Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,444)

Search Parameters:
Keywords = SMC5/6

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1288 KB  
Review
Linking Genotype to Clinical Features in SMC1A-Related Phenotypes: From Cornelia de Lange Syndrome to Developmental and Epileptic Encephalopathy, a Comprehensive Review
by Maria Francesca Astorino, Desirèe Speranza, Giovanni Luppino, Maria Angela La Rosa, Silvana Briuglia and Marco Calabrò
Genes 2025, 16(10), 1196; https://doi.org/10.3390/genes16101196 - 13 Oct 2025
Abstract
Germline mutations in the X-linked cohesin subunit gene SMC1A have been increasingly recognized as a cause of developmental and epileptic encephalopathy (DEE); however, the underlying basis of its marked phenotypic heterogeneity remains elusive. In our narrative review, starting from all literature-reported clinical cases [...] Read more.
Germline mutations in the X-linked cohesin subunit gene SMC1A have been increasingly recognized as a cause of developmental and epileptic encephalopathy (DEE); however, the underlying basis of its marked phenotypic heterogeneity remains elusive. In our narrative review, starting from all literature-reported clinical cases of SMC1A-related DEE, we propose an integrative framework summarizing all the clinical and genetic features, stratified by mutation type, mosaic fraction, and X-chromosome inactivation (XCI) patterns to provide valuable support for genetic diagnosis and variants, found to date. Also, we discuss how somatic mosaicism and epigenetic variability underlie the clinical diversity of SMC1A-associated epilepsy and systematically describe the entire phenotypic spectrum, from early-onset, therapy-resistant seizures to milder intellectual disability profiles. We further examine how SMC1A mutations perturb cohesin’s canonical roles in chromatin loop formation and sister-chromatid cohesion, leading to widespread transcriptional dysregulation of neurodevelopmental gene networks. Evidence that XCI skewing can ameliorate or exacerbate neuronal cohesin deficits and, thus modulate seizure threshold, is presented. Full article
(This article belongs to the Special Issue Molecular Basis and Genetics of Intellectual Disability)
Show Figures

Figure 1

17 pages, 5521 KB  
Article
Modulation of Intestinal Smooth Muscle Cell Function by BL-99 Postbiotics in Functional Constipation
by Wen Zhao, Mingkun Liu, Hanglian Lan, Ran Wang, Wei-Lian Hung, Jian He and Bing Fang
Foods 2025, 14(19), 3441; https://doi.org/10.3390/foods14193441 - 8 Oct 2025
Viewed by 253
Abstract
Postbiotics, as a novel class of functional components, have garnered considerable scholarly and industrial interest due to their distinctive advantages in food processing applications and their positive impact on human health. Although postbiotics have demonstrated potential in alleviating constipation, their specific mechanism of [...] Read more.
Postbiotics, as a novel class of functional components, have garnered considerable scholarly and industrial interest due to their distinctive advantages in food processing applications and their positive impact on human health. Although postbiotics have demonstrated potential in alleviating constipation, their specific mechanism of action and bioactive components remain unclear. This study aimed to investigate the ameliorative effects and potential mechanisms of postbiotics derived from Bifidobacterium animalis subsp. lactis BL-99 (BL-99) on FC using both in vivo and in vitro models. The findings revealed that both BL-99 and its postbiotics significantly mitigated FC symptoms, as evidenced by enhanced intestinal motility, and elevated fecal water content. Additionally, treatment with BL-99 postbiotics was associated with an increase in the thickness of the intestinal muscular layer and a reduction in apoptosis of intestinal smooth muscle cells (SMCs). Mechanistically, BL-99 postbiotics were found to enhance the contractile response and promote the proliferation of intestinal SMCs. Furthermore, untargeted metabolomics analysis identified two key bioactive peptides, Glu-Val and Glu-Leu, as the active components in BL-99 responsible for regulating SMC function. Collectively, these findings highlight the potential of BL-99 postbiotics as a promising functional food ingredient for alleviating FC, providing a novel and effective strategy for the developing dietary interventions targeting this condition. Full article
Show Figures

