Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (436)

Search Parameters:
Keywords = SCADA system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 710 KB  
Article
KD-SecBERT: A Knowledge-Distilled Bidirectional Encoder Optimized for Open-Source Software Supply Chain Security in Smart Grid Applications
by Qinman Li, Xixiang Zhang, Weiming Liao, Tao Dai, Hongliang Zheng, Beiya Yang and Pengfei Wang
Electronics 2026, 15(2), 345; https://doi.org/10.3390/electronics15020345 - 13 Jan 2026
Viewed by 133
Abstract
With the acceleration of digital transformation, open-source software has become a fundamental component of modern smart grids and other critical infrastructures. However, the complex dependency structures of open-source ecosystems and the continuous emergence of vulnerabilities pose substantial challenges to software supply chain security. [...] Read more.
With the acceleration of digital transformation, open-source software has become a fundamental component of modern smart grids and other critical infrastructures. However, the complex dependency structures of open-source ecosystems and the continuous emergence of vulnerabilities pose substantial challenges to software supply chain security. In power information networks and cyber–physical control systems, vulnerabilities in open-source components integrated into Supervisory Control and Data Acquisition (SCADA), Energy Management System (EMS), and Distribution Management System (DMS) platforms and distributed energy controllers may propagate along the supply chain, threatening system security and operational stability. In such application scenarios, large language models (LLMs) often suffer from limited semantic accuracy when handling domain-specific security terminology, as well as deployment inefficiencies that hinder their practical adoption in critical infrastructure environments. To address these issues, this paper proposes KD-SecBERT, a domain-specific semantic bidirectional encoder optimized through multi-level knowledge distillation for open-source software supply chain security in smart grid applications. The proposed framework constructs a hierarchical multi-teacher ensemble that integrates general language understanding, cybersecurity-domain knowledge, and code semantic analysis, together with a lightweight student architecture based on depthwise separable convolutions and multi-head self-attention. In addition, a dynamic, multi-dimensional distillation strategy is introduced to jointly perform layer-wise representation alignment, ensemble knowledge fusion, and task-oriented optimization under a progressive curriculum learning scheme. Extensive experiments conducted on a multi-source dataset comprising National Vulnerability Database (NVD) and Common Vulnerabilities and Exposures (CVE) entries, security-related GitHub code, and Open Web Application Security Project (OWASP) test cases show that KD-SecBERT achieves an accuracy of 91.3%, a recall of 90.6%, and an F1-score of 89.2% on vulnerability classification tasks, indicating strong robustness in recognizing both common and low-frequency security semantics. These results demonstrate that KD-SecBERT provides an effective and practical solution for semantic analysis and software supply chain risk assessment in smart grids and other critical-infrastructure environments. Full article
Show Figures

