, 79, 1407–1440. [Google Scholar] [CrossRef]
- Fan, Z.-Y.; Hang, Z.; Chen, J. The Spillover Effects and Siphon Effects of Public Transportation on Housing Market: A Case Study of Subway. China Ind. Econ. 2018, 35, 99–117. (In Chinese) [Google Scholar] [CrossRef]
- Liu, X.; Wang, Q.; Wu, J. Urban High-Speed Rail Transit Development and Corporate Innovation. J. World Econ. 2022, 45, 126–152. (In Chinese) [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, W. Metro Opening, Knowledge Spillovers and Urban Innovation: Evidence from 289 Prefecture-level Cities in China. Econ. Sci. 2022, 2, 82–95. (In Chinese) [Google Scholar] [CrossRef]
- Xiao, T. The Impact of Metro Construction on Total Factor Productivity in China’s Cities: Role Mechanism and Quantitative Assessment. World Econ. Pap. 2021, 19, 100–117. Available online: http://sjjjwh.magtech.com.cn/CN/Y2021/V01/I01/100 (accessed on 1 January 2024). (In Chinese).
- Fu, M.; Cong, Z. Subway Opening and City’s Green Total Factor Productivity. Rev. Ind. Econ. 2023, 11, 167–182. (In Chinese) [Google Scholar] [CrossRef]
- Ou, Y.; Zheng, J.; Nam, K.-M. Impacts of Urban Rail Transit on On-Road Carbon Emissions: A Structural Equation Modeling Approach. Atmosphere 2022, 13, 1783. [Google Scholar] [CrossRef]
- Liang, R.; Xi, P. Heterogeneous Effects of Rail Transit on Air Pollution—An Empirical Study with RDID. China Ind. Econ. 2016, 33, 83–98. (In Chinese) [Google Scholar] [CrossRef]
- Vickrey, W. Congestion Theory and Transport Investment. Am. Econ. Rev. 1969, 59, 251–260. Available online: http://worldcat.org/isbn/1852781866 (accessed on 1 June 2024).
- Mohring, H. Optimization and Scale Economies in Urban Bus Transportation. Am. Econ. Rev. 1972, 62, 591–604. Available online: http://worldcat.org/issn/00028282 (accessed on 20 June 2024).
- Yu, M.C.; Yu, R.; Tang, Y.X.; Liu, Z. Empirical study on the impact of China’s metro services on urban transportation energy consumption. Res. Transp. Econ. 2020, 80, 9. [Google Scholar] [CrossRef]
- Heblich, S.; Redding, S.J.; Sturm, D.M. The Making of The Modern Metropolis: Evidence from London. Q. J. Econ. 2020, 135, 2059–2133. [Google Scholar] [CrossRef]
- Beaudoin, J.; Farzin, Y.H.; Lawell, C. Public transit investment and sustainable transportation: A review of studies of transit’s impact on traffic congestion and air quality. Res. Transp. Econ. 2015, 52, 15–22. [Google Scholar] [CrossRef]
- Yuan, M.; Song, Y.; Hong, S.; Huang, Y. Evaluating the effects of compact growth on air quality in already-high-density cities with an integrated land use-transport-emission model: A case study of Xiamen, China. Habitat. Int. 2017, 69, 37–47. [Google Scholar] [CrossRef]
- Yang, J.; Chen, S.; Qin, P.; Lu, F.W.; Liu, A.A. The effect of subway expansions on vehicle congestion: Evidence from Beijing. J. Environ. Econ. Manag. 2018, 88, 114–133. [Google Scholar] [CrossRef]
- Jiao, L.; Luo, F.; Wu, F.; Zhang, Y.; Huo, X.; Wu, Y. Exploring the Interactive Coercing Relationship between Urban Rail Transit and the Ecological Environment. Land 2022, 11, 836. [Google Scholar] [CrossRef]
- Hao, Y.; Gai, Z.; Wu, H. How do resource misallocation and government corruption affect green total factor energy efficiency? Evidence from China. Energy Policy 2020, 143, 111562. [Google Scholar] [CrossRef]