Figure 1

25 pages, 2551 KB  
Article
Deep-Reinforcement-Learning-Based Sliding Mode Control for Optimized Energy Management in DC Microgrids
by Monia Charfeddine, Mongi Ben Moussa and Khalil Jouili
Mathematics 2025, 13(19), 3212; https://doi.org/10.3390/math13193212 - 7 Oct 2025
Viewed by 268
Abstract
A hybrid control architecture is proposed for enhancing the stability and energy management of DC microgrids (DCMGs) integrating photovoltaic generation, batteries, and supercapacitors. The approach combines nonlinear Sliding Mode Control (SMC) for fast and robust DC bus voltage regulation with a Deep Q-Learning [...] Read more.
A hybrid control architecture is proposed for enhancing the stability and energy management of DC microgrids (DCMGs) integrating photovoltaic generation, batteries, and supercapacitors. The approach combines nonlinear Sliding Mode Control (SMC) for fast and robust DC bus voltage regulation with a Deep Q-Learning (DQL) agent that learns optimal high-level policies for charging, discharging, and load management. This dual-layer design leverages the real-time precision of SMC and the adaptive decision-making capability of DQL to achieve dynamic power sharing and balanced state-of-charge levels across storage units, thereby reducing asymmetric wear. Simulation results under variable operating scenarios showed that the proposed method significantly improvedvoltage stability, loweredthe occurrence of deep battery discharges, and decreased load shedding compared to conventional fuzzy-logic-based energymanagement, highlighting its effectiveness and resilience in the presence of renewable generation variability and fluctuating load demands. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

32 pages, 7592 KB  
Article
Backstepping Sliding Mode Control of Quadrotor UAV Trajectory
by Yohannes Lisanewerk Mulualem, Gang Gyoo Jin, Jaesung Kwon and Jongkap Ahn
Mathematics 2025, 13(19), 3205; https://doi.org/10.3390/math13193205 - 6 Oct 2025
Viewed by 258
Abstract
Unmanned Aerial Vehicles (UAVs), commonly known as drones, have become widely used in many fields, ranging from agriculture to military operations, due to recent advances in technology and decreases in costs. Quadrotors are particularly important UAVs, but their complex, coupled dynamics and sensitivity [...] Read more.
Unmanned Aerial Vehicles (UAVs), commonly known as drones, have become widely used in many fields, ranging from agriculture to military operations, due to recent advances in technology and decreases in costs. Quadrotors are particularly important UAVs, but their complex, coupled dynamics and sensitivity to outside disturbances make them challenging to control. This paper introduces a new control method for quadrotors called Backstepping Sliding Mode Control (BSMC), which combines the strengths of two established techniques: Backstepping Control (BC) and Sliding Mode Control (SMC). Its primary goal is to improve trajectory tracking while also reducing chattering, a common problem with SMC that causes rapid, high-frequency oscillations. The BSMC method achieves this by integrating the SMC switching gain directly into the BC through a process of differential iteration. Herein, a Lyapunov stability analysis confirms the system’s asymptotic stability; a genetic algorithm is used to optimize controller parameters; and the proposed control strategy is evaluated under diverse payload conditions and dynamic wind disturbances. The simulation results demonstrated its capability to handle payload variations ranging from 0.5 kg to 18 kg in normal environments, and up to 12 kg during gusty wind scenarios. Furthermore, the BSMC effectively minimized chattering and achieved a superior performance in tracking accuracy and robustness compared to the traditional SMC and BC. Full article
(This article belongs to the Special Issue Dynamic Modeling and Simulation for Control Systems, 3rd Edition)
Show Figures

