Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = SNAr reaction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4282 KiB  
Article
Synthesis of Purine-1,4,7,10-Tetraazacyclododecane Conjugate and Its Complexation Modes with Copper(II)
by Aleksejs Burcevs, Gediminas Jonusauskas, Irina Novosjolova and Māris Turks
Molecules 2025, 30(7), 1612; https://doi.org/10.3390/molecules30071612 - 4 Apr 2025
Cited by 1 | Viewed by 816
Abstract
Purine-1,4,7,10-tetraazacyclododecane (cyclen) conjugate was designed to study its Cu2+ ions complexation capability. Several synthetic approaches were tested to achieve the target compound. The optimal approach involved stepwise modifications of purine N9, C8, and C6 positions that, in nine consecutive [...] Read more.
Purine-1,4,7,10-tetraazacyclododecane (cyclen) conjugate was designed to study its Cu2+ ions complexation capability. Several synthetic approaches were tested to achieve the target compound. The optimal approach involved stepwise modifications of purine N9, C8, and C6 positions that, in nine consecutive steps, provided purine–cyclen conjugate. The synthetic sequence involved Mitsunobu-type alkylation at N9 and iodination at C8, followed by Stille, SNAr, CuAAC, and alkylation reactions. The designed purine–cyclen conjugate is able to complex Cu2+ ions in both the cyclen part and between the purine N7 and triazole N2 positions. The complexation pattern and equilibrium were studied using the NMR titration technique in MeCN-d3 and absorption spectra. Full article
Show Figures

Graphical abstract

14 pages, 11237 KiB  
Article
Domino Synthesis of 1,2,5-Trisubstituted 1H-Indole-3-carboxylic Esters Using a [3+2] Strategy
by Siddhartha Maji, Kwabena Fobi, Ebenezer Ametsetor and Richard A. Bunce
Molecules 2025, 30(3), 444; https://doi.org/10.3390/molecules30030444 - 21 Jan 2025
Viewed by 1218
Abstract
A new approach to 1,2,5-trisubstituted 1H-indole-3-carboxylic esters has been developed and studied. The method begins with the preparation of imines from aldehyde and primary amine derivatives. Treatment of these imines with the K2CO3-derived anion from methyl 2-(2-fluoro-5-nitrophenyl)acetate [...] Read more.
A new approach to 1,2,5-trisubstituted 1H-indole-3-carboxylic esters has been developed and studied. The method begins with the preparation of imines from aldehyde and primary amine derivatives. Treatment of these imines with the K2CO3-derived anion from methyl 2-(2-fluoro-5-nitrophenyl)acetate or methyl 2-(5-cyano-2-fluorophenyl)acetate in DMF initiates a [3+2] cyclization by addition of the anion to the imine followed by ring closure of the adduct nitrogen to the activated aromatic moiety via an SNAr process. Twenty-one examples are reported. Temperatures required for the conversion range from 90 to 95 °C for the nitro-activated substrates to 125 to 130 °C for the cyano-activated precursors. Though efficient and atom economical, limitations arise from steric hindrance in the reacting partners. The initial indoline formed is not observed but instead undergoes spontaneous air oxidation to the give the aromatic heterocycle. Imines from nonaromatic aldehydes and amines are also possible, but these give slightly lower yields of 1H-indoles and only react with the nitro-activated substrates. The results are presented with a discussion of the mechanism and the factors important to the success of the reaction. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