- Gu, P.; He, D.; Chen, Y.; Christopher Zegras, P.; Jiang, Y. Transit-oriented development and air quality in Chinese cities: A city-level examination. Transp. Res. D Transp. Environ. 2019, 68, 10–25. [Google Scholar] [CrossRef]
- Mei, Z.Y.; Gong, J.R.; Feng, C.; Kong, L.; Zhu, Z. Assessment of carbon emissions from TOD subway first/last mile trips based on level classification. Travel Behav. Soc. 2024, 36, 14. [Google Scholar] [CrossRef]
- Ding, C.; Song, Y.; Qiao, X.; Zhang, Y.; Yu, B.; Zhang, X. Integrating land use and greenway network for metro station area transit-oriented development. Transp. Res. D Transp. Environ. 2022, 113, 103539. [Google Scholar] [CrossRef]
- Pan, H.X.; Zhang, M. Rail Transit Impacts an Land Use: Evidence from Shanghai, China. Transp. Res. Rec. 2008, 2048, 16–25. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, J.; Jin, L.; Dong, J.; Alfarraj, O.; Tolba, A.; Wang, Q.; He, Y. Sustainable Low-Carbon Layout of Land around Rail Transit Stations Based on Multi-Modal Spatial Data. Sustainability 2023, 15, 9589. [Google Scholar] [CrossRef]
- Han, F.; Huang, M. Land Misallocation and Carbon Emissions: Evidence from China. Land 2022, 11, 1189. [Google Scholar] [CrossRef]
- Zhou, D.; Huang, Q.; Chong, Z. Analysis on the effect and mechanism of land misallocation on carbon emissions efficiency: Evidence from China. Land Use Policy 2022, 121, 106336. [Google Scholar] [CrossRef]
- Li, J.; Huang, H. Effects of transit-oriented development (TOD) on housing prices: A case study in Wuhan, China. Res. Transp. Econ. 2020, 80, 100813. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, X.; Hang, J.; Yao, D.; Shi, G. Do Urban Rail Transit Facilities Affect Housing Prices? Evidence from China. Sustainability 2016, 8, 380. [Google Scholar] [CrossRef]
- Su, X.; Qiao, R.; Xu, S. Impact of green finance on carbon emissions and spatial spillover effects: Empirical evidence from China. J. Clean. Prod. 2024, 457, 142362. [Google Scholar] [CrossRef]
- Pang, J. The Effect of Urban Transportation Systems on Employment Outcomes and Traffic Congestion. Ph.D. Thesis, Syracuse University, New York, NY, USA, 2018. [Google Scholar]
- Du, R.; Zheng, S.Q. Agglomeration, housing affordability, and new firm formation: The role of subway network. J. Hous. Econ. 2020, 48, 1051–1377. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, W. Metro Opening, Collaboration and Enterprise Innovation. Econ. Rev. 2023, 6, 140–158. (In Chinese) [Google Scholar] [CrossRef]
- Heckman, J. Sample Selection Bias as a Specification Error. Econometrica 1979, 47, 153–161. [Google Scholar] [CrossRef]
- Lennox, C.S.; Francis, J.R.; Wang, Z.T. Selection Models in Accounting Research. Account. Rev. 2012, 87, 589–616. [Google Scholar] [CrossRef]
- Li, J.; Tang, F.; Zhang, S.; Zhang, C. The effects of low-carbon city construction on bus trips. J. Public Transp. 2023, 25, 100057. [Google Scholar] [CrossRef]
- Crippa, M.; Guizzardi, D.; Pagani, F.; Banja, M.; Muntean, M.; Schaaf, E.; Becker, W.E.; Monforti-Ferrario, F.; Quadrelli, R.; Risquez Martin, A.; et al. GHG Emissions of All World Countries; European Commission, Publications Office of the European Union: Luxembourg, 2023; Available online: http://data.europa.eu/89h/b54d8149-2864-4fb9-96b9-5fd3a020c224 (accessed on 19 June 2024).