Figure 1

33 pages, 10540 KB  
Article
Impact Response of a Thermoplastic Battery Housing for Transport Applications
by Aikaterini Fragiadaki and Konstantinos Tserpes
Batteries 2025, 11(10), 369; https://doi.org/10.3390/batteries11100369 - 5 Oct 2025
Viewed by 268
Abstract
The transition to electric mobility has intensified efforts to develop battery technologies that are not only high-performing but also environmentally sustainable. A critical element in battery system design is the structural housing, which must provide effective impact protection to ensure passenger safety and [...] Read more.
The transition to electric mobility has intensified efforts to develop battery technologies that are not only high-performing but also environmentally sustainable. A critical element in battery system design is the structural housing, which must provide effective impact protection to ensure passenger safety and prevent catastrophic failures. This study examines the impact response of an innovative sheet molding compound (SMC) composite battery housing, manufactured from an Elium resin modified with Martinal ATH matrix, reinforced with glass fibers, that combines fire resistance and recyclability, unlike conventional thermoset and metallic housings. The material was characterized through standardized mechanical tests, and its impact performance was evaluated via drop-weight experiments on plates and a full-scale housing. The impact tests were conducted at varying energy levels to induce barely visible impact damage (BVID) and visible impact damage (VID). A finite element model was developed in LS-DYNA using the experimentally derived material properties and was validated against the impact tests. Parametric simulations of ground and pole collisions revealed the critical velocity thresholds at which housing deformation begins to affect the first battery cells, while lower-energy impacts were absorbed without compromising the pack. The study provides one of the first combined experimental and numerical assessments of Elium SMC in battery enclosures, emphasizing its potential as a sustainable alternative for next-generation battery systems for transport applications. Full article
(This article belongs to the Section Battery Performance, Ageing, Reliability and Safety)
Show Figures

Figure 1

23 pages, 1775 KB  
Article
Design of Terminal Guidance Law for Cooperative Multiple Vehicles Based on Prescribed Performance Control
by Fuqi Yang, Jikun Ye, Xirui Xue, Ruining Luo and Lei Shao
Aerospace 2025, 12(10), 898; https://doi.org/10.3390/aerospace12100898 - 5 Oct 2025
Viewed by 151
Abstract
To address the issue of jitter and oscillation of guidance command during multi-vehicle cooperative engagement with maneuvering platforms, this paper proposes a novel terminal guidance law with prescribed performance constraints for multiple cooperative vehicles, which explicitly considers both transient and steady-state performance. Firstly, [...] Read more.
To address the issue of jitter and oscillation of guidance command during multi-vehicle cooperative engagement with maneuvering platforms, this paper proposes a novel terminal guidance law with prescribed performance constraints for multiple cooperative vehicles, which explicitly considers both transient and steady-state performance. Firstly, based on the vehicle-target relative kinematics, with time and space as the main constraint indicators, a multi-vehicle cooperative guidance model is established in the inertial coordinate system. Secondly, combined with the sliding mode control theory, cooperative guidance laws are designed for both the line-of-sight (LOS) direction and the LOS normal direction, respectively, and the Lyapunov stability proof is given. Furthermore, to counteract the impact of target maneuvers on guidance performance, a non-homogeneous disturbance observer is designed to estimate target maneuver information that is difficult to obtain directly, which ensures that performance constraints are still satisfied under strong target maneuvering conditions. Simulation results demonstrate that the proposed guidance law enables multiple coordinated vehicles to successfully engage the target under different maneuvering modes, while satisfying the terminal time-space constraints. Compared with conventional sliding mode control methods exhibiting inherent chattering, the proposed approach employs a novel PPC-SMC hybrid structure to quantitatively constrain the transient convergence of cooperative errors. This structure enhances the multi-vehicle cooperative guidance performance by effectively eliminating chattering and oscillations in the guidance commands, thereby significantly improving the system’s transient behavior. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

46 pages, 9819 KB  
Review
Recent Advances in Sliding Mode Control Techniques for Permanent Magnet Synchronous Motor Drives
by Tran Thanh Tuyen, Jian Yang, Liqing Liao and Nguyen Gia Minh Thao
Electronics 2025, 14(19), 3933; https://doi.org/10.3390/electronics14193933 - 3 Oct 2025
Viewed by 384
Abstract
As global industry enters the digital era, automation is becoming increasingly pervasive. Due to their superior efficiency and reliability, Permanent Magnet Synchronous Motors (PMSMs) are playing an increasingly prominent role in industrial applications. Sliding Mode Control (SMC) has emerged as a modern control [...] Read more.
As global industry enters the digital era, automation is becoming increasingly pervasive. Due to their superior efficiency and reliability, Permanent Magnet Synchronous Motors (PMSMs) are playing an increasingly prominent role in industrial applications. Sliding Mode Control (SMC) has emerged as a modern control strategy that is widely employed not only in PMSM drive systems, but also across broader power and industrial control domains. This technique effectively mitigates key challenges associated with PMSMs, such as nonlinear behavior and susceptibility to external disturbances, thereby enhancing the precision of speed and torque regulation. This paper provides a thorough review and evaluation of recent advancements in SMC as applied to PMSM control. It outlines the fundamentals of SMC, explores various SMC-based strategies, and introduces integrated approaches that combine SMC with optimization algorithms. Furthermore, it compares these methods, identifying their respective strengths and limitations. This paper concludes by discussing current trends and potential future developments in the application of SMC for PMSM systems. Full article
(This article belongs to the Special Issue Next-Generation Control Systems for Power Electronics in the AI Era)
Show Figures