16 pages, 6630 KiB  
Article
Regioselective Nucleophilic Aromatic Substitution: Theoretical and Experimental Insights into 4-Aminoquinazoline Synthesis as a Privileged Structure in Medicinal Chemistry
by Maria Letícia de Castro Barbosa, Pedro de Sena Murteira Pinheiro, Raissa Alves da Conceição, José Ricardo Pires, Lucas Silva Franco, Carlos Mauricio R. Sant’Anna, Eliezer J. Barreiro and Lídia Moreira Lima
Molecules 2024, 29(24), 6021; https://doi.org/10.3390/molecules29246021 - 20 Dec 2024
Viewed by 2956
Abstract
The 4-aminoquinazoline scaffold is a privileged structure in medicinal chemistry. Regioselective nucleophilic aromatic substitution (SNAr) for replacing the chlorine atom at the 4-position of 2,4-dichloroquinazoline precursors is well documented in the scientific literature and has proven useful in synthesizing 2-chloro-4-aminoquinazolines and/or [...] Read more.
The 4-aminoquinazoline scaffold is a privileged structure in medicinal chemistry. Regioselective nucleophilic aromatic substitution (SNAr) for replacing the chlorine atom at the 4-position of 2,4-dichloroquinazoline precursors is well documented in the scientific literature and has proven useful in synthesizing 2-chloro-4-aminoquinazolines and/or 2,4-diaminoquinazolines for various therapeutic applications. While numerous reports describe reaction conditions involving different nucleophiles, solvents, temperatures, and reaction times, discussions on the regioselectivity of the SNAr step remain scarce. In this study, we combined DFT calculations with 2D-NMR analysis to characterize the structure and understand the electronic factors underlying the regioselective SNAr of 2,4-dichloroquinazolines for the synthesis of bioactive 4-aminoquinazolines. DFT calculations revealed that the carbon atom at the 4-position of 2,4-dichloroquinazoline has a higher LUMO coefficient, making it more susceptible to nucleophilic attack. This observation aligns with the calculated lower activation energy for nucleophilic attack at this position, supporting the regioselectivity of the reaction. To provide guidance for the structural confirmation of 4-amino-substituted product formation when multiple regioisomers are possible, we employed 2D-NMR methods to verify the 4-position substitution pattern in synthesized bioactive 2-chloro-4-aminoquinazolines. These findings are valuable for future research, as many synthetic reports assume regioselective outcomes without sufficient experimental verification. Full article
(This article belongs to the Special Issue Synthesis and Functionalization of Nitrogen Heterocycles)
Show Figures

Graphical abstract

17 pages, 6715 KiB  
Article
A [3+3] Aldol-SNAr-Dehydration Approach to 2-Naphthol and 7-Hydroxyquinoline Derivatives
by Kwabena Fobi, Ebenezer Ametsetor and Richard A. Bunce
Molecules 2024, 29(14), 3406; https://doi.org/10.3390/molecules29143406 - 20 Jul 2024
Viewed by 1294
Abstract
A one-pot [3+3] aldol-SNAr-dehydration annulation sequence was utilized to fuse hindered phenols onto aromatic substrates. The transformation joins doubly activated 1,3-disubstituted acetone derivatives (dinucleophiles) with C5-activated 2-fluorobenzaldehyde SNAr acceptors (dielectrophiles) in the presence of K2CO3 in [...] Read more.
A one-pot [3+3] aldol-SNAr-dehydration annulation sequence was utilized to fuse hindered phenols onto aromatic substrates. The transformation joins doubly activated 1,3-disubstituted acetone derivatives (dinucleophiles) with C5-activated 2-fluorobenzaldehyde SNAr acceptors (dielectrophiles) in the presence of K2CO3 in DMF at 65–70 °C to form polysubstituted 2-naphthols and 7-hydroxyquinolines. The reaction is regioselective in adding the most stable anionic center to the aldehyde followed by SNAr closure of the less stabilized anion to the electron-deficient aromatic ring. Twenty-seven examples are reported, and a probable mechanism is presented. In two cases where SNAr activation on the acceptor ring was lower (a C5 trifluoromethyl group on the aromatic ring or a 2-fluoropyridine), diethyl 1,3-acetonedicarboxylate initiated an interesting Grob-type fragmentation to give cinnamate esters as the products. Full article
Show Figures