- Jacobson, L.S.; Lalonde, R.J.; Sullivan, D.G. Earnings Losses of Displaced Workers. Am. Econ. Rev. 1993, 83, 685–709. [Google Scholar] [CrossRef]
- Goodman-Bacon, A. Difference-in-differences with variation in treatment timing. J. Econom. 2021, 225, 254–277. [Google Scholar] [CrossRef]
- Cengiz, D.; Dube, A.; Lindner, A.; Zipperer, B. The Effect of Minimum Wages on Low-Wage Jobs. Q. J. Econ. 2019, 134, 1405–1454. [Google Scholar] [CrossRef]
- Callaway, B.; Sant’Anna, P.H.C. Difference-in-Differences with multiple time periods. J. Econom. 2021, 225, 200–230. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, S. Why does China’s carbon intensity decline and India’s carbon intensity rise? a decomposition analysis on the sectors. J. Clean. Prod. 2020, 265, 121569. [Google Scholar] [CrossRef]
- Chen, S.; Shi, A.N.; Wang, X. Carbon emission curbing effects and influencing mechanisms of China’s Emission Trading Scheme: The mediating roles of technique effect, composition effect and allocation effect. J. Clean. Prod. 2020, 264, 1–15. [Google Scholar] [CrossRef]
- Zhang, H.; Zhan, B.; Ouyang, M. Enhancing accessibility through rail transit in congested urban areas: A cross-regional analysis. J. Transp. Geogr. 2024, 115, 103791. [Google Scholar] [CrossRef]
- Allcott, H.; Keniston, D. Dutch Disease or Agglomeration? The Local Economic Effects of Natural Resource Booms in Modern America. Rev. Econ. Stud. 2017, 85, 695–731. [Google Scholar] [CrossRef]
- Xu, S.; Liu, M.; Hua, P.; Chen, Y. How Has Land Restriction Policy Influenced Green Total Factor Productivity? Evidence from Chinese Cities. Land 2024, 13, 2249. [Google Scholar] [CrossRef]
- Bartelsman, E.; Haltiwanger, J.; Scarpetta, S. Cross-Country Differences in Productivity: The Role of Allocation and Selection. Am. Econ. Rev. 2013, 103, 305–334. [Google Scholar] [CrossRef]
- Olley, G.S.; Pakes, A. The dynamics of productivity in the telecommunications equipment industry. Econometrica 1996, 64, 1263–1297. [Google Scholar] [CrossRef]
- Chari, A.V.; Liu, E.M.; Wang, S.-Y.; Wang, Y. Property Rights, Land Misallocation, and Agricultural Efficiency in China. Rev. Econ. Stud. 2021, 88, 1831–1862. [Google Scholar] [CrossRef]
- Hyytinen, A.; Ilmakunnas, P.; Maliranta, M. Olley–Pakes Productivity Decomposition: Computation and Inference. J. R. Stat. Soc. Ser. A Stat. Soc. 2016, 179, 749–761. [Google Scholar] [CrossRef]
- Yang, M.; Hong, Y.; Yang, F. The effects of Mandatory Energy Efficiency Policy on resource allocation efficiency: Evidence from Chinese industrial sector. Econ. Anal. Policy 2022, 73, 513–524. [Google Scholar] [CrossRef]
Scope | Variable | Variable Definition |
---|---|---|
Explained Variables | BR_pc | The bus ridership per capita |
lnBR_pc | The natural logarithm of BR_pc | |
CO2_pc | The carbon dioxide emissions per capita | |
lnCO2_pc | The natural logarithm of CO2_pc | |
Explanatory Variable | URT | Urban rail transit |
Line | The count of urban rail transit lines | |
lnLine | The natural logarithm of Line | |