Figure 1

32 pages, 3734 KB  
Article
A Hierarchical Framework Leveraging IIoT Networks, IoT Hub, and Device Twins for Intelligent Industrial Automation
by Cornelia Ionela Bădoi, Bilge Kartal Çetin, Kamil Çetin, Çağdaş Karataş, Mehmet Erdal Özbek and Savaş Şahin
Appl. Sci. 2026, 16(2), 645; https://doi.org/10.3390/app16020645 - 8 Jan 2026
Viewed by 224
Abstract
Industrial Internet of Things (IIoT) networks, Microsoft Azure Internet of Things (IoT) Hub, and device twins (DvT) are increasingly recognized as core enablers of adaptive, data-driven manufacturing. This paper proposes a hierarchical IIoT framework that integrates industrial IoT networking, DvT for asset-level virtualisation, [...] Read more.
Industrial Internet of Things (IIoT) networks, Microsoft Azure Internet of Things (IoT) Hub, and device twins (DvT) are increasingly recognized as core enablers of adaptive, data-driven manufacturing. This paper proposes a hierarchical IIoT framework that integrates industrial IoT networking, DvT for asset-level virtualisation, system-level digital twins (DT) for cell orchestration, and cloud-native services to support the digital transformation of brownfield, programmable logic controller (PLC)-centric modular automation (MA) environments. Traditional PLC/supervisory control and data acquisition (SCADA) paradigms struggle to meet interoperability, observability, and adaptability requirements at scale, motivating architectures in which DvT and IoT Hub underpin real-time orchestration, virtualisation, and predictive-maintenance workflows. Building on and extending a previously introduced conceptual model, the present work instantiates a multilayered, end-to-end design that combines a federated Message Queuing Telemetry Transport (MQTT) mesh on the on-premises side, a ZigBee-based backup mesh, and a secure bridge to Azure IoT Hub, together with a systematic DvT modelling and orchestration strategy. The methodology is supported by a structured analysis of relevant IIoT and DvT design choices and by a concrete implementation in a nine-cell MA laboratory featuring a robotic arm predictive-maintenance scenario. The resulting framework sustains closed-loop monitoring, anomaly detection, and control under realistic workloads, while providing explicit envelopes for telemetry volume, buffering depth, and latency budgets in edge-cloud integration. Overall, the proposed architecture offers a transferable blueprint for evolving PLC-centric automation toward more adaptive, secure, and scalable IIoT systems and establishes a foundation for future extensions toward full DvT ecosystems, tighter artificial intelligence/machine learning (AI/ML) integration, and fifth/sixth generation (5G/6G) and time-sensitive networking (TSN) support in industrial networks. Full article
(This article belongs to the Special Issue Novel Technologies of Smart Manufacturing)
Show Figures

Figure 1

29 pages, 14221 KB  
Article
Integrated Control of Hybrid Thermochemical–PCM Storage for Renewable Heating and Cooling Systems in a Smart House
by Georgios Martinopoulos, Paschalis A. Gkaidatzis, Luis Jimeno, Alberto Belda González, Panteleimon Bakalis, George Meramveliotakis, Apostolos Gkountas, Nikolaos Tarsounas, Dimosthenis Ioannidis, Dimitrios Tzovaras and Nikolaos Nikolopoulos
Electronics 2026, 15(2), 279; https://doi.org/10.3390/electronics15020279 - 7 Jan 2026
Viewed by 286
Abstract
The development of integrated renewable energy and high-density thermal energy storage systems has been fueled by the need for environmentally friendly heating and cooling in buildings. In this paper, MiniStor, a hybrid thermochemical and phase-change material storage system, is presented. It is equipped [...] Read more.
The development of integrated renewable energy and high-density thermal energy storage systems has been fueled by the need for environmentally friendly heating and cooling in buildings. In this paper, MiniStor, a hybrid thermochemical and phase-change material storage system, is presented. It is equipped with a heat pump, advanced electronics-enabled control, photovoltaic–thermal panels, and flat-plate solar collectors. To optimize energy flows, regulate charging and discharging cycles, and maintain operational stability under fluctuating solar irradiance and building loads, the system utilizes state-of-the-art power electronics, variable-frequency drives and modular multi-level converters. The hybrid storage is safely, reliably, and efficiently integrated with building HVAC requirements owing to a multi-layer control architecture that is implemented via Internet of Things and SCADA platforms that allow for real-time monitoring, predictive operation, and fault detection. Data from the MiniStor prototype demonstrate effective thermal–electrical coordination, controlled energy consumption, and high responsiveness to dynamic environmental and demand conditions. The findings highlight the vital role that digital control, modern electronics, and Internet of Things-enabled supervision play in connecting small, high-density thermal storage and renewable energy generation. This strategy demonstrates the promise of electronics-driven integration for next-generation renewable energy solutions and provides a scalable route toward intelligent, robust, and effective building energy systems. Full article
(This article belongs to the Special Issue New Insights in Power Electronics: Prospects and Challenges)
Show Figures