Graphical abstract

8 pages, 723 KiB  
Communication
Three-Step Synthesis of N-(7-chloro-4-morpholinoquinolin-2-yl)benzamide from 4,7-Dichloroquinoline
by Deiby F. Aparicio Acevedo, Marlyn C. Ortiz Villamizar and Vladimir V. Kouznetsov
Molbank 2024, 2024(1), M1796; https://doi.org/10.3390/M1796 - 21 Mar 2024
Viewed by 2984
Abstract
The quinoline derivative, N-(7-chloro-4-morpholinoquinolin-2-yl)benzamide, was synthesized in a conventional three-step procedure from 4,7-dichloroquinoline using a N-oxidation reaction/C2-amide formation reaction/C4 SNAr reaction sequence. The structure of the compound was fully characterized by FT-IR, 1H-, 13C-NMR, DEPT-135°, and ESI-MS [...] Read more.
The quinoline derivative, N-(7-chloro-4-morpholinoquinolin-2-yl)benzamide, was synthesized in a conventional three-step procedure from 4,7-dichloroquinoline using a N-oxidation reaction/C2-amide formation reaction/C4 SNAr reaction sequence. The structure of the compound was fully characterized by FT-IR, 1H-, 13C-NMR, DEPT-135°, and ESI-MS techniques. Its physicochemical parameters (Lipinski’s descriptors) were also calculated using the online SwissADME database. Such derivatives are relevant therapeutic agents exhibiting potent anticancer, antibacterial, antifungal, and antiparasitic properties. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Graphical abstract

20 pages, 2205 KiB  
Article
Synthesis of Trifluoromethylated Pyrimido[1,2-b]indazole Derivatives through the Cyclocondensation of 3-Aminoindazoles with Ketoester and Their Functionalization via Suzuki-Miyaura Cross-Coupling and SNAr Reactions
by Sakina Tellal, Badr Jismy, Djamila Hikem-Oukacha and Mohamed Abarbri
Molecules 2024, 29(1), 44; https://doi.org/10.3390/molecules29010044 - 20 Dec 2023
Cited by 2 | Viewed by 1763
Abstract
A new series of trifluoromethylated pyrimido[1,2-b]indazol-4(1H)-one derivatives was synthesized with good to excellent yields through a simple condensation of 3-aminoindazole derivatives with ethyl 4,4,4-trifluoro 3-oxobutanoate. The functionalization of the corresponding chlorinated fused tricyclic scaffolds via Suzuki-Miyaura and aromatic nucleophilic [...] Read more.
A new series of trifluoromethylated pyrimido[1,2-b]indazol-4(1H)-one derivatives was synthesized with good to excellent yields through a simple condensation of 3-aminoindazole derivatives with ethyl 4,4,4-trifluoro 3-oxobutanoate. The functionalization of the corresponding chlorinated fused tricyclic scaffolds via Suzuki-Miyaura and aromatic nucleophilic substitution reactions led to the synthesis of highly diverse trifluoromethylated pyrimido[1,2-b]indazole derivatives with good yields. Full article
Show Figures