Mileage | The mileage of urban rail transit | |
lnMileage | The natural logarithm of Mileage | |
Station | The count of urban rail transit station | |
lnStation | The natural logarithm of Station | |
Interchange | The count of urban rail transit Interchange stations | |
lnInterchange | The natural logarithm of Interchange | |
Duration | Years of urban rail transit operation | |
lnDuration | The natural logarithm of Duration | |
Control Variables | lnGDP_pc | The logarithm of per capita GDP |
lnDesity | The logarithm of resident population density | |
lnRoadDesity | The logarithm of road network density | |
Urbanization | The ratio of non-agricultural population to total population | |
GI | The ratio of the fiscal expenditure to GDP | |
R&D | The ratio of the science and technology expenditures to GDP | |
FDI | The ratio of the amount of foreign direct investments to GDP | |
IS | The ratio of the industrial value-added to GDP |
Variable | Obs | Mean | SD | Min | 25% | Median | 75% | Max |
---|---|---|---|---|---|---|---|---|
BR_pc | 6312 | 36.625 | 52.809 | 0.018 | 8.830 | 19.546 | 43.855 | 1356.399 |
lnBR_pc | 6312 | 3.034 | 1.108 | 0.018 | 2.285 | 3.023 | 3.803 | 7.213 |
CO2_pc | 6312 | 8.095 | 8.936 | 0.016 | 3.061 | 5.740 | 9.896 | 109.966 |
lnCO2_pc | 6312 | 1.914 | 0.739 | 0.016 | 1.401 | 1.908 | 2.388 | 4.709 |
URT | 6312 | 0.073 | 0.259 | 0.000 | 0.000 | 0.000 | 0.000 | 1.000 |
Line | 6312 | 0.338 | 1.722 | 0.000 | 0.000 | 0.000 | 0.000 | 27.000 |
lnLine | 6312 | 0.109 | 0.426 | 0.000 | 0.000 | 0.000 | 0.000 | 3.332 |
Mileage | 6312 | 11.645 | 62.969 | 0.000 | 0.000 | 0.000 | 0.000 | 868.030 |
lnMileage | 6312 | 0.351 | 1.232 | 0.000 | 0.000 | 0.000 | 0.000 | 6.767 |
Station | 6312 | 7.574 | 39.436 | 0.000 | 0.000 | 0.000 | 0.000 | 513.000 |
lnStation | 6312 | 0.320 | 1.129 | 0.000 | 0.000 | 0.000 | 0.000 | 6.242 |
Interchange | 6312 | 1.824 | 11.271 | 0.000 | 0.000 | 0.000 | 0.000 | 189.000 |
lnInterchange | 6312 | 0.181 | 0.738 | 0.000 | 0.000 | 0.000 | 0.000 | 5.247 |
Duration | 6312 | 0.698 | 3.772 | 0.000 | 0.000 | 0.000 | 0.000 | 52.000 |
lnDuration | 6312 | 0.138 | 0.563 | 0.000 | 0.000 | 0.000 | 0.000 | 3.970 |
lnGDP_pc | 6312 | 10.313 | 0.891 | 7.415 | 9.712 | 10.426 | 10.952 | 12.486 |
lnDesity | 6312 | 5.702 | 0.969 | 1.599 | 5.120 | 5.780 | 6.395 | 9.726 |
lnRoadDesity | 6312 | 0.610 | 0.473 | 0.005 | 0.230 | 0.504 | 0.880 | 6.512 |
Urbanization | 6312 | 0.505 | 0.180 | 0.076 | 0.379 | 0.497 | 0.624 | 1.000 |
GI | 6312 | 0.174 | 0.100 | 0.031 | 0.108 | 0.149 | 0.208 | 1.027 |
R&D | 6312 | 0.002 | 0.003 | 0.000 | 0.001 | 0.001 | 0.003 | 0.063 |
FDI | 6312 | 0.021 | 0.027 | 0.000 | 0.005 | 0.013 | 0.028 | 0.420 |
IS | 6312 | 0.436 | 0.150 | 0.000 | 0.373 | 0.453 | 0.530 | 0.910 |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
lnBR_pc | lnCO2_pc | URT | lnBR_pc | lnCO2_pc | |
URT | −0.175 *** | −0.125 *** | −0.516 *** | −0.239 *** | |
(−4.926) | (−8.817) | (−9.157) | (−10.593) | ||
IMR | 0.310 *** | 0.103 *** | |||
(7.778) | (6.485) | ||||