Figure 1

24 pages, 2088 KB  
Systematic Review
Natural Language Processing (NLP)-Based Frameworks for Cyber Threat Intelligence and Early Prediction of Cyberattacks in Industry 4.0: A Systematic Literature Review
by Majed Albarrak, Konstantinos Salonitis and Sandeep Jagtap
Appl. Sci. 2026, 16(2), 619; https://doi.org/10.3390/app16020619 - 7 Jan 2026
Viewed by 217
Abstract
This study provides a systematic overview of Natural Language Processing (NLP)-based frameworks for Cyber Threat Intelligence (CTI) and the early prediction of cyberattacks in Industry 4.0. As digital transformation accelerates through the integration of IoT, SCADA, and cyber-physical systems, manufacturing environments face an [...] Read more.
This study provides a systematic overview of Natural Language Processing (NLP)-based frameworks for Cyber Threat Intelligence (CTI) and the early prediction of cyberattacks in Industry 4.0. As digital transformation accelerates through the integration of IoT, SCADA, and cyber-physical systems, manufacturing environments face an expanding and complex cyber threat landscape. Following the PRISMA 2020 systematic review protocol, 80 peer-reviewed studies published between 2015 and 2025 were analyzed across IEEE Xplore, Scopus, and Web of Science to identify methods that employ NLP for CTI extraction, reasoning, and predictive modelling. The review finds that transformer-based architectures, knowledge graph reasoning, and social media mining are increasingly used to convert unstructured data into actionable intelligence, thereby enabling earlier detection and forecasting of cyber threats. Large Language Models (LLMs) demonstrate strong potential for anticipating attack sequences, while domain-specific models enhance industrial relevance. Persistent challenges include data scarcity, domain adaptation, explainability, and real-time scalability in operational-technology environments. The review concludes that NLP is reshaping Industry 4.0 cybersecurity from reactive defense toward predictive, adaptive, and intelligence-driven protection, and it highlights the need for interpretable, domain-specific, and resource-efficient frameworks to secure Industry 4.0 ecosystems. Full article
(This article belongs to the Special Issue Advances in Cyber Security)
Show Figures

Figure 1

31 pages, 5378 KB  
Article
Composite Fractal Index for Assessing Voltage Resilience in RES-Dominated Smart Distribution Networks
by Plamen Stanchev and Nikolay Hinov
Fractal Fract. 2026, 10(1), 32; https://doi.org/10.3390/fractalfract10010032 - 5 Jan 2026
Viewed by 118
Abstract
This work presents a lightweight and interpretable framework for the early warning of voltage stability degradation in distribution networks, based on fractal and spectral features from flow measurements. We propose a Fast Voltage Stability Index (FVSI), which combines four independent indicators: the Detrended [...] Read more.
This work presents a lightweight and interpretable framework for the early warning of voltage stability degradation in distribution networks, based on fractal and spectral features from flow measurements. We propose a Fast Voltage Stability Index (FVSI), which combines four independent indicators: the Detrended Fluctuation Analysis (DFA) exponent α (a proxy for long-term correlation), the width of the multifractal spectrum Δα, the slope of the spectral density β in the low-frequency range, and the c2 curvature of multiscale structure functions. The indicators are calculated in sliding windows on per-node series of voltage in per unit Vpu and reactive power Q, standardized against an adaptive rolling/first-N baseline, and anomalies over time are accumulated using the Exponentially Weighted Moving Average (EWMA) and Cumulative SUM (CUSUM). A full online pipeline is implemented with robust preprocessing, automatic scaling, thresholding, and visualizations at the system level with an overview and heat maps and at the node level and panel graphs. Based on the standard IEEE 13-node scheme, we demonstrate that the Fractal Voltage Stability Index (FVSI_Fr) responds sensitively before reaching limit states by increasing α, widening Δα, a more negative c2, and increasing β, locating the most vulnerable nodes and intervals. The approach is of low computational complexity, robust to noise and gaps, and compatible with real-time Phasor Measurement Unit (PMU)/Supervisory Control and Data Acquisition (SCADA) streams. The results suggest that FVSI_Fr is a useful operational signal for preventive actions (Q-support, load management/Photovoltaic System (PV)). Future work includes the calibration of weights and thresholds based on data and validation based on long field series. Full article
(This article belongs to the Special Issue Fractional-Order Dynamics and Control in Green Energy Systems)
Show Figures

