Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,560)

Search Parameters:
Keywords = SHAKE

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 12507 KiB  
Article
Soil Amplification and Code Compliance: A Case Study of the 2023 Kahramanmaraş Earthquakes in Hayrullah Neighborhood
by Eyübhan Avcı, Kamil Bekir Afacan, Emre Deveci, Melih Uysal, Suna Altundaş and Mehmet Can Balcı
Buildings 2025, 15(15), 2746; https://doi.org/10.3390/buildings15152746 - 4 Aug 2025
Viewed by 60
Abstract
In the earthquakes that occurred in the Pazarcık (Mw = 7.7) and Elbistan (Mw = 7.6) districts of Kahramanmaraş Province on 6 February 2023, many buildings collapsed in the Hayrullah neighborhood of the Onikişubat district. In this study, we investigated whether there was [...] Read more.
In the earthquakes that occurred in the Pazarcık (Mw = 7.7) and Elbistan (Mw = 7.6) districts of Kahramanmaraş Province on 6 February 2023, many buildings collapsed in the Hayrullah neighborhood of the Onikişubat district. In this study, we investigated whether there was a soil amplification effect on the damage occurring in the Hayrullah neighborhood of the Onikişubat district of Kahramanmaraş Province. Firstly, borehole, SPT, MASW (multi-channel surface wave analysis), microtremor, electrical resistivity tomography (ERT), and vertical electrical sounding (VES) tests were carried out in the field to determine the engineering properties and behavior of soil. Laboratory tests were also conducted using samples obtained from bore holes and field tests. Then, an idealized soil profile was created using the laboratory and field test results, and site dynamic soil behavior analyses were performed on the extracted profile. According to The Turkish Building Code (TBC 2018), the earthquake level DD-2 design spectra of the project site were determined and the average design spectrum was created. Considering the seismicity of the project site and TBC (2018) criteria (according to site-specific faulting, distance, and average shear wave velocity), 11 earthquake ground motion sets were selected and harmonized with DD-2 spectra in short, medium, and long periods. Using scaled motions, the soil profile was excited with 22 different earthquake scenarios and the results were obtained for the equivalent and non-linear models. The analysis showed that the soft soil conditions in the area amplified ground shaking by up to 2.8 times, especially for longer periods (1.0–2.5 s). This level of amplification was consistent with the damage observed in mid- to high-rise buildings, highlighting the important role of local site effects in the structural losses seen during the Kahramanmaraş earthquakes. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

13 pages, 766 KiB  
Article
Effect of Ultrasonic Frequencies on the Aqueous Extraction of Polyphenols, Chlorogenic Acid, and Quercetin from the Whole Fruit of Pitaya (Hylocereus spp.)
by Wei-Ting Lian and Chun-Yao Yang
Molecules 2025, 30(15), 3253; https://doi.org/10.3390/molecules30153253 - 3 Aug 2025
Viewed by 163
Abstract
The effect of ultrasonic frequencies of 40 kHz/300 W (U-40) and 120 kHz/300 W (U-120) on the aqueous extraction of bioactive compounds from dried whole-fruit powders (DPs) of red-peel/white-flesh (WFP) and red-peel/red-flesh (RFP) pitayas was investigated, and shaking at 120 rpm (S-120) was [...] Read more.
The effect of ultrasonic frequencies of 40 kHz/300 W (U-40) and 120 kHz/300 W (U-120) on the aqueous extraction of bioactive compounds from dried whole-fruit powders (DPs) of red-peel/white-flesh (WFP) and red-peel/red-flesh (RFP) pitayas was investigated, and shaking at 120 rpm (S-120) was used for a comparison. The effects of temperature and the solid-to-liquid ratio on the extraction efficiencies of the total phenolic content (TPC) and ferric-reducing antioxidant power (FRAP) of WFP and RFP were evaluated. The impact of extraction time on the aqueous extraction of specific compounds, namely, chlorogenic acid (CGA) and quercetin, from WFP and RFP was assessed with extraction modes of U-40, U-120, and S-120. At 40 °C and a 1/20 (g DP/mL) solid-to-liquid ratio, the use of U-40 achieved higher TPC and FRAP values at 15 min than U-120 and S-120 for WFP. The use of U-40 and U-120 extracted higher amounts of free CGA and free quercetin from WFP and RFP at 15 and 60 min than S-120 but showed different extraction efficiencies for free CGA and free quercetin. This study demonstrates that different ultrasonic frequencies can be applied in the green extraction of target bioactive compounds for use in nutraceutical foods. Full article
Show Figures