Graphical abstract

16 pages, 4734 KiB  
Article
5-Nitroisoxazoles in SNAr Reactions: A Novel Chemo- and Regioselective Approach to Isoxazole-Based Bivalent Ligands of AMPA Receptors
by Dmitry A. Vasilenko, Nadezhda S. Temnyakova, Sevastian E. Dronov, Eugene V. Radchenko, Yuri K. Grishin, Alexey V. Gabrel’yan, Vladimir L. Zamoyski, Vladimir V. Grigoriev, Elena B. Averina and Vladimir A. Palyulin
Int. J. Mol. Sci. 2023, 24(22), 16135; https://doi.org/10.3390/ijms242216135 - 9 Nov 2023
Cited by 3 | Viewed by 1691
Abstract
An efficient regioselective approach to novel functionalized bis(isoxazoles) with a variety of aromatic and aliphatic linkers was elaborated, based on the heterocyclization reaction of electrophilic alkenes under the treatment with tetranitromethane-triethylamine complex affording 3-EWG-5-nitroisoxazoles. The subsequent SNAr reactions of 5-nitroisoxazoles with [...] Read more.
An efficient regioselective approach to novel functionalized bis(isoxazoles) with a variety of aromatic and aliphatic linkers was elaborated, based on the heterocyclization reaction of electrophilic alkenes under the treatment with tetranitromethane-triethylamine complex affording 3-EWG-5-nitroisoxazoles. The subsequent SNAr reactions of 5-nitroisoxazoles with various O,O-, N,N- and S,S-bis(nucleophiles) provide a wide range of bis(isoxazole) derivatives in good isolated yields. Employing an elaborated method, a series of novel bis(3-EWG-isoxazoles) as the promising allosteric modulators of AMPA receptors were designed and synthesized. The effect of the compounds on the kainate-induced currents was studied in the patch clamp experiments, revealing modulator properties for several of them. The best positive modulator potency was found for dimethyl 5,5′-(ethane-1,2-diylbis(sulfanediyl))bis(isoxazole-3-carboxylate), which potentiated the kainate-induced currents in a wide concentration range (10−12–10−6 M) with maximum potentiation of 77% at 10−10 M. The results were rationalized using molecular docking and molecular dynamics simulations of modulator complexes with the dimeric ligand-binding domain of the GluA2 AMPA receptor. The predicted physicochemical, ADMET, and PAINS properties confirmed that the AMPA receptor modulators based on the bis(isoxazole) scaffold may serve as potential lead compounds for the development of neuroprotective drugs. Full article
Show Figures

Figure 1

22 pages, 5325 KiB  
Article
Antimicrobial Coatings for Medical Textiles via Reactive Organo-Selenium Compounds
by Ejajul Hoque, Phat Tran, Unique Jacobo, Nicholas Bergfeld, Sanjit Acharya, Julia L. Shamshina, Ted W. Reid and Noureddine Abidi
Molecules 2023, 28(17), 6381; https://doi.org/10.3390/molecules28176381 - 31 Aug 2023
Cited by 8 | Viewed by 2700
Abstract
Bleached and cationized cotton fabrics were chemically modified with reactive organoselenium compounds through the nucleophilic aromatic substitution (SNAr) reaction, which allowed for organo-selenium attachment onto the surface of cotton fabrics via covalent bonds and, in the case of the cationized cotton [...] Read more.
Bleached and cationized cotton fabrics were chemically modified with reactive organoselenium compounds through the nucleophilic aromatic substitution (SNAr) reaction, which allowed for organo-selenium attachment onto the surface of cotton fabrics via covalent bonds and, in the case of the cationized cotton fabric, additional ionic interactions. The resulting textiles exhibited potent bactericidal activity against S. aureus (99.99% reduction), although only moderate activity was observed against E. coli. Fabrics treated with reactive organo-selenium compounds also exhibited fungicidal activities against C. albicans, and much higher antifungal activity was observed when organo-selenium compounds were applied to the cationized cotton in comparison to the bleached cotton. The treatment was found to be durable against rigorous washing conditions (non-ionic detergent/100 °C). This paper is the first report on a novel approach integrating the reaction of cotton fabrics with an organo-selenium antimicrobial agent. This approach is attractive because it provides a method for imparting antimicrobial properties to cotton fabrics which does not disrupt the traditional production processes of a textile mill. Full article
Show Figures