Figure 1

19 pages, 4902 KB  
Article
A Distributed, Energy-Autonomous Multi-Sensor IoT System for Monitoring and Reducing Water Losses in Distribution Networks
by Juan Arquero-Gallego, Carlos Gilarranz-Casado, Vicente Garcia-Alcántara and José Álvarez
Inventions 2026, 11(1), 3; https://doi.org/10.3390/inventions11010003 - 31 Dec 2025
Viewed by 259
Abstract
Water resources are fundamental for human development in every possible sense; from natural development, since they are the main biological factor necessary for the development of life, to economic development, since they are essential for a large number of productive systems, especially in [...] Read more.
Water resources are fundamental for human development in every possible sense; from natural development, since they are the main biological factor necessary for the development of life, to economic development, since they are essential for a large number of productive systems, especially in the primary and secondary sectors. This makes them a resource which, although at first glance may seem unlimited, is critical since their scarcity and unavailability compromise the whole of human development, greatly limiting productive and economic activity and, ultimately, social welfare. The current development of IoT technology, on the other hand, provides tools to face this problem in a technical way, allowing the adoption of distributed and automated solutions that, together with the knowledge provided by disciplines such as agricultural and alimentary engineering, make viable the development of a system that allows us to monitor and control water distribution networks (WDNs). Next, the situations that involve the mentioned problem will be detailed and different aspects will be proposed in which the implementation of the presented system is intended to have a direct impact. Full article
Show Figures

Figure 1

22 pages, 1816 KB  
Article
Fuzzy Decision Support System for Single-Chamber Ship Lock for Two Vessels
by Vladimir Bugarski, Todor Bačkalić and Željko Kanović
Appl. Syst. Innov. 2026, 9(1), 8; https://doi.org/10.3390/asi9010008 - 26 Dec 2025
Viewed by 266
Abstract
Ship lock zones represent bottlenecks and a particular challenge for authorities managing vessel traffic. Traditionally, the control strategy of such systems has relied heavily on the subjective judgment, experience, and tacit knowledge of ship lock operators. To address the inherent uncertainty and imprecision [...] Read more.
Ship lock zones represent bottlenecks and a particular challenge for authorities managing vessel traffic. Traditionally, the control strategy of such systems has relied heavily on the subjective judgment, experience, and tacit knowledge of ship lock operators. To address the inherent uncertainty and imprecision associated with these subjective assessments, fuzzy logic and fuzzy set theory have been adopted as appropriate mathematical frameworks. In this work, the control strategy and the Fuzzy Decision Support System (FDSS) of a single-chamber ship lock designed for two vessels on a two-way waterway are analyzed and modeled. The input data is generated based on a synthesized dataset reflecting the annual schedule of vessel arrivals. The software is based on proposals and suggestions of experienced ship lock operators, and it is further validated through vessel traffic simulations. Moreover, the development of an appropriate Supervisory Control and Data Acquisition (SCADA) system integrated with a Programmable Logic Controller (PLC) is detailed, providing the necessary infrastructure for real-time deployment of the fuzzy control algorithm. The proposed control system represents an original contribution and offers practical applications both as a decision-support tool for real-time lock management and as a training platform for novice or less experienced operators. Full article
(This article belongs to the Section Control and Systems Engineering)
Show Figures