Figure 1

16 pages, 5536 KiB  
Article
The Development of a Wearable-Based System for Detecting Shaken Baby Syndrome Using Machine Learning Models
by Ram Kinker Mishra, Khalid AlAnsari, Rylee Cole, Arin Nazarian, Ilkay Yildiz Potter and Ashkan Vaziri
Sensors 2025, 25(15), 4767; https://doi.org/10.3390/s25154767 - 2 Aug 2025
Viewed by 193
Abstract
Shaken Baby Syndrome (SBS) is one of the primary causes of fatal head trauma in infants and young children, occurring in about 33 per 100,000 infants annually in the U.S., with mortality rates being between 15% and 38%. Survivors frequently endure long-term disabilities, [...] Read more.
Shaken Baby Syndrome (SBS) is one of the primary causes of fatal head trauma in infants and young children, occurring in about 33 per 100,000 infants annually in the U.S., with mortality rates being between 15% and 38%. Survivors frequently endure long-term disabilities, such as cognitive deficits, visual impairments, and motor dysfunction. Diagnosing SBS remains difficult due to the lack of visible injuries and delayed symptom onset. Existing detection methods—such as neuroimaging, biomechanical modeling, and infant monitoring systems—cannot perform real-time detection and face ethical, technical, and accuracy limitations. This study proposes an inertial measurement unit (IMU)-based detection system enhanced with machine learning to identify aggressive shaking patterns. Findings indicate that wearable-based motion analysis is a promising method for recognizing high-risk shaking, offering a non-invasive, real-time solution that could minimize infant harm and support timely intervention. Full article
Show Figures

Figure 1

24 pages, 9147 KiB  
Article
Experimental and Numerical Study on the Seismic Performance of Base-Suspended Pendulum Isolation Structure
by Liang Lu, Lei Wang, Wanqiu Xia and Minghao Yin
Buildings 2025, 15(15), 2711; https://doi.org/10.3390/buildings15152711 - 31 Jul 2025
Viewed by 110
Abstract
This paper proposes a novel suspended seismic structure system called Base-suspended Pendulum Isolation (BSPI) structure. The BSPI structure can isolate seismic action and reduce structural seismic response by hanging the structure with hanger rods set at the base. The viscous dampers are installed [...] Read more.
This paper proposes a novel suspended seismic structure system called Base-suspended Pendulum Isolation (BSPI) structure. The BSPI structure can isolate seismic action and reduce structural seismic response by hanging the structure with hanger rods set at the base. The viscous dampers are installed in the isolation layer to dissipate earthquake energy and control the displacement. Firstly, the configuration of suspension isolation layer and mechanical model of the BSPI structure are described. Then, an equivalent scaled BSPI structure physical model was tested on the shaking table. The test results demonstrate that the BSPI structure has a good isolation effect under earthquakes, and the viscous dampers had an obvious control effect on the structure’s displacement and acceleration response. Finally, numerical simulation of the tests was carried out. The accuracy of the numerical models are confirmed by the good agreement between the simulation and test results. The numerical models for the BSPI structure and conventional reinforced concrete (RC) frame structure are built and analyzed using the commercial software ABAQUS. Research results indicate that the lateral stiffness of the BSPI structure is reduced greatly by installing the suspension layer, and the acceleration response of BSPI structure is significantly reduced under rare earthquakes, which is only 1/2 of that of the RC frame. The inter-story displacement of the BSPI structure is less than 1/100, which meets the seismic fortification goal and is reduced to 50% of that of the BSPI structure without damper under rare earthquakes. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

