Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (145)

Search Parameters:
Keywords = SAT genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1267 KiB  
Article
Exogenous 24-Epibrassinolide Alleviated Selenium Stress in Peach Seedling
by Zhiyu Hang, Qizhe Cao, Yunyao Du, Jinrong Zhang, Lijin Lin, Mingfei Zhang and Xun Wang
Horticulturae 2025, 11(8), 909; https://doi.org/10.3390/horticulturae11080909 (registering DOI) - 4 Aug 2025
Viewed by 22
Abstract
Selenium stress can adversely affect plants by inhibiting growth, impairing oxidative stress resistance, and inducing toxicity. In this experiment, we investigated the effect of exogenous 24-epibrassinolide (24-EBL; 2.0 mg/L), a brassinosteroid (BR), on alleviating selenium stress in peach trees by analyzing its impact [...] Read more.
Selenium stress can adversely affect plants by inhibiting growth, impairing oxidative stress resistance, and inducing toxicity. In this experiment, we investigated the effect of exogenous 24-epibrassinolide (24-EBL; 2.0 mg/L), a brassinosteroid (BR), on alleviating selenium stress in peach trees by analyzing its impact on biomass, selenium accumulation, and the expression of selenium metabolism-related genes in peach seedlings. The results demonstrated that 24-EBL could effectively mitigate biomass loss in peach seedlings exposed to selenium stress. Compared to the Se treatment alone, the 24-EBL+Se treatment resulted in a significant 16.55% increase in root selenium content and a more pronounced 30.39% increase in selenium content in the aboveground parts. Regarding the subcellular distribution, the cell wall was the primary site of Se deposition, accounting for 42.3% and 49.8% in the root and aboveground parts, respectively, in the Se treatment. 24-EBL further enhanced Se distribution at this site, reaching 42.9% and 63.2% in root and aboveground parts, respectively, in the 24-EBL+Se treatment. The 24-EBL+Se treatment significantly increased the contents of different chemical forms of Se, including ethanol-soluble, water-soluble, and salt-soluble Se. The quantitative real-time PCR (qRT-PCR) results indicated that the Se treatment promoted the expression of organic Se assimilation genes (SATs, OAS-TL B, and OAS-TL C), and 24-EBL application further increased their expression. Meanwhile, the Se-only treatment up-regulated the organic Se metabolism gene CGS1. Consequently, we propose that 24-EBL alleviates Se stress in peach seedlings by enhancing Se uptake and assimilation, and by adjusting subcellular distribution and chemical forms. Full article
(This article belongs to the Special Issue Biotic and Abiotic Stress Responses of Horticultural Plants)
Show Figures

Figure 1

19 pages, 3457 KiB  
Article
Impaired Mitochondrial DNA Copy Number in Visceral Adipose Tissue of Insulin-Resistant Individuals: Implications for Metabolic Dysregulation
by Monika Ołdakowska, Aneta Cierzniak, Tomasz Jurek and Małgorzata Małodobra-Mazur
Int. J. Mol. Sci. 2025, 26(15), 7398; https://doi.org/10.3390/ijms26157398 - 31 Jul 2025
Viewed by 258
Abstract
Insulin resistance is a fundamental pathophysiological mechanism contributing to the development of type 2 diabetes and metabolic syndrome. Recently, attention has focused on mitochondria’s role in glucose and lipid metabolism. Mitochondrial dysfunction is strongly associated with impaired energy metabolism and elevated oxidative stress. [...] Read more.
Insulin resistance is a fundamental pathophysiological mechanism contributing to the development of type 2 diabetes and metabolic syndrome. Recently, attention has focused on mitochondria’s role in glucose and lipid metabolism. Mitochondrial dysfunction is strongly associated with impaired energy metabolism and elevated oxidative stress. We investigated the mitochondrial DNA (mtDNA) copy number in subcutaneous adipose tissue (SAT) and visceral adipose tissue (VAT) in insulin-sensitive (IS) and insulin-resistant (IR) individuals. Twenty-seven paired adipose tissue biopsies were obtained during elective abdominal surgery. DNA and RNA were extracted, and mtDNA copy number was quantified using Real-Time PCR. We found that mtDNA content in VAT was approximately two-fold lower than in SAT. Furthermore, in IR individuals, mtDNA copy number was significantly reduced in both SAT and VAT compared to IS subjects. A strong positive correlation was observed between mtDNA content in VAT and body mass index (BMI), and a negative correlation was found with the QUICKI index. Additionally, mtDNA copy number in VAT positively correlated with the expression of several genes involved in insulin signalling, lipid metabolism, and other metabolic pathways. These findings underscore the central role of mitochondrial function in VAT in the context of metabolic disorders and suggest that targeting mitochondrial regulation in this tissue may represent a promising therapeutic approach. Full article
(This article belongs to the Special Issue Mitochondrial Function in Human Health and Disease: 2nd Edition)
Show Figures