Figure 1

23 pages, 282 KB  
Article
Evolving Maturity Models for Electric Power System Cybersecurity: A Case-Driven Framework Gap Analysis
by Akın Aytekin, Aysun Coşkun and Mahir Dursun
Appl. Sci. 2026, 16(1), 177; https://doi.org/10.3390/app16010177 - 24 Dec 2025
Viewed by 340
Abstract
The electric power grid constitutes a foundational pillar of modern critical infrastructure (CI), underpinning societal functionality and global economic stability. Yet, the increasing convergence of Information Technology (IT) and Operational Technology (OT), particularly through the integration of Supervisory Control and Data Acquisition (SCADA) [...] Read more.
The electric power grid constitutes a foundational pillar of modern critical infrastructure (CI), underpinning societal functionality and global economic stability. Yet, the increasing convergence of Information Technology (IT) and Operational Technology (OT), particularly through the integration of Supervisory Control and Data Acquisition (SCADA) and Industrial Control Systems (ICS), has amplified the sector’s exposure to sophisticated cyber threats. This study conducts a comparative analysis of five major cyber incidents targeting electric power systems: the 2015 and 2016 Ukrainian power grid disruptions, the 2022 Industroyer2 event, the 2010 Stuxnet attack, and the 2012 Shamoon incident. Each case is examined with respect to its objectives, methodologies, operational impacts, and mitigation efforts. Building on these analyses, the research evaluates the extent to which such attacks could have been prevented or mitigated through the systematic adoption of leading cybersecurity maturity frameworks. The NIST Cybersecurity Framework (CSF) 2.0, the ENISA NIS2 Directive Risk Management Measures, the U.S. Department of Energy’s Cybersecurity Capability Maturity Model (C2M2), and the Cybersecurity Risk Foundation (CRF) Maturity Model alongside complementary technical standards such as NIST SP 800-82 and IEC 62443 have been thoroughly examined. The findings suggest that a proactive, layered defense architecture grounded in the principles of these frameworks could have significantly reduced both the likelihood and the operational impact of the reviewed incidents. Moreover, the paper identifies critical gaps in the existing maturity models, particularly in their ability to capture hybrid, cross-domain, and human-centric threat dynamics. The study concludes by proposing directions for evolving from compliance-driven to resilience-oriented cybersecurity ecosystems, offering actionable recommendations for policymakers and power system operators to strengthen the cyber-physical resilience of electric generation and distribution infrastructures worldwide. Full article
Show Figures

Figure 1

27 pages, 2905 KB  
Article
A Hybrid Machine Learning Approach for Cyberattack Detection and Classification in SCADA Systems: A Hydroelectric Power Plant Application
by Mehmet Akif Özgül, Şevki Demirbaş and Seyfettin Vadi
Electronics 2026, 15(1), 10; https://doi.org/10.3390/electronics15010010 - 19 Dec 2025
Viewed by 309
Abstract
SCADA systems, widely used in critical infrastructure, are becoming increasingly vulnerable to complex cyber threats, which can compromise national security. This study presents an artificial intelligence-based approach aimed at the early and reliable detection of cyberattacks against SCADA systems. The study physically scaled [...] Read more.
SCADA systems, widely used in critical infrastructure, are becoming increasingly vulnerable to complex cyber threats, which can compromise national security. This study presents an artificial intelligence-based approach aimed at the early and reliable detection of cyberattacks against SCADA systems. The study physically scaled the SCADA communication architecture of a hydroelectric power plant and created a suitable test environment. In this environment, in addition to the benign normal state, attack scenarios such as Man-in-the-Middle (MITM), Denial-of-Service (DoS), and Command Injection were implemented while the process created for the system’s operation was running continuously. While the scenarios were being implemented, the SCADA system was monitored, and network data flow was collected and stored for later analysis. Basic machine learning algorithms, including KNN, Naive Bayes, Decision Trees, and Logistic Regression, were applied to the obtained data. Also, different combinations of these methods have been tested. The analysis results showed that the hybrid model, consisting of a Decision Tree and Logistic Regression, achieved the most successful results, with a 98.29% accuracy rate, an Area Under the Curve (AUC) value of 0.998, and a reasonably short detection time. The results demonstrate that the proposed approach can accurately classify various types of attacks on SCADA systems, providing an effective early warning mechanism suitable for field applications. Full article
Show Figures