31 pages, 11619 KiB  
Article
Experimental Verification of Innovative, Low-Cost Method for Upgrading of Seismic Resistance of Masonry Infilled Rc Frames
by Jordan Bojadjiev, Roberta Apostolska, Golubka Necevska Cvetanovska, Damir Varevac and Julijana Bojadjieva
Appl. Sci. 2025, 15(15), 8520; https://doi.org/10.3390/app15158520 (registering DOI) - 31 Jul 2025
Viewed by 115
Abstract
For the past few decades, during each disastrous earthquake, severe damage and poor seismic performance of masonry infilled RC frames, including many newly designed ones, have been reported extensively. Inherent problems related to analysis and design methods for tight-fit infilled frame structures have [...] Read more.
For the past few decades, during each disastrous earthquake, severe damage and poor seismic performance of masonry infilled RC frames, including many newly designed ones, have been reported extensively. Inherent problems related to analysis and design methods for tight-fit infilled frame structures have not yet been solved and are recognized as being far from satisfactory in terms of completeness and reliability. The primary objective of this research was to propose and test an innovative method that can effectively mitigate undesirable interaction damage to masonry infilled RC frame structures. This proposed technical solution consists of connection of the infill panel to the bounding columns with steel reinforcement connections deployed in mortar layers and anchored to the columns. This is practical, cheap and easy to implement without any specific technology, which is especially important for developing countries. A three story, two bay RC building model with the proposed connection implemented on the infill walls was designed and tested on the shake table at IZIIS in Skopje, N. Macedonia. The test results and design guidelines/recommendations from the proposed research are also expected to benefit the infrastructural development in other countries threatened by earthquakes, preferably in the Balkan and the Mediterranean region. Full article
Show Figures

Figure 1

24 pages, 9395 KiB  
Article
Experimental Investigation of the Seismic Behavior of a Multi-Story Steel Modular Building Using Shaking Table Tests
by Xinxin Zhang, Yucong Nie, Kehao Qian, Xinyu Xie, Mengyang Zhao, Zhan Zhao and Xiang Yuan Zheng
Buildings 2025, 15(15), 2661; https://doi.org/10.3390/buildings15152661 - 28 Jul 2025
Viewed by 278
Abstract
A steel modular building is a highly prefabricated form of steel construction. It offers rapid assembly, a high degree of industrialization, and an environmentally friendly construction site. To promote the application of multi-story steel modular buildings in earthquake fortification zones, it is imperative [...] Read more.
A steel modular building is a highly prefabricated form of steel construction. It offers rapid assembly, a high degree of industrialization, and an environmentally friendly construction site. To promote the application of multi-story steel modular buildings in earthquake fortification zones, it is imperative to conduct in-depth research on their seismic behavior. In this study, a seven-story modular steel building is investigated using shaking table tests. Three seismic waves (artificial ground motion, Tohoku wave, and Tianjin wave) are selected and scaled to four intensity levels (PGA = 0.035 g, 0.1 g, 0.22 g, 0.31 g). It is found that no residual deformation of the structure is observed after tests, and its stiffness degradation ratio is 7.65%. The largest strains observed during the tests are 540 × 10−6 in beams, 1538 × 10−6 in columns, and 669 × 10−6 in joint regions, all remaining below a threshold value of 1690 × 10−6. Amplitudes and frequency characteristics of the acceleration responses are significantly affected by the characteristics of the seismic waves. However, the acceleration responses at higher floors are predominantly governed by the structure’s low-order modes (first-mode and second-mode), with the corresponding spectra containing only a single peak. When the predominant frequency of the input ground motion is close to the fundamental natural frequency of the modular steel structure, the acceleration responses will be significantly amplified. Overall, the structure demonstrates favorable seismic resistance. Full article
Show Figures

Figure 1

20 pages, 2003 KiB  
Article
Adaptive Hierarchical Sliding Mode Control for Double-Pendulum Gantry Crane Based on Neural Network
by Linxiao Yao, Yihao Chen, Bing Li, Linjian Shangguan and Jingwen Yan
Appl. Sci. 2025, 15(15), 8338; https://doi.org/10.3390/app15158338 - 26 Jul 2025
Viewed by 261
Abstract
Gantry cranes play a pivotal role in industrial production. Gantry cranes exhibit clear double-swing characteristics in actual working conditions, complicating anti-swing control. Most existing anti-swing control methods are based on a simplified single-pendulum model. The present paper puts forward a double-pendulum model for [...] Read more.
Gantry cranes play a pivotal role in industrial production. Gantry cranes exhibit clear double-swing characteristics in actual working conditions, complicating anti-swing control. Most existing anti-swing control methods are based on a simplified single-pendulum model. The present paper puts forward a double-pendulum model for gantry cranes and proposes an adaptive hierarchical sliding mode control based on a neural network according to the actual working conditions. The use of a neural network and adaptive layered sliding mode control can effectively inhibit chattering, thus improving control performance and stability and achieving the goal of anti-shaking control, thus effectively inhibiting residual oscillation. This method has been demonstrated to be effective in achieving the objective of anti-shudder control, thereby effectively suppressing residual oscillation. Compared with hierarchical sliding mode control, the proposed method reduces the maximum residual oscillation angle of the hook and payload by approximately 80%. In comparison with the conventional sliding mode control, the maximum residual oscillation angle is reduced by approximately 84%. Furthermore, the control force amplitude is reduced to 5.23 N, representing decreases of 30.2% and 37.4%, respectively. These comparative results demonstrate the superior oscillation suppression. The system also shows a reliable performance against potential disturbances. Full article
Show Figures