Figure 1

16 pages, 2433 KiB  
Article
A Single-Cell Assessment of Intramuscular and Subcutaneous Adipose Tissue in Beef Cattle
by Mollie M. Green, Hunter R. Ford, Alexandra P. Tegeler, Oscar J. Benitez, Bradley J. Johnson and Clarissa Strieder-Barboza
Agriculture 2025, 15(14), 1545; https://doi.org/10.3390/agriculture15141545 - 18 Jul 2025
Viewed by 1379
Abstract
Deposition of intramuscular fat (IM), also known as marbling, is the deciding factor of beef quality grade in the U.S. Defining molecular mechanisms underlying the differential deposition of adipose tissue in distinct anatomical areas in beef cattle is key to the development of [...] Read more.
Deposition of intramuscular fat (IM), also known as marbling, is the deciding factor of beef quality grade in the U.S. Defining molecular mechanisms underlying the differential deposition of adipose tissue in distinct anatomical areas in beef cattle is key to the development of strategies for marbling enhancement while limiting the accumulation of excessive subcutaneous adipose tissue (SAT). The objective of this exploratory study was to define the IM and SAT transcriptional heterogeneity at the whole tissue and single-nuclei levels in beef steers. Longissimus dorsi muscle samples (9–11th rib) were collected from two finished beef steers at harvest to dissect matched IM and adjacent SAT (backfat). Total RNA from IM and SAT was isolated and sequenced in an Illumina NovaSeq 6000. Nuclei from the same samples were isolated by dounce homogenization, libraries generated with 10× Genomics, and sequenced in an Illumina NovaSeq 6000, followed by analysis via Cell Ranger pipeline and Seurat in RStudio (v4.3.2) By the expression of signature marker genes, single-nuclei RNA sequencing (snRNAseq) analysis identified mature adipocytes (AD; ADIPOQ, LEP), adipose stromal and progenitor cells (ASPC; PDGFRA), endothelial cells (EC; VWF, PECAM1), smooth muscle cells (SMC; NOTCH3, MYL9) and immune cells (IMC; CD163, MRC1). We detected six cell clusters in SAT and nine in IM. Across IM and SAT, AD was the most abundant cell type, followed by ASPC, SMC, and IMC. In SAT, AD made up 50% of the cellular population, followed by ASPC (31%), EC (14%), IMC (1%), and SMC (4%). In IM depot, AD made up 23% of the cellular population, followed by ASPC at 19% of the population, EC at 28%, IMC at 7% and SMC at 12%. The abundance of ASPC and AD was lower in IM vs. SAT, while IMC was increased, suggesting a potential involvement of immune cells on IM deposition. Accordingly, both bulk RNAseq and snRNAseq analyses identified activated pathways of inflammation and metabolic function in IM. These results demonstrate distinct transcriptional cellular heterogeneity between SAT and IM depots in beef steers, which may underly the mechanisms by which fat deposits in each depot. The identification of depot-specific cell populations in IM and SAT via snRNAseq analysis has the potential to reveal target genes for the modulation of fat deposition in beef cattle. Full article
Show Figures