Figure 1

20 pages, 1052 KB  
Article
Distributed State Estimation for Bilinear Power System Models Based on Weighted Least Absolute Value
by Shijie Gao, Zhihua Deng, Yunzhe Zhang and Pan Wang
Appl. Sci. 2025, 15(24), 13129; https://doi.org/10.3390/app152413129 - 13 Dec 2025
Viewed by 299
Abstract
Accurate, scalable, and outlier-robust state estimation (SE) is critical for large AC power systems with mixed SCADA and PMU measurements. This paper proposes D-BSE-L1, a distributed robust state estimator for the bilinear AC model. The method combines the bilinear state estimation framework with [...] Read more.
Accurate, scalable, and outlier-robust state estimation (SE) is critical for large AC power systems with mixed SCADA and PMU measurements. This paper proposes D-BSE-L1, a distributed robust state estimator for the bilinear AC model. The method combines the bilinear state estimation framework with a convex weighted least absolute value (WLAV) loss so that all area subproblems become convex linear or quadratic programs coordinated by ADMM, and a cache-enabled Cholesky factorization is used to accelerate the third-stage linear solves. Simulations on the IEEE 14-, 118-, and 1062-bus systems show that D-BSE-L1 achieves estimation accuracy comparable to its centralized bilinear counterpart. Under severe bad-data conditions, its advantage over weighted least squares with the largest normalized residual test (WLS + LNRT) is pronounced: with 10% 1.5× bad data, the voltage magnitude and angle MAEs are about 62% and 54% of those of WLS + LNRT, and with 5% 5× bad data, they further drop to roughly 43% and 51%, while requiring only about one-tenth of the CPU time. On the 1062-bus system, D-BSE-L1 maintains the MAE of the centralized estimator but reduces runtime from 2.46 s to 0.72 s, providing a scalable, hyperparameter-free, and robust solution for partitioned state estimation in large-scale power grids. Full article
(This article belongs to the Special Issue Applied Machine Learning in Industry 4.0)
Show Figures

Figure 1

27 pages, 1460 KB  
Article
Multimodal Cognitive Architecture with Local Generative AI for Industrial Control of Concrete Plants on Edge Devices
by Fernando Hidalgo-Castelo, Antonio Guerrero-González, Francisco García-Córdova, Francisco Lloret-Abrisqueta and Carlos Torregrosa Bonet
Sensors 2025, 25(24), 7540; https://doi.org/10.3390/s25247540 - 11 Dec 2025
Viewed by 615
Abstract
Accessing operational information across industrial systems (ERP, MES, SCADA, PLC) in concrete plants requires 15–30 min and specialized knowledge. This work addresses this accessibility gap by developing a conversational AI system that democratizes industrial information access through natural language. A five-layer cognitive architecture [...] Read more.
Accessing operational information across industrial systems (ERP, MES, SCADA, PLC) in concrete plants requires 15–30 min and specialized knowledge. This work addresses this accessibility gap by developing a conversational AI system that democratizes industrial information access through natural language. A five-layer cognitive architecture was implemented integrating the Mistral-7B model quantized in GGUF Q4_0 format (3.82 GB) on a Raspberry Pi 5, Spanish speech recognition/synthesis, and heterogeneous industrial protocols (OPC UA, MQTT, REST API) across all automation pyramid levels. Experimental validation at Frumecar S.L. (Murcia, Spain) characterized performance, thermal stability, and reliability. Results show response times of 14.19 s (simple queries, SD = 7.56 s), 16.45 s (moderate, SD = 6.40 s), and 23.24 s (complex multilevel, SD = 6.59 s), representing 26–77× improvement over manual methods. The system maintained average temperature of 69.3 °C (peak 79.6 °C), preserving 5.4 °C margin below throttling threshold. Communication latencies averaged 8.93 ms across 10,163 readings (<1% of total latency). During 30 min of autonomous operation, 100% reliability was achieved with 39 successful queries. These findings demonstrate the viability of deploying quantized LLMs on low-cost edge hardware, enabling cognitive democratization of industrial information while ensuring data privacy and cloud independence. Full article
Show Figures