Figure 1

23 pages, 9795 KiB  
Article
Evaluation of Viscoelastic and Rotational Friction Dampers for Coupled Shear Wall System
by Zafira Nur Ezzati Mustafa, Ryo Majima and Taiki Saito
Appl. Sci. 2025, 15(15), 8185; https://doi.org/10.3390/app15158185 - 23 Jul 2025
Viewed by 156
Abstract
This research experimentally and numerically evaluates the effectiveness of viscoelastic (VE) and rotational friction (RF) dampers in enhancing the seismic performance of coupled shear wall (CSW) systems. This study consists of two phases: (1) element testing to characterize the hysteretic behavior and energy [...] Read more.
This research experimentally and numerically evaluates the effectiveness of viscoelastic (VE) and rotational friction (RF) dampers in enhancing the seismic performance of coupled shear wall (CSW) systems. This study consists of two phases: (1) element testing to characterize the hysteretic behavior and energy dissipation capacity of VE and RF dampers, and (2) shake table testing of a large-scale CSW structure equipped with these dampers under the white noise, sinusoidal and Kokuji waves. The experimental results are validated through numerical analysis using STERA 3D (version 11.5), a nonlinear finite element software, to simulate the dynamic response of the damped CSW system. Key performance indicators, including inter-story drift, base shear, and energy dissipation, are compared between experimental and numerical results, demonstrating strong correlation. The findings reveal that VE dampers effectively control high-frequency vibrations, while RF dampers provide stable energy dissipation across varying displacement amplitudes. The validated numerical model facilitates the optimization of damper configurations for performance-based seismic design. This study provides valuable insights into the selection and implementation of supplemental damping systems for CSW structures, contributing to improved seismic resilience in buildings. Full article
(This article belongs to the Special Issue Nonlinear Dynamics and Vibration)
Show Figures

Figure 1

14 pages, 1604 KiB  
Article
Elicitation-Induced Enhancement of Lovastatin and Pigment Production in Monascus purpureus C322
by Sirisha Yerramalli, Stephen J. Getting, Godfrey Kyazze and Tajalli Keshavarz
Fermentation 2025, 11(8), 422; https://doi.org/10.3390/fermentation11080422 - 22 Jul 2025
Viewed by 508
Abstract
Monascus purpureus is a filamentous fungus renowned for producing bioactive secondary metabolites, including lovastatin and azaphilone pigments. Lovastatin is valued for its cholesterol-lowering properties and cardiovascular benefits, while Monascus pigments exhibit anti-cancer, anti-inflammatory, and antimicrobial activities, underscoring their pharmaceutical and biotechnological relevance. This [...] Read more.
Monascus purpureus is a filamentous fungus renowned for producing bioactive secondary metabolites, including lovastatin and azaphilone pigments. Lovastatin is valued for its cholesterol-lowering properties and cardiovascular benefits, while Monascus pigments exhibit anti-cancer, anti-inflammatory, and antimicrobial activities, underscoring their pharmaceutical and biotechnological relevance. This study evaluated the impact of carbohydrate-derived elicitors—mannan oligosaccharides, oligoguluronate, and oligomannuronate—on the enhancement of pigment and lovastatin production in M. purpureus C322 under submerged fermentation. Elicitors were added at 48 h in shake flasks and 24 h in 2.5 L stirred-tank fermenters. All treatments increased the production of yellow, orange, and red pigments and lovastatin compared to the control, with higher titres upon scale-up. OG led to the highest orange pigment yield (1.2 AU/g CDW in flasks; 1.67 AU/g CDW in fermenters), representing 2.3- and 3.0-fold increases. OM yielded the highest yellow and red pigments (1.24 and 1.35 AU/g CDW in flasks; 1.58 and 1.80 AU/g CDW in fermenters) and the highest lovastatin levels (10.46 and 12.6 mg/g CDW), corresponding to 2.03–3.03-fold improvements. These results highlight the potential of carbohydrate elicitors to stimulate metabolite biosynthesis and facilitate scalable optimisation of fungal fermentation. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