Graphical abstract

12 pages, 4709 KiB  
Article
Domino Aldol-SNAr-Dehydration Sequence for [3+3] Annulations to Prepare Quinolin-2(1H)-ones and 1,8-Naphthyridin-2(1H)-ones
by Kwabena Fobi, Ebenezer Ametsetor and Richard A. Bunce
Molecules 2023, 28(15), 5856; https://doi.org/10.3390/molecules28155856 - 3 Aug 2023
Cited by 1 | Viewed by 1564
Abstract
A domino aldol-SNAr-dehydration [3+3] annulation strategy has been utilized to fuse six-membered cyclic amides onto aromatic substrates. 2-Arylacetamides have been reacted with 2-fluorobenzaldehyde derivatives activated toward SNAr reaction by an electron-withdrawing substituent (NO2, CN, CF3, [...] Read more.
A domino aldol-SNAr-dehydration [3+3] annulation strategy has been utilized to fuse six-membered cyclic amides onto aromatic substrates. 2-Arylacetamides have been reacted with 2-fluorobenzaldehyde derivatives activated toward SNAr reaction by an electron-withdrawing substituent (NO2, CN, CF3, CO2Me) at C5 to prepare 3,6-disubstituted quinolin-2(1H)-ones. Additionally, 3-substituted 1,8-naphthyridin-2(1H)-ones have been similarly derived from 2-fluoronicotinaldehyde. Fifteen examples are reported, and two possible mechanistic scenarios are presented and discussed. Full article
(This article belongs to the Special Issue Synthetic Transformations of Amides and Esters in Organic Synthesis)
Show Figures

Figure 1

21 pages, 2448 KiB  
Article
Regioselective Synthesis of New Family of 2-Substituted 1,2,3-Triazoles and Study of Their Fluorescent Properties
by Vasiliy M. Muzalevskiy, Zoia A. Sizova and Valentine G. Nenajdenko
Molecules 2023, 28(12), 4822; https://doi.org/10.3390/molecules28124822 - 16 Jun 2023
Cited by 7 | Viewed by 2518
Abstract
Modification of 5-aryl-4-trifluoroacetyltriazoles at the NH-moiety was investigated. Screening of the alkylation conditions revealed that using Na2CO3 as a base and DMF as a solvent of 2-substituted triazoles can be preferentially prepared in up to 86% yield. In the best [...] Read more.
Modification of 5-aryl-4-trifluoroacetyltriazoles at the NH-moiety was investigated. Screening of the alkylation conditions revealed that using Na2CO3 as a base and DMF as a solvent of 2-substituted triazoles can be preferentially prepared in up to 86% yield. In the best cases, the amount of minor 1-alkyl isomer was less than 6%. SNAr reaction of the 5-aryl-4-trifluoroacetyltriazoles with aryl halides having electron-withdrawing groups led to regiospecific formation of 2-aryltriazoles isolated in good-to-high yields. Chan–Lam reaction of the 5-aryl-4-trifluoroacetyltriazoles with boronic acids afforded 2-aryltriazoles as single isomers in up to 89% yield. The subsequent reaction of the prepared 2-aryltriazoles with primary and secondary amines gave a set of amides of 4-(2,5-diaryltriazolyl)carboxylic acid. The fluorescent properties of the prepared 2-substituted derivatives of triazoles were investigated to demonstrate their utility as new efficient luminophores having more than 60% quantum yields. Full article
(This article belongs to the Special Issue Recent Advances in the Use of Azoles in Medicinal Chemistry)
Show Figures

Figure 1

4 pages, 796 KiB  
Short Note
2-(3-Bromophenyl)imidazo[2,1-b]oxazole
by Ángel Cores, Mercedes Villacampa and J. Carlos Menéndez
Molbank 2023, 2023(2), M1616; https://doi.org/10.3390/M1616 - 4 Apr 2023
Viewed by 1958
Abstract
The microwave-assisted reaction of 2-nitroimidazole with 3-bromophenacyl bromide in the presence of potassium carbonate as a base and dimethylformamide as a solvent afforded 2-(3-bromophenyl)imidazo[2,1-b]oxazole. The formation of this compound was explained via a domino mechanism comprising an initial N-alkylation reaction of [...] Read more.
The microwave-assisted reaction of 2-nitroimidazole with 3-bromophenacyl bromide in the presence of potassium carbonate as a base and dimethylformamide as a solvent afforded 2-(3-bromophenyl)imidazo[2,1-b]oxazole. The formation of this compound was explained via a domino mechanism comprising an initial N-alkylation reaction of the imidazole substrate, followed by the base-promoted deprotonation of the position adjacent to the carbonyl to give an enolate anion that finally cyclizes via an intramolecular SNAr reaction, with the loss of the nitro group as potassium nitrite. Then, the proposed 1-(3-bromophenacyl)-2-nitroimidazole intermediate could be isolated by reducing the reaction time and was shown to be a precursor of the imidazo[2,1-b]oxazole final product. Full article
(This article belongs to the Collection Heterocycle Reactions)
Show Figures