Figure 1

11 pages, 987 KiB  
Article
Peculiarities of Diagnostic Reliability—Nested PCR Versus SAT in the Identification of Helicobacter pylori
by Barbora Šipková, Michaela Abrahamovská, Janka Klingová, Bianka Prokopová, Jana Krčmáriková, Iveta Cihová and Pavol Sulo
Microorganisms 2025, 13(7), 1498; https://doi.org/10.3390/microorganisms13071498 - 27 Jun 2025
Viewed by 401
Abstract
H. pylori detection via the stool antigen test (SAT) requires 100 times more cells than nested PCR (NPCR) for a 454 bp amplicon, but is significantly more sensitive in identifying positive stool samples. To understand this contradiction, we developed an NPCR assay to [...] Read more.
H. pylori detection via the stool antigen test (SAT) requires 100 times more cells than nested PCR (NPCR) for a 454 bp amplicon, but is significantly more sensitive in identifying positive stool samples. To understand this contradiction, we developed an NPCR assay to amplify a shorter 148 bp segment of the 16S rRNA gene. The assay was extremely sensitive and reliable when adhering to particular rules commonly used in forensic laboratories. The SAT and NPCR for long and short amplicons were compared using stool samples from 208 gastroenterological patients, of which 27.9% were identified as positive according to the SAT and only 6.25% according to the 454 bp NPCR amplicon, but 51.0% in the short 148 bp NPCR. Among 100 asymptomatic volunteers, the prevalence was 35% in the SAT assay and 22% in the long NPCR, but as much as 66.6% of positives were determined in the short 148 bp NPCR. The specificity of the PCR product was determined via DNA sequencing, which confirmed H. pylori’s origin in all NPCR-positive samples. Apparently, the stool contains mostly short fragments of H. pylori DNA, and the most plausible explanation for the SAT/NPCR paradox is the degradation of H. pylori DNA in the digestive system. Full article
(This article belongs to the Section Microbial Biotechnology)
Show Figures

Figure 1

15 pages, 1767 KiB  
Brief Report
β-Hydroxybutyrate Reduces Body Weight by Modulating Fatty Acid Oxidation and Beiging in the Subcutaneous Adipose Tissue of DIO Mice
by Violeta Heras, Virginia Mela, Pallavi Kompella, Elena Rojano, Guillermo Paz-López, Lucia Hurtado-García, Almudena Ortega-Gomez, Maria José García-López, María Luisa García-Martín, Juan A. G. Ranea, Francisco J. Tinahones and Isabel Moreno-Indias
Int. J. Mol. Sci. 2025, 26(11), 5064; https://doi.org/10.3390/ijms26115064 - 24 May 2025
Viewed by 743
Abstract
β-hydroxybutyrate (BHB) serves as an alternative cellular fuel during states of low glucose availability, such as fasting or carbohydrate restriction, when the body shifts to using fats and ketone bodies for energy. While BHB has shown potential metabolic benefits, its mechanisms of action [...] Read more.
β-hydroxybutyrate (BHB) serves as an alternative cellular fuel during states of low glucose availability, such as fasting or carbohydrate restriction, when the body shifts to using fats and ketone bodies for energy. While BHB has shown potential metabolic benefits, its mechanisms of action in the context of obesity are not fully understood. In this study, we examined the effects of BHB supplementation on subcutaneous adipose tissue (SAT) metabolism in a diet-induced obesity (DIO) mouse model. Adult male mice were first fed a high-fat diet for six weeks, followed by a standard diet with or without BHB supplementation for an additional six weeks. BHB supplementation led to significant body weight loss independent of food intake. This weight reduction was associated with decreased adipocyte differentiation, reflected by reduced peroxisome proliferator-activated receptor gamma (PPARγ) protein levels and lower uncoupling protein 1 (UCP1) expression, indicating altered SAT function