15 pages, 3197 KiB  
Article
Experimental and Numerical Investigation of Seepage and Seismic Dynamics Behavior of Zoned Earth Dams with Subsurface Cavities
by Iman Hani Hameed, Abdul Hassan K. Al-Shukur and Hassnen Mosa Jafer
GeoHazards 2025, 6(3), 37; https://doi.org/10.3390/geohazards6030037 - 17 Jul 2025
Viewed by 316
Abstract
Earth fill dams are susceptible to internal erosion and instability when founded over cavity-prone formations such as gypsum or karstic limestone. Subsurface voids can significantly compromise dam performance, particularly under seismic loading, by altering seepage paths, raising pore pressures, and inducing structural deformation. [...] Read more.
Earth fill dams are susceptible to internal erosion and instability when founded over cavity-prone formations such as gypsum or karstic limestone. Subsurface voids can significantly compromise dam performance, particularly under seismic loading, by altering seepage paths, raising pore pressures, and inducing structural deformation. This study examines the influence of cavity presence, location, shape, and size on the behavior of zoned earth dams. A 1:25 scale physical model was tested on a uniaxial shake table under varying seismic intensities, and seepage behavior was observed under steady-state conditions. Numerical simulations using SEEP/W and QUAKE/W in GeoStudio complemented the experimental work. Results revealed that upstream and double-cavity configurations caused the greatest deformation, including crest displacements of up to 0.030 m and upstream subsidence of ~7 cm under 0.47 g shaking. Pore pressures increased markedly near cavities, with peaks exceeding 2.7 kPa. Irregularly shaped and larger cavities further amplified these effects and led to dynamic factors of safety falling below 0.6. In contrast, downstream cavities produced minimal impact. The excellent agreement between experimental and numerical results validates the modeling approach. Overall, the findings highlight that cavity geometry and location are critical determinants of dam safety under both static and seismic conditions. Full article
Show Figures

Figure 1

28 pages, 1881 KiB  
Article
Part II—Volatile Profiles of Kiwi Kefir-like Beverages Influenced by the Amount of Inoculum, Shaking Rate, and Successive Kefir Grain Passages
by Delicia L. Bazán, Sandra Cortés Diéguez, José Manuel Domínguez and Nelson Pérez-Guerra
Foods 2025, 14(14), 2502; https://doi.org/10.3390/foods14142502 - 17 Jul 2025
Viewed by 322
Abstract
This study analyzes the aromatic profiles of kiwi-based fermented beverages, inoculated with varying proportions of milk kefir grains and incubated under different shaking rates. The experiments were designed using response surface methodology and three consecutive batch cultures were performed under each experimental condition. [...] Read more.
This study analyzes the aromatic profiles of kiwi-based fermented beverages, inoculated with varying proportions of milk kefir grains and incubated under different shaking rates. The experiments were designed using response surface methodology and three consecutive batch cultures were performed under each experimental condition. At the end of each fermentation, the grains were separated from the beverage and reused as the inoculum for fermenting fresh kiwi juice in the subsequent batch. Based on the results, together with the previously determined microbiological and chemical characteristics, two beverages were identified as having broader aromatic profiles, lower contents of sugars, ethanol, and acids, and high counts of lactic acid bacteria (LAB) and yeasts (>106 CFU/mL). These beverages were produced under relatively low agitation rates (38 and 86 rpm) and high inoculum proportions (4.33% and 4.68% w/v) during the second and third batch cultures, respectively. Over 28 days of refrigerated storage, the pH values of both beverages remained relatively stable, and the LAB counts consistently exceeded 106 CFU/mL. Yeast counts, along with the production of ethanol, glycerol, lactic acid, and acetic acid, increased slightly over time. In contrast, the concentrations of citric acid, quinic acid, total sugars, and acetic acid bacteria declined by day 28. Full article
Show Figures