Scheme 1

16 pages, 3204 KiB  
Article
Straightforward and Efficient Protocol for the Synthesis of Pyrazolo [4,3-b]pyridines and Indazoles
by Vladislav V. Nikol’skiy, Mikhail E. Minyaev, Maxim A. Bastrakov and Alexey M. Starosotnikov
Int. J. Mol. Sci. 2023, 24(2), 1758; https://doi.org/10.3390/ijms24021758 - 16 Jan 2023
Cited by 4 | Viewed by 2488
Abstract
An efficient method for the synthesis of pyrazolo [4,3-b]pyridines has been developed on the basis of readily available 2-chloro-3-nitropyridines via a sequence of SNAr and modified Japp–Klingemann reactions. The method offers a number of advantages including utilization of stable arenediazonium tosylates, [...] Read more.
An efficient method for the synthesis of pyrazolo [4,3-b]pyridines has been developed on the basis of readily available 2-chloro-3-nitropyridines via a sequence of SNAr and modified Japp–Klingemann reactions. The method offers a number of advantages including utilization of stable arenediazonium tosylates, operational simplicity as well as combining the azo-coupling, deacylation and pyrazole ring annulation steps in a one-pot manner. An unusual rearrangement (C-N-migration of the acetyl group) was observed and a plausible mechanism was proposed based on the isolated intermediates and NMR experiments. In addition, the developed protocol was successfully applied to the synthesis of 1-arylindazoles combining the Japp–Klingemann reaction and cyclization of the resulting hydrazone as a one-pot procedure. Full article
Show Figures

Figure 1

27 pages, 3588 KiB  
Article
SnAr Reactions of 2,4-Diazidopyrido[3,2-d]pyrimidine and Azide-Tetrazole Equilibrium Studies of the Obtained 5-Substituted Tetrazolo[1,5-a]pyrido[2,3-e]pyrimidines
by Kristaps Leškovskis, Anatoly Mishnev, Irina Novosjolova and Māris Turks
Molecules 2022, 27(22), 7675; https://doi.org/10.3390/molecules27227675 - 8 Nov 2022
Cited by 3 | Viewed by 3549
Abstract
A straightforward method for the synthesis of 5-substituted tetrazolo[1,5-a]pyrido[2,3-e]pyrimidines from 2,4-diazidopyrido[3,2-d]pyrimidine in SnAr reactions with N-, O-, and S- nucleophiles has been developed. The various N- and S-substituted products were [...] Read more.
A straightforward method for the synthesis of 5-substituted tetrazolo[1,5-a]pyrido[2,3-e]pyrimidines from 2,4-diazidopyrido[3,2-d]pyrimidine in SnAr reactions with N-, O-, and S- nucleophiles has been developed. The various N- and S-substituted products were obtained with yields from 47% to 98%, but the substitution with O-nucleophiles gave lower yields (20–32%). Furthermore, the fused tetrazolo[1,5-a]pyrimidine derivatives can be regarded as 2-azidopyrimidines and functionalized in copper(I)-catalyzed azide-alkyne dipolar cycloaddition (CuAAC) and Staudinger reactions due to the presence of a sufficient concentration of the reactive azide tautomer in solution. In total, seven products were fully characterized by their single crystal X-ray studies, while five of them were representatives of the tetrazolo[1,5-a]pyrido[2,3-e]pyrimidine heterocyclic system. Equilibrium constants and thermodynamic values were determined using variable temperature 1H NMR and are in agreement of favoring the tetrazole tautomeric form (ΔG298 = −3.33 to −7.52 (kJ/mol), ΔH = −19.92 to −48.02 (kJ/mol) and ΔS = −43.74 to −143.27 (J/mol·K)). The key starting material 2,4-diazidopyrido[3,2-d]pyrimidine presents a high degree of tautomerization in different solvents. Full article
(This article belongs to the Special Issue Feature Papers in Organic Chemistry)
Show Figures