Figure 1

29 pages, 5300 KB  
Article
Piecewise Sliding-Mode-Enhanced ADRC for Robust Active Disturbance Rejection Control Against Internal and Measurement Noise
by Shengze Yang, Junfeng Ma, Dayi Zhao, Chenxiao Li and Liyong Fang
Sensors 2025, 25(19), 6109; https://doi.org/10.3390/s25196109 - 3 Oct 2025
Viewed by 228
Abstract
To address the challenges of insufficient response speed and robustness in optical attitude control systems under highly dynamic disturbances and internal uncertainties, a composite control strategy is proposed in this study. By integrating the proposed piecewise sliding control (P-SMC) with the improved active [...] Read more.
To address the challenges of insufficient response speed and robustness in optical attitude control systems under highly dynamic disturbances and internal uncertainties, a composite control strategy is proposed in this study. By integrating the proposed piecewise sliding control (P-SMC) with the improved active disturbance rejection control (ADRC), this strategy achieves complementary performance, which can not only suppress the disturbance but also converge to a bounded region fast. Under highly dynamic disturbances, the improved extended state observer (ESO) based on the EKF achieves rapid response with amplified state observations, and the Nonlinear State Error Feedback (NLSEF) generates a compensation signal to actively reject disturbances. Simultaneously, the robust sliding mode control (SMC) suppresses the effects of system nonlinearity and uncertainty. To address chattering and overshoot of the conventional SMC, this study proposes a novel P-SMC law which applies distinct reaching functions across different error bands. Furthermore, the key parameters of the composite scheme are globally optimized using the particle swarm optimization (PSO) algorithm to achieve Pareto-optimal trade-offs between tracking accuracy and disturbance rejection robustness. Finally, MATLAB simulation experiments validate the effectiveness of the proposed strategy under diverse representative disturbances. The results demonstrate improved performance in terms of response speed, overshoot, settling time and control input signals smoothness compared to conventional control algorithms (ADRC, C-ADRC, T-SMC-ADRC). The proposed strategy enhances the stability and robustness of optical attitude control system against internal uncertainties of system and sensor measurement noise. It achieves bounded-error steady-state tracking against random multi-source disturbances while preserving high real-time responsiveness and efficiency. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

20 pages, 7178 KB  
Article
Exploring the Abnormal Characteristics of the Ovaries During the Estrus Period of Kazakh Horses Based on Single-Cell Transcriptome Technology
by Wanlu Ren, Jun Zhou, Jianping Zhu, Jianguang Zhang, Xueguang Zhao and Xinkui Yao
Biology 2025, 14(10), 1351; https://doi.org/10.3390/biology14101351 - 2 Oct 2025
Viewed by 200
Abstract
The ovary is among the earliest organs to undergo age-related degeneration, limiting the reproductive potential of elite horses and constraining the growth of the equine industry. Follicular development during estrus is a key determinant of fertility, yet the molecular mechanisms underlying its decline, [...] Read more.
The ovary is among the earliest organs to undergo age-related degeneration, limiting the reproductive potential of elite horses and constraining the growth of the equine industry. Follicular development during estrus is a key determinant of fertility, yet the molecular mechanisms underlying its decline, particularly at the level of specific ovarian cell types, remain poorly understood in equids. Here, we constructed a single-cell transcriptomic atlas to investigate ovarian changes in Kazakh horses. Using single-cell RNA sequencing (scRNA-seq), we profiled 112,861 cells from follicle-containing and follicle-absent ovaries, identifying nine distinct ovarian cell types and their subtypes, each with distinct gene expression signatures. Functional enrichment analyses revealed cell type-specific engagement in biological pathways, including ECM–receptor interaction, PI3K-Akt signaling, and oxytocin signaling. Gene expression patterns indicated tightly regulated processes of ovarian activation and cell differentiation. Notably, stromal cells exhibited high expression of ROBO2, LOC111770199, and TMTC2, while smooth muscle cells (SMCs) were marked by elevated levels of CCL5, KLRD1, and NKG7. Moreover, cell–cell interaction analyses revealed robust signaling interactions among SMCs, endothelial cells, neurons, and proliferating (cycling) cells. Together, these findings provide a comprehensive single-cell transcriptomic map of normal and abnormal ovarian states during estrus in Kazakh horses, offering novel insights into the cellular mechanisms of follicular development and identifying potential diagnostic biomarkers and therapeutic targets for ovarian quiescence in equids. Full article
Show Figures