lnGDP_pc | 0.593 *** | 0.182 *** | 0.715 *** | 0.561 *** | 0.171 *** |
(17.038) | (13.079) | (3.441) | (16.147) | (12.310) | |
lnDesity | −0.621 *** | −0.425 *** | 0.559 *** | −0.546 *** | −0.401 *** |
(−13.462) | (−23.079) | (5.660) | (−11.696) | (−21.404) | |
lnRoadDesity | −0.006 | 0.031 *** | −0.155 | −0.002 | 0.032 *** |
(−0.246) | (3.124) | (−1.084) | (−0.084) | (3.269) | |
Urbanization | 0.043 | −0.088 *** | 0.590 | 0.040 | −0.089 *** |
(0.543) | (−2.772) | (1.051) | (0.505) | (−2.814) | |
GI | 1.049 *** | 0.377 *** | −12.187 *** | 0.943 *** | 0.339 *** |
(7.429) | (6.686) | (−5.841) | (6.626) | (5.946) | |
R&D | −19.463 *** | −7.378 *** | 57.477 *** | −17.106 *** | −6.591 *** |
(−6.232) | (−5.912) | (2.706) | (−5.488) | (−5.279) | |
FDI | −0.341 | 0.020 | −1.777 | −0.454 * | −0.018 |
(−1.376) | (0.201) | (−1.013) | (−1.837) | (−0.179) | |
IS | −0.732 *** | 0.015 | −0.883 | −0.675 *** | 0.033 |
(−7.017) | (0.365) | (−1.219) | (−6.489) | (0.786) | |
Level | 1.838 *** | ||||
(17.873) | |||||
lnAge | 1.761 ** | ||||
(2.045) | |||||
City FE | Yes | Yes | No | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes |
Obs. | 6312 | 6312 | 6312 | 6312 | 6312 |
Adj. R2 | 0.864 | 0.951 | 0.758 | 0.866 | 0.952 |
Variables | lnBR_pc | lnCO2_pc | ||
---|---|---|---|---|
Group | Coefficient | Weight | Coefficient | Weight |
Always-group vs. Timing-group | 0.004 | 1.54% | 0.120 | 1.54% |
Early-group vs. Later-group | −0.012 | 4.81% | −0.007 | 4.81% |
Later-group vs. Early-group | −0.001 | 3.03% | −0.001 | 3.03% |
Never-group vs. Timing-group | −0.493 | 90.62% | −0.275 | 90.62% |
The average values of TWFE estimate | −0.455 *** | 100% | −0.281 *** | 100% |
Variables | Weighted Cluster-Time ATT | Stacked Regression Approach | ||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
lnBR_pc | lnBR_pc | lnCO2_pc | lnCO2_pc | lnBR_pc | lnCO2_pc | |
ATT | −0.322 *** | −0.313 *** | −0.195 *** | −0.190 *** | ||
(−5.561) | (−5.516) | (−6.103) | (−5.993) | |||
URT | −0.916 *** | −0.344 *** | ||||
(−11.344) | (−8.668) | |||||
IMR | 0.706 *** | 0.161 *** | ||||
(11.997) | (4.903) | |||||
City × Stack FE | No | No | No | No | Yes | Yes |
Year × Stack FE | No | No | No | No | Yes | Yes |
Control Variables | Yes | Yes | Yes | Yes | Yes | Yes |
City FE | Yes | Yes | Yes | Yes | No | No |
Year FE | Yes | Yes | Yes | Yes | No | No |
Obs. | 5838 | 5838 | 5838 | 5838 | 85,120 | 1,346,080 |
Adj. R2 | 0.825 | 0.955 |
Variables | Replacing the Explained Variable | PSM-DID | ||||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
lnVPTB | lnBusRate | lnCO2 | lnCEI | lnBR_pc | lnCO2_pc | |
URT | −0.460 *** | −0.343 *** | −0.160 *** | −0.328 *** | −0.370 *** | −0.198 *** |
(−6.463) | (−4.189) | (−5.845) | (−11.095) | (−6.784) | (−9.522) | |
IMR | 0.285 *** | 0.159 *** | 0.067 *** | 0.144 *** | 0.232 *** | 0.082 *** |
(5.666) | (3.154) | (3.456) | (6.908) | (6.217) | (5.760) | |
Control Variables | Yes | Yes | Yes | Yes | Yes | Yes |
City FE | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