Graphical abstract

26 pages, 2868 KiB  
Article
Resonant Oscillations of Ion-Stabilized Nanobubbles in Water as a Possible Source of Electromagnetic Radiation in the Gigahertz Range
by Nikolai F. Bunkin, Yulia V. Novakovskaya, Rostislav Y. Gerasimov, Barry W. Ninham, Sergey A. Tarasov, Natalia N. Rodionova and German O. Stepanov
Int. J. Mol. Sci. 2025, 26(14), 6811; https://doi.org/10.3390/ijms26146811 - 16 Jul 2025
Viewed by 225
Abstract
It is well known that aqueous solutions can emit electromagnetic waves in the radio frequency range. However, the physical nature of this process is not yet fully understood. In this work, the possible role of gas nanobubbles formed in the bulk liquid is [...] Read more.
It is well known that aqueous solutions can emit electromagnetic waves in the radio frequency range. However, the physical nature of this process is not yet fully understood. In this work, the possible role of gas nanobubbles formed in the bulk liquid is considered. We develop a theoretical model based on the concept of gas bubbles stabilized by ions, or “bubstons”. The role of bicarbonate and hydronium ions in the formation and stabilization of bubstons is explained through the use of quantum chemical simulations. A new model of oscillating bubstons, which takes into account the double electric layer formed around their gas core, is proposed. Theoretical estimates of the frequencies and intensities of oscillations of such compound species are obtained. It was determined that oscillations of negatively charged bubstons can occur in the GHz frequency range, and should be accompanied by the emission of electromagnetic waves. To validate the theoretical assumptions, we used dynamic light scattering (DLS) and showed that, after subjecting aqueous solutions to vigorous shaking with a force of 4 or 8 N (kg·m/s2) and a frequency of 4–5 Hz, the volume number density of bubstons increased by about two orders of magnitude. Radiometric measurements in the frequency range of 50 MHz to 3.5 GHz revealed an increase in the intensity of radiation emitted by water samples upon the vibrational treatment. It is argued that, according to our new theoretical model, this radiation can be caused by oscillating bubstons. Full article
(This article belongs to the Section Physical Chemistry and Chemical Physics)
Show Figures

Figure 1

21 pages, 3873 KiB  
Article
Harnessing YOLOv11 for Enhanced Detection of Typical Autism Spectrum Disorder Behaviors Through Body Movements
by Ayman Noor, Hanan Almukhalfi, Arthur Souza and Talal H. Noor
Diagnostics 2025, 15(14), 1786; https://doi.org/10.3390/diagnostics15141786 - 15 Jul 2025
Viewed by 420
Abstract
Background/Objectives: Repetitive behaviors such as hand flapping, body rocking, and head shaking characterize Autism Spectrum Disorder (ASD) while functioning as early signs of neurodevelopmental variations. Traditional diagnostic procedures require extensive manual observation, which takes significant time, produces subjective results, and remains unavailable [...] Read more.
Background/Objectives: Repetitive behaviors such as hand flapping, body rocking, and head shaking characterize Autism Spectrum Disorder (ASD) while functioning as early signs of neurodevelopmental variations. Traditional diagnostic procedures require extensive manual observation, which takes significant time, produces subjective results, and remains unavailable to many regions. The research introduces a real-time system for the detection of ASD-typical behaviors by analyzing body movements through the You Only Look Once (YOLOv11) deep learning model. Methods: The system’s multi-layered design integrates monitoring, network, cloud, and typical ASD behavior detection layers to facilitate real-time video acquisition, wireless data transfer, and cloud analysis along with ASD-typical behavior classification. We gathered and annotated our own dataset comprising 72 videos, yielding a total of 13,640 images representing four behavior classes that include hand flapping, body rocking, head shaking, and non_autistic. Results: YOLOv11 demonstrates superior performance compared to baseline models like the sub-sampling (CNN) (MobileNet-SSD) and Long Short-Term Memory (LSTM) by achieving 99% accuracy along with 96% precision and 97% in recall and the F1-score. Conclusions: The results indicate that our system provides a scalable solution for real-time ASD screening, which might help clinicians, educators, and caregivers with early intervention, as well as ongoing behavioral monitoring. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