Figure 1

21 pages, 3556 KiB  
Article
Efficient Synthesis of 4,8-Dibromo Derivative of Strong Electron-Deficient Benzo[1,2-d:4,5-d’]bis([1,2,3]thiadiazole) and Its SNAr and Cross-Coupling Reactions
by Timofey N. Chmovzh, Daria A. Alekhina, Timofey A. Kudryashev and Oleg A. Rakitin
Molecules 2022, 27(21), 7372; https://doi.org/10.3390/molecules27217372 - 30 Oct 2022
Cited by 5 | Viewed by 3886
Abstract
An efficient synthesis of hydrolytically and thermally stable 4,8-dibromobenzo[1,2-d:4,5-d’]bis([1,2,3]thiadiazole) by the bromination of its parent heterocycle is reported. The structure of 4,8-dibromobenzo[1,2-d:4,5-d’]bis([1,2,3]thiadiazole) was confirmed by X-ray analysis. The conditions for the selective aromatic nucleophilic substitution [...] Read more.
An efficient synthesis of hydrolytically and thermally stable 4,8-dibromobenzo[1,2-d:4,5-d’]bis([1,2,3]thiadiazole) by the bromination of its parent heterocycle is reported. The structure of 4,8-dibromobenzo[1,2-d:4,5-d’]bis([1,2,3]thiadiazole) was confirmed by X-ray analysis. The conditions for the selective aromatic nucleophilic substitution of one bromine atom in this heterocyclic system by nitrogen nucleophiles are found, whereas thiols formed the bis-derivatives only. Suzuki–Miyaura cross-coupling reactions were found to be an effective method for the selective formation of various mono- and di(het)arylated derivatives of strong electron-deficient benzo[1,2-d:4,5-d’]bis([1,2,3]thiadiazole), and Stille coupling can be employed for the preparation of bis-arylated heterocycles, which can be considered as useful building blocks for the synthesis of DSSCs and OLEDs components. Full article
Show Figures

Figure 1

16 pages, 809 KiB  
Article
Domino Aza-Michael-SNAr-Heteroaromatization Route to C5-Substituted 1-Alkyl-1H-Indole-3-Carboxylic Esters
by Ebenezer Ametsetor, Spencer Farthing and Richard A. Bunce
Molecules 2022, 27(20), 6998; https://doi.org/10.3390/molecules27206998 - 18 Oct 2022
Cited by 4 | Viewed by 2872
Abstract
A new synthesis of C5-substituted 1-alkyl-1H-indole-3-carboxylic esters is reported. A series of methyl 2-arylacrylate aza-Michael acceptors were prepared with aromatic substitution to activate them towards SNAr reaction. Subsequent reaction with a series of primary amines generated the title compounds. [...] Read more.
A new synthesis of C5-substituted 1-alkyl-1H-indole-3-carboxylic esters is reported. A series of methyl 2-arylacrylate aza-Michael acceptors were prepared with aromatic substitution to activate them towards SNAr reaction. Subsequent reaction with a series of primary amines generated the title compounds. Initially, the sequence was expected to produce indoline products, but oxidative heteroaromatization intervened to generate the indoles. The reaction proceeded under anhydrous conditions in DMF at 23–90 °C using equimolar quantities of the acrylate and the amine with 2 equiv. of K2CO3 to give 61–92% of the indole products. The reaction involves an aza-Michael addition, followed by SNAr ring closure and heteroaromatization. Since the reactions were run under nitrogen, the final oxidation to the indole likely results from reaction with dissolved oxygen in the DMF. Substrates incorporating a 2-arylacrylonitrile proved too reactive to prepare using our protocol. The synthesis of the reaction substrates, their relative reactivities, and mechanistic details of the conversion are discussed. Full article
Show Figures

Graphical abstract

Back to TopTop