Obs. | 6310 | 3696 | 6310 | 6310 | 4401 | 4401 |
Adj. R2 | 0.871 | 0.828 | 0.962 | 0.935 | 0.879 | 0.961 |
Variables | LCCP | LCTS | CETS | |||
---|---|---|---|---|---|---|
(1) | (2) | (3) | (4) | (5) | (6) | |
lnBR_pc | lnCO2_pc | lnBR_pc | lnCO2_pc | lnBR_pc | lnCO2_pc | |
URT | −0.625 *** | −0.121 *** | −0.582 *** | −0.242 *** | −0.565 *** | −0.258 *** |
(−7.248) | (−3.645) | (−7.799) | (−8.127) | (−8.769) | (−10.608) | |
IMR | 0.327 *** | 0.036 | 0.312 *** | 0.087 *** | 0.306 *** | 0.100 *** |
(5.471) | (1.581) | (6.241) | (4.351) | (6.569) | (5.697) | |
Control Variables | Yes | Yes | Yes | Yes | Yes | Yes |
City FE | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes |
Obs. | 4833 | 4833 | 5760 | 5760 | 5298 | 5298 |
Adj. R2 | 0.861 | 0.958 | 0.842 | 0.952 | 0.855 | 0.958 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) | (10) |
---|---|---|---|---|---|---|---|---|---|---|
lnBR_pc | lnCO2_pc | |||||||||
lnLine | −0.216 *** | −0.122 *** | ||||||||
(−7.917) | (−11.236) | |||||||||
lnMileage | −0.071 *** | −0.041 *** | ||||||||
(−7.459) | (−10.713) | |||||||||
lnStation | −0.080 *** | −0.047 *** | ||||||||
(−7.663) | (−11.150) | |||||||||
lnInterchange | −0.096 *** | −0.058 *** | ||||||||
(−7.324) | (−11.120) | |||||||||
lnDuration | −0.134 *** | −0.086 *** | ||||||||
(−6.096) | (−9.758) | |||||||||
IMR | 0.113 *** | 0.145 *** | 0.145 *** | 0.085*** | 0.074 *** | 0.021 * | 0.040 *** | 0.041 *** | 0.008 | 0.003 |
(4.122) | (4.873) | (4.917) | (3.242) | (2.811) | (1.932) | (3.378) | (3.491) | (0.758) | (0.252) | |
Control Vars | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
City FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Year FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Obs. | 6312 | 6312 | 6312 | 6312 | 6312 | 6312 | 6312 | 6312 | 6312 | 6312 |
Adj. R2 | 0.865 | 0.865 | 0.865 | 0.865 | 0.865 | 0.952 | 0.952 | 0.952 | 0.952 | 0.951 |
Variables | Resource Endowments | Carbon Emission Scale | Fiscal Pressure | |||
---|---|---|---|---|---|---|
Resource-Based Cities | Non-Resource-Based Cities | High Carbon Emissions | Low Carbon Emissions | High Fiscal Pressure | Low Fiscal Pressure | |
(1) | (2) | (3) | (4) | (5) | (6) | |
lnCO2_pc | ||||||
URT | −0.353 ** | −0.207 *** | −0.348 *** | −0.205 *** | −0.092 | −0.199 *** |
(−2.037) | (−8.348) | (−9.663) | (−8.046) | (−0.921) | (−7.909) | |
IMR | 0.127 | 0.094 *** | 0.118 *** | 0.113 *** | 0.051 | 0.086 *** |
(1.366) | (5.373) | (5.010) | (6.161) | (0.961) | (5.142) | |
Control Vars | Yes | Yes | Yes | Yes | Yes | Yes |
CITY FE | Yes | Yes | Yes | Yes | Yes | Yes |
YEAR FE | Yes | Yes | Yes | Yes | Yes | Yes |
Obs. | 2521 | 3791 | 2086 | 4226 | 3839 | 2473 |
Adj. R2 | 0.962 | 0.939 | 0.914 | 0.906 | 0.949 | 0.955 |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
lnARS | lnABD | lnARCL | lnPD | AllocateLand | |
URT | 0.195 *** | 0.126 *** | 0.264 *** | −0.045 *** | 0.346 ** |
(29.177) | (5.269) | (6.062) | (−2.665) | (2.465) | |
IMR | −0.096 *** | −0.067 *** | −0.119 *** | −0.018 | −0.161 * |