13 pages, 2331 KiB  
Communication
The Power of Old Hats: Rediscovering Inosine-EpPCR to Create Starting Libraries for Whole-Cell-SELEX
by Grigory Bolotnikov, Ann-Kathrin Kissmann, Daniel Gruber, Andreas Bellmann, Roger Hasler, Christoph Kleber, Wolfgang Knoll and Frank Rosenau
Biosensors 2025, 15(7), 448; https://doi.org/10.3390/bios15070448 - 12 Jul 2025
Viewed by 429
Abstract
Shaking off the forgetfulness towards the methodological power of inosine-mediated error-prone PCR (epPCR), this study reintroduces an often-underappreciated method as a considerably powerful approach for generating aptamer libraries from a single decameric ATCG-repeat-oligonucleotide. The aim was to demonstrate that this simple way of [...] Read more.
Shaking off the forgetfulness towards the methodological power of inosine-mediated error-prone PCR (epPCR), this study reintroduces an often-underappreciated method as a considerably powerful approach for generating aptamer libraries from a single decameric ATCG-repeat-oligonucleotide. The aim was to demonstrate that this simple way of creating sequence diversity was suitable for delivering functional starting libraries for a set of ten whole-cell-SELEX (Systematic Evolution of Ligands by Exponential Enrichment) processes. This epPCR method uses inosine to introduce targeted mutations, avoiding the need for commercial oligo pools or large-scale synthesis. We applied this method to a “universal aptamer” and subjected the three resulting libraries to two rounds of selection against ten diverse targets including probiotic and pathogenic bacteria (Gram-negative and -positive) as well as human cell lines. The enriched aptamers exhibited new binding specificities, demonstrating that the approach supports functional selection. Much like dusting off an old tool and finding it perfectly suited for a modern task, this work shows that revisiting established techniques can address current challenges in aptamer development. Our main finding is that epPCR provides a robust, cost-effective strategy for generating starting libraries and lowers the barrier for initiating successful SELEX campaigns. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Figure 1

16 pages, 5423 KiB  
Article
Effect of Nonlinear Constitutive Models on Seismic Site Response of Soft Reclaimed Soil Deposits
by Sadiq Shamsher, Myoung-Soo Won, Young-Chul Park, Yoon-Ho Park and Mohamed A. Sayed
J. Mar. Sci. Eng. 2025, 13(7), 1333; https://doi.org/10.3390/jmse13071333 - 11 Jul 2025
Viewed by 259
Abstract
This study investigates the impact of nonlinear constitutive models on one-dimensional seismic site response analysis (SRA) for soft, reclaimed soil deposits in Saemangeum, South Korea. Two widely used models, MKZ and GQ/H, were applied to three representative soil profiles using the DEEPSOIL program. [...] Read more.
This study investigates the impact of nonlinear constitutive models on one-dimensional seismic site response analysis (SRA) for soft, reclaimed soil deposits in Saemangeum, South Korea. Two widely used models, MKZ and GQ/H, were applied to three representative soil profiles using the DEEPSOIL program. Ground motions were scaled to bedrock peak ground accelerations (PGAs) corresponding to annual return periods (ARPs) of 1000, 2400, and 4800 years. Seismic response metrics include the ratio of GQ/H to MKZ shear strain, effective PGA (EPGA), and short- and long-term amplification factors (Fa and Fv). The results highlight the critical role of the site-to-motion period ratio (Tg/Tm) in controlling seismic behavior. Compared to the MKZ, the GQ/H model, which features strength correction and improved stiffness retention, predicts lower shear strains and higher surface spectral accelerations, particularly under strong shaking and shallow conditions. Model differences are most pronounced at low Tg/Tm values, where MKZ tends to underestimate amplification and overestimate strain due to its limited ability to reflect site-specific shear strength. Relative to code-based amplification factors, the GQ/H model yields lower short-term estimates, reflecting the disparity between stiff inland reference sites and the soft reclaimed conditions at Saemangeum. These findings emphasize the need for strength-calibrated constitutive models to improve the accuracy of site-specific seismic hazard assessments. Full article
(This article belongs to the Section Marine Hazards)
Show Figures

Figure 1

Back to TopTop