Figure 1

22 pages, 4496 KB  
Article
Sliding Mode Controller Tuning Using Nature-Inspired Optimization for Induction Motor: EV Application
by Youssef Dhieb, Walid Ayadi, Farhan Hameed Malik, Soumya Ambramoli, Fawwaz Alkhatib and Moez Ghariani
World Electr. Veh. J. 2025, 16(10), 559; https://doi.org/10.3390/wevj16100559 - 1 Oct 2025
Viewed by 265
Abstract
The finite element model (FEM) for induction motors (IM) was developed and validated through experimental testing. The validated FEM provides a reliable basis for further optimization of the electric machine. A strong sliding mode technique, in conjunction with field-oriented control (FOC), is proposed [...] Read more.
The finite element model (FEM) for induction motors (IM) was developed and validated through experimental testing. The validated FEM provides a reliable basis for further optimization of the electric machine. A strong sliding mode technique, in conjunction with field-oriented control (FOC), is proposed for speed control of the IM. The sliding mode controller ensures steady functioning in the face of ambiguities and disruptions, while FOC enables precise control of the motor’s magnetic field. This combination enhances both the efficiency and accuracy of speed control in IM, making it a valuable tool for industrial applications. The proposed sliding mode control (SMC) was fine-tuned using the advantages produced by the ant colony optimization algorithm. This approach aids in resolving issues and delivers optimal speed and field responses. Simulation and experimental results demonstrate the effectiveness of the proposed approach. The optimized induction motor achieved a 28% reduction in rotor Joule losses, resulting in improved energy efficiency. Additionally, using Ant Colony Optimization to adjust the SMC parameters led to a 99.74% reduction in speed tracking error and a 99.59% reduction in flux error compared to traditional manual tuning. These substantial improvements confirm the superiority of the proposed method for high-performance and energy-efficient electric vehicle applications. Full article
(This article belongs to the Section Propulsion Systems and Components)
Show Figures

Figure 1

23 pages, 4197 KB  
Article
Position and Attitude Control of Multi-Modal Underwater Robots Using an Improved LADRC Based on Sliding Mode Control
by Luze Wang, Yu Lu, Lei Zhang, Bowei Cui, Fengluo Chen, Bingchen Liang, Liwei Yu and Shimin Yu
Sensors 2025, 25(19), 6010; https://doi.org/10.3390/s25196010 - 30 Sep 2025
Viewed by 539
Abstract
This paper focuses on the control problems of a multi-modal underwater robot, which is designed mainly for the task of detecting the working environment in deep-sea mining. To tackle model uncertainty and external disturbances, an improved linear active disturbance rejection control scheme based [...] Read more.
This paper focuses on the control problems of a multi-modal underwater robot, which is designed mainly for the task of detecting the working environment in deep-sea mining. To tackle model uncertainty and external disturbances, an improved linear active disturbance rejection control scheme based on sliding mode control is proposed (SM-ADRC). Firstly, to reduce overshoot, a piecewise fhan function is introduced into the tracking differentiator (TD). This design retains the system’s fast nonlinear tracking characteristics outside the boundary layer while leveraging linear damping within it to achieve effective overshoot suppression. Secondly, two key enhancements are made to the SMC: an integral sliding surface is designed to improve steady-state accuracy, and a saturation function replaces the sign function to suppress high-frequency chattering. Furthermore, the SMC integrates the total disturbance estimate from the linear extended state observer (LESO) for feedforward compensation. Finally, the simulation experiment verification is completed. The simulation results show that the SM-ADRC scheme significantly improves the dynamic response and disturbance suppression ability of the system and simultaneously suppresses the chattering problem of SMC. Full article
(This article belongs to the Special Issue Smart Sensing and Control for Autonomous Intelligent Unmanned Systems)
Show Figures