(−20.251) | (−3.991) | (−3.662) | (−1.448) | (−1.870) | |
Control Vars | Yes | Yes | Yes | Yes | Yes |
CITY FE | Yes | Yes | Yes | Yes | Yes |
YEAR FE | Yes | Yes | Yes | Yes | Yes |
Obs. | 6312 | 6312 | 5869 | 6235 | 2844 |
Adj. R2 | 0.918 | 0.961 | 0.881 | 0.572 | 0.112 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) |
---|---|---|---|---|---|---|---|---|
lnALP | lnDeficit | lnBond | AllocateCapital | PCHTE | NCHCE | RIS | SciRate | |
URT | 0.946 *** | 0.321 *** | 0.791 *** | 0.803 *** | 0.034 *** | −2.118 *** | 0.187 *** | 0.011 *** |
(4.565) | (8.617) | (4.861) | (4.530) | (5.189) | (−5.184) | (5.348) | (18.322) | |
IMR | −0.477 *** | −0.072 *** | −0.322 *** | −0.553 *** | −0.018 *** | 1.127 *** | −0.100 *** | −0.006 *** |
(−3.546) | (−2.700) | (−3.104) | (−5.092) | (−4.550) | (4.498) | (−3.930) | (−13.660) | |
Control Vars | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
CITY FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
YEAR FE | Yes | Yes | Yes | Yes | Yes | Yes | Yes | Yes |
Obs. | 4137 | 6236 | 2247 | 2844 | 2866 | 2866 | 5734 | 5736 |
Adj. R2 | 0.402 | 0.952 | 0.764 | 0.181 | 0.606 | 0.705 | 0.811 | 0.934 |
Variables | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
lnLabor | lnTalents | AllocateLabor | lnTech | GP | |
URT | 0.116 *** | 0.499 *** | 0.386 *** | 6.256 *** | 0.276 *** |
(5.204) | (15.116) | (3.253) | (14.726) | (30.481) | |
IMR | −0.042 | −0.246 *** | −0.249 *** | −3.051 *** | −0.132 *** |
(−1.409) | (−10.786) | (−3.425) | (−11.705) | (−20.665) | |
Control Vars | Yes | Yes | Yes | Yes | Yes |
CITY FE | Yes | Yes | Yes | Yes | Yes |
YEAR FE | Yes | Yes | Yes | Yes | Yes |
Obs. | 6305 | 5141 | 2844 | 2868 | 6312 |
Adj. R2 | 0.865 | 0.907 | 0.109 | 0.952 | 0.762 |
Variables | (1) | (2) | (3) | (4) | (5) | (6) |
---|---|---|---|---|---|---|
lnCO2_pc | ||||||
URT | −0.202 *** | −0.203 *** | −0.202 *** | −0.228 *** | −0.186 *** | −0.217 *** |
(−5.586) | (−5.588) | (−5.595) | (−9.914) | (−5.102) | (−9.009) | |
AllocateLand | −0.016 *** | |||||
(−3.520) | ||||||
AllocateCapital | −0.010 *** | |||||
(−2.599) | ||||||
AllocateLabor | −0.018 *** | |||||
(−3.909) | ||||||
RIS | −0.106 *** | |||||
(−8.782) | ||||||
PCHTE | −0.334 *** | |||||
(−3.197) | ||||||
GIP | −0.072 ** | |||||
(−2.248) | ||||||
IMR | 0.098 *** | 0.099 *** | 0.098 *** | 0.096 *** | 0.088 *** | 0.093 *** |
(4.445) | (4.520) | (4.469) | (5.858) | (3.980) | (5.657) | |
Control Vars | Yes | Yes | Yes | Yes | Yes | Yes |
CITY FE | Yes | Yes | Yes | Yes | Yes | Yes |
YEAR FE | Yes | Yes | Yes | Yes | Yes | Yes |
Obs. | 2844 | 2844 | 2844 | 6009 | 2866 | 6310 |
Adj. R2 | 0.977 | 0.977 | 0.977 | 0.952 | 0.977 | 0.952 |
Year | (1) | (2) | (3) | (4) | (5) |
---|---|---|---|---|---|
Index | E (Index) | Sd (Index) | Z | p-Value | |
2002 | 0.273 | −0.004 | 0.040 | 6.923 | 0.000 |
2003 | 0.314 | −0.004 | 0.040 | 7.961 | 0.000 |
2004 | 0.324 | −0.004 | 0.040 | 8.225 | 0.000 |
2005 | 0.340 | −0.004 | 0.040 | 8.611 | 0.000 |
2006 | 0.350 | −0.004 | 0.040 | 8.871 | 0.000 |