Figure 1

15 pages, 2871 KB  
Article
TD3 Reinforcement Learning Algorithm Used for Health Condition Monitoring of a Cooling Water Pump
by Miguel A. Sanz-Bobi, Inés Rodriguez, F. Javier Bellido-López, Antonio Muñoz, Javier Anguera, Daniel Gonzalez-Calvo and Tomas Alvarez-Tejedor
Computers 2025, 14(12), 540; https://doi.org/10.3390/computers14120540 - 9 Dec 2025
Viewed by 314
Abstract
In this paper, we describe the procedure of implementing a reinforcement learning algorithm, TD3, to learn the performance of a cooling water pump and how this type of learning can be used to detect degradations and evaluate its health condition. These types of [...] Read more.
In this paper, we describe the procedure of implementing a reinforcement learning algorithm, TD3, to learn the performance of a cooling water pump and how this type of learning can be used to detect degradations and evaluate its health condition. These types of machine learning algorithms have not been used extensively in the scientific literature to monitor the degradation of industrial components, so this study attempts to fill this gap, presenting the main characteristics of these algorithms’ application in a real case. The method presented consists of several models for predicting the expected evolution of significant behavior variables when no anomalies exist, showing the performance of different aspects of the pump. Examples of these variables are bearing temperatures or vibrations in different pump locations. All of the data used in this paper come from the SCADA system of the power plant where the cooling water pump is located. Full article
Show Figures

Graphical abstract

17 pages, 1399 KB  
Article
Quality Performance Criterion Model for Distributed Automated Control Systems Based on Markov Processes for Smart Grid
by Waldemar Wojcik, Ainur Ormanbekova, Muratkali Jamanbayev, Maria Yukhymchuk and Vladyslav Lesko
Appl. Sci. 2025, 15(24), 12917; https://doi.org/10.3390/app152412917 - 8 Dec 2025
Viewed by 209
Abstract
This paper addresses the problem of decision-making support for the modernization of distributed automated control systems (ACS) in power engineering by proposing an integral quality criterion that combines similarity-driven Markov process modeling with geometric programming. The methodology transforms the transition rate matrix of [...] Read more.
This paper addresses the problem of decision-making support for the modernization of distributed automated control systems (ACS) in power engineering by proposing an integral quality criterion that combines similarity-driven Markov process modeling with geometric programming. The methodology transforms the transition rate matrix of a continuous-time Markov chain (CTMC) into a matrix polynomial, enabling the derivation of normalized similarity indices and the development of a criterion-based model to quantify relative variations in system quality without requiring global optimization. The proposed approach yields a generalized criterion model that facilitates the ranking of modernization alternatives and the evaluation of the sensitivity of optimal decisions to parameter variations. The practical implementation is demonstrated through updated state transition graphs, quality functions, and UML-based architectures of diagnostic-ready evaluation modules. The scientific contribution of this work lies in the integration of similarity-based Markov modeling with the mathematical framework of geometric programming into a unified criterion model for the quantitative assessment of functional readiness under multistate conditions and probabilistic failures. The methodology enables the comparison of modernization scenarios using a unified integral indicator, assessment of sensitivity to structural and parametric changes, and seamless integration of quality evaluation into SCADA/Smart Grid environments as part of real-time diagnostics. The accuracy of the assessment depends on the adequacy of transition rate identification and the validity of the Markovian assumption. Future extensions include the real-time estimation of transition rates from event streams, generalization to semi-Markov processes, and multicriteria optimization considering cost, risk, and readiness. Full article
Show Figures