Figure 1

26 pages, 7761 KB  
Article
Artificial Intelligence-Based Optimized Nonlinear Control for Multi-Source Direct Current Converters in Hybrid Electric Vehicle Energy Systems
by Atif Rehman, Rimsha Ghias and Hammad Iqbal Sherazi
Energies 2025, 18(19), 5152; https://doi.org/10.3390/en18195152 - 28 Sep 2025
Viewed by 306
Abstract
The integration of multiple renewable and storage units in electric vehicle (EV) hybrid energy systems presents significant challenges in stability, dynamic response, and disturbance rejection, limitations often encountered with conventional sliding mode control (SMC) and super-twisting SMC (STSMC) schemes. This paper proposes a [...] Read more.
The integration of multiple renewable and storage units in electric vehicle (EV) hybrid energy systems presents significant challenges in stability, dynamic response, and disturbance rejection, limitations often encountered with conventional sliding mode control (SMC) and super-twisting SMC (STSMC) schemes. This paper proposes a condition-based integral terminal super-twisting sliding mode control (CBITSTSMC) strategy, with gains optimally tuned using an improved gray wolf optimization (I-GWO) algorithm, for coordinated control of a multi-source DC–DC converter system comprising photovoltaic (PV) arrays, fuel cells (FCs), lithium-ion batteries, and supercapacitors. The CBITSTSMC ensures finite-time convergence, reduces chattering, and dynamically adapts to operating conditions, thereby achieving superior performance. Compared to SMC and STSMC, the proposed controller delivers substantial reductions in steady-state error, overshoot, and undershoot, while improving rise time and settling time by up to 50%. Transient stability and disturbance rejection are significantly enhanced across all subsystems. Controller-in-the-loop (CIL) validation on a Delfino C2000 platform confirms the real-time feasibility and robustness of the approach. These results establish the CBITSTSMC as a highly effective solution for next-generation EV hybrid energy management systems, enabling precise power-sharing, improved stability, and enhanced renewable energy utilization. Full article
Show Figures

Figure 1

26 pages, 1665 KB  
Article
Obstacle-Aware Charging Pad Deployment in Large-Scale WRSNs: An Outside-to-Inside Onion-Peeling-like Strategy
by Rei-Heng Cheng, Yuan-Yu Hsu and Chang Wu Yu
Information 2025, 16(10), 835; https://doi.org/10.3390/info16100835 - 26 Sep 2025
Viewed by 154
Abstract
This paper addresses the critical challenge of deploying a minimum number of wireless charging pads (WCPs) in obstacle-rich, large-scale Wireless Rechargeable Sensor Networks (WRSNs) to sustain drone operations. We assume a single base station, stationary sensors, convex polygonal obstacles that drones must avoid, [...] Read more.
This paper addresses the critical challenge of deploying a minimum number of wireless charging pads (WCPs) in obstacle-rich, large-scale Wireless Rechargeable Sensor Networks (WRSNs) to sustain drone operations. We assume a single base station, stationary sensors, convex polygonal obstacles that drones must avoid, and that both the base station and WCPs provide unlimited energy. To solve this, we propose the Outside-to-Inside Onion-Peeling (OIOP) strategy, a novel two-stage algorithm that prioritizes the coverage of the most remote sensors first and then refines the deployment by removing redundant pads while strictly adhering to obstacle constraints. Simulation results demonstrate OIOP’s superior efficiency: it reduces the number of required pads by approximately 10.83% ± 1.30% and 12.16% ± 1.59% compared to state-of-the-art methods (SMC and MC) and achieves execution times that are 58.02% ± 2.44% and 72.09% ± 2.88% faster, respectively. The algorithm also exhibits remarkable robustness, showing the smallest performance degradation as obstacle density increases. Full article
(This article belongs to the Special Issue Optimization Algorithms and Their Applications)
Show Figures