2007 | 0.340 | −0.004 | 0.040 | 8.614 | 0.000 |
2008 | 0.333 | −0.004 | 0.040 | 8.441 | 0.000 |
2009 | 0.336 | −0.004 | 0.040 | 8.525 | 0.000 |
2010 | 0.349 | −0.004 | 0.040 | 8.847 | 0.000 |
2011 | 0.335 | −0.004 | 0.040 | 8.505 | 0.000 |
2012 | 0.340 | −0.004 | 0.040 | 8.632 | 0.000 |
2013 | 0.330 | −0.004 | 0.040 | 8.378 | 0.000 |
2014 | 0.330 | −0.004 | 0.040 | 8.360 | 0.000 |
2015 | 0.339 | −0.004 | 0.040 | 8.591 | 0.000 |
2016 | 0.349 | −0.004 | 0.040 | 8.837 | 0.000 |
2017 | 0.366 | −0.004 | 0.040 | 9.274 | 0.000 |
2018 | 0.373 | −0.004 | 0.040 | 9.442 | 0.000 |
2019 | 0.372 | −0.004 | 0.040 | 9.417 | 0.000 |
2020 | 0.379 | −0.004 | 0.040 | 9.606 | 0.000 |
2021 | 0.382 | −0.004 | 0.040 | 9.661 | 0.000 |
2022 | 0.380 | −0.004 | 0.040 | 9.633 | 0.000 |
2023 | 0.396 | −0.004 | 0.040 | 10.018 | 0.000 |
Method | Statistic | p-Value | ||
---|---|---|---|---|
LM Test | Spatial error | Lagrange multiplier | 735.785 | 0.000 |
Robust Lagrange multiplier | 223.150 | 0.000 | ||
Spatial lag | Lagrange multiplier | 545.864 | 0.000 | |
Robust Lagrange multiplier | 33.229 | 0.000 | ||
LR Test | H0: SAR nested in SDM | 98.13 | 0.000 | |
H0: SER nested in SDM | 55.98 | 0.000 |
Variables | IDW Matrix | IDW2 Matrix |
---|---|---|
(1) | (2) | |
lnPerCO2 | ||
Main Effect | ||
URT | −0.227 *** | −0.229 *** |
(−10.307) | (−10.494) | |
IMR | 0.099 *** | 0.102 *** |
(6.400) | (6.661) | |
Wx Effect | ||
URT | −0.667 ** | −0.184 ** |
(−2.058) | (−2.026) | |
IMR | 0.023 | 0.039 |
(0.098) | (0.609) | |
0.599 *** | 0.380 *** | |
(8.615) | (11.877) | |
Long-Run Direct Effect | ||
URT | −0.232 *** | −0.234 *** |
(−10.087) | (−10.307) | |
IMR | 0.099 *** | 0.104 *** |
(5.999) | (6.344) | |
Long-Run Indirect Effect | ||
URT | −2.070 ** | −0.434 *** |
(−2.288) | (−3.031) | |
IMR | 0.215 | 0.126 |
(0.361) | (1.265) | |
Long-Run Total Effect | ||
URT | −2.302 ** | −0.668 *** |
(−2.529) | (−4.457) | |
IMR | 0.314 | 0.229 ** |
(0.525) | (2.214) | |
Control Vars | Yes | Yes |
CITY FE | Yes | Yes |
YEAR FE | Yes | Yes |
Obs. | 6248 | 6248 |
Adj. R2 | 0.635 | 0.531 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, S.; Chen, Y.; Liu, M. Can Urban Rail Transit in China Reduce Carbon Dioxide Emissions? An Investigation of the Resource Allocation Perspective. Sustainability 2025, 17, 3901. https://doi.org/10.3390/su17093901
Xu S, Chen Y, Liu M. Can Urban Rail Transit in China Reduce Carbon Dioxide Emissions? An Investigation of the Resource Allocation Perspective. Sustainability. 2025; 17(9):3901. https://doi.org/10.3390/su17093901
Chicago/Turabian StyleXu, Shengyan, Yibo Chen, and Miao Liu. 2025. "Can Urban Rail Transit in China Reduce Carbon Dioxide Emissions? An Investigation of the Resource Allocation Perspective" Sustainability 17, no. 9: 3901. https://doi.org/10.3390/su17093901
APA StyleXu, S., Chen, Y., & Liu, M. (2025). Can Urban Rail Transit in China Reduce Carbon Dioxide Emissions? An Investigation of the Resource Allocation Perspective. Sustainability, 17(9), 3901. https://doi.org/10.3390/su17093901