Figure 1

18 pages, 6293 KB  
Article
Operational Modal Analysis of a Monopile Offshore Wind Turbine via Bayesian Spectral Decomposition
by Mumin Rao, Xugang Hua, Chi Yu, Zhouquan Feng, Jiayi Deng, Zengru Yang, Yuhuan Zhang, Feiyun Deng and Zhichao Wu
J. Mar. Sci. Eng. 2025, 13(12), 2326; https://doi.org/10.3390/jmse13122326 - 8 Dec 2025
Viewed by 385
Abstract
Offshore wind turbines (OWTs) operate under harsh marine conditions involving strong winds, waves, and salt-laden air, which increase the risk of excessive vibrations and structural failures such as tower collapse. To ensure structural safety and achieve effective vibration control, accurate modal parameter identification [...] Read more.
Offshore wind turbines (OWTs) operate under harsh marine conditions involving strong winds, waves, and salt-laden air, which increase the risk of excessive vibrations and structural failures such as tower collapse. To ensure structural safety and achieve effective vibration control, accurate modal parameter identification is essential. In this study, a vibration monitoring system was developed, and the Bayesian Spectral Decomposition (BSD) method was applied for the operational modal analysis of a 5.5 MW monopile OWT. The monitoring system consisted of ten uniaxial accelerometers mounted at five elevations along the tower, with two orthogonally oriented sensors at each level to capture horizontal vibrations. Due to continuous nacelle yawing, the measured accelerations were projected onto the structural fore–aft (FA) and side–side (SS) directions prior to modal analysis. Two days of vibration and SCADA data were collected: one under rated rotor speed and another including one hour of idle state. Data preprocessing involved outlier removal, low-pass filtering, and directional projection. The obtained data were divided into 20-min segments, and the BSD approach was applied to extract the primary modal parameters in both FA and SS directions. Comparison with results from the Stochastic Subspace Identification (SSI) technique showed strong consistency, verifying the reliability of the BSD method and its advantage in uncertainty quantification. The results indicate that the identified modal frequencies remain relatively stable under both rated and idle conditions, whereas the damping ratios increase with wind speed, with a more significant growth observed in the FA direction. Full article
Show Figures

Figure 1

29 pages, 4240 KB  
Article
Impact Analysis of Different Recycling Pathways for Lithium-Containing Waste on the Carbon Footprint of Products with Recycled Lithium
by Feng Xu, Ke Fang, Dong Xiang and Guiping Chen
Sustainability 2025, 17(24), 10886; https://doi.org/10.3390/su172410886 - 5 Dec 2025
Viewed by 445
Abstract
With the gradual implementation of the EU Battery Regulation and the DBP (Digital battery passport), it has become critical to determine the carbon footprint of lithium-ion battery products that contain recycled lithium resources. However, the diversity of recycling pathways substantially increases the complexity [...] Read more.
With the gradual implementation of the EU Battery Regulation and the DBP (Digital battery passport), it has become critical to determine the carbon footprint of lithium-ion battery products that contain recycled lithium resources. However, the diversity of recycling pathways substantially increases the complexity of carbon footprint accounting and DBP construction for recycled lithium batteries. This paper proposes a carbon activity based granular allocation and integration mechanism. Built on organizational operational data in EIS (Enterprise information systems) (ERP (Enterprise resource planning)/MES (Manufacturing execution system)/SCADA (Supervisory control and data acquisition), etc.) and using carbon activities as the linkage for mapping, the mechanism supports the acquisition and sound allocation of product carbon data, thereby improving the availability of carbon data and the rationality of allocation throughout the accounting process, and enabling more robust product carbon footprint calculations. Across different recycling routes, the carbon footprint results for recycled lithium resources can differ by more than 65%. When considering spodumene as the lithium source, mixing primary and recycled lithium carbonate in varying proportions can lead to up to a tenfold difference in the carbon footprint of products containing recycled lithium. Therefore, precisely tracing the carbon emission activities associated with different lithium sources is crucial for enhancing the accuracy of carbon footprint accounting, promoting the sustainable development of lithium resources, and meeting the requirements of the new Battery Regulation and the DBP. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

Back to TopTop