Graphical abstract

35 pages, 89447 KB  
Systematic Review
A Systematic Review of Modeling and Control Approaches for Path Tracking in Unmanned Agricultural Ground Vehicles
by Yafei Zhang, Hui Liu, Yayun Shen, Siwei He, Hui Wang and Yue Shen
Agronomy 2025, 15(10), 2274; https://doi.org/10.3390/agronomy15102274 - 25 Sep 2025
Viewed by 466
Abstract
With the advancement of precision agriculture, the autonomous navigation of unmanned agricultural ground vehicles (UAGVs) has emerged as a critical research topic. As a fundamental component of autonomous navigation, path-tracking control is essential for ensuring the accurate and stable operation of UAGVs. However, [...] Read more.
With the advancement of precision agriculture, the autonomous navigation of unmanned agricultural ground vehicles (UAGVs) has emerged as a critical research topic. As a fundamental component of autonomous navigation, path-tracking control is essential for ensuring the accurate and stable operation of UAGVs. However, achieving high-precision and robust tracking in agricultural environments remains challenging due to unstructured terrain, variable wheel slip, and complex dynamic disturbances. This review provides a structured and comprehensive survey of modeling and control methodologies for UAGVs, with particular emphasis on control-theoretic formulations and their applicability across diverse agricultural scenarios. In contrast to prior reviews, the modeling approaches are systematically classified into geometric, kinematic, and dynamic models, including extended formulations that incorporate wheel slip and external disturbances. Furthermore, this paper systematically reviews commonly adopted path-tracking strategies for UAGVs, including proportional–integral–derivative (PID) control, pure pursuit (PP), Stanley control, sliding mode control (SMC), model predictive control (MPC), and learning-based approaches. Emphasis is placed on their theoretical underpinnings, tracking accuracy, adaptability to unstructured field environments, and computational efficiency. In addition, several key technical challenges are identified, such as terrain-adaptive vehicle modeling, slip compensation mechanisms, real-time implementation under hardware constraints, and the cooperative control of multiple UAGVs operating in dynamic agricultural scenarios. By presenting a detailed review from a control-centric perspective, this study aims to serve as a valuable reference for researchers and practitioners developing intelligent agricultural vehicle systems. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

22 pages, 3275 KB  
Review
Permanent Magnet Synchronous Motor Drive System for Agricultural Equipment: A Review
by Chao Zhang, Xiongwei Xia, Hong Zheng and Hongping Jia
Agriculture 2025, 15(19), 2007; https://doi.org/10.3390/agriculture15192007 - 25 Sep 2025
Viewed by 332
Abstract
The electrification of agricultural equipment is a critical pathway to address the dual challenges of increasing global food production and ensuring sustainable agricultural development. As the core power unit, the permanent magnet synchronous motor (PMSM) drive system faces severe challenges in achieving high [...] Read more.
The electrification of agricultural equipment is a critical pathway to address the dual challenges of increasing global food production and ensuring sustainable agricultural development. As the core power unit, the permanent magnet synchronous motor (PMSM) drive system faces severe challenges in achieving high performance, robustness, and reliable control in complex farmland environments characterized by sudden load changes, extreme operating conditions, and strong interference. This paper provides a comprehensive review of key technological advancements in PMSM drive systems for agricultural electrification. First, it analyzes solutions to enhance the reliability of power converters, including high-frequency silicon carbide (SiC)/gallium nitride (GaN) power device packaging, thermal management, and electromagnetic compatibility (EMC) design. Second, it systematically elaborates on high-performance motor control algorithms such as Direct Torque Control (DTC) and Model Predictive Control (MPC) for improving dynamic response; robust control strategies like Sliding Mode Control (SMC) and Active Disturbance Rejection Control (ADRC) for enhancing resilience; and the latest progress in fault-tolerant control architectures incorporating sensorless technology. Furthermore, the paper identifies core challenges in large-scale applications, including environmental adaptability, real-time multi-machine coordination, and high reliability requirements. Innovatively, this review proposes a closed-loop intelligent control paradigm encompassing environmental disturbance prediction, control parameter self-tuning, and actuator dynamic response. This paradigm provides theoretical support for enhancing the autonomous adaptability and operational quality of agricultural machinery in unstructured environments. Finally, future trends involving deep AI integration, collaborative hardware innovation, and agricultural ecosystem construction are outlined. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

Back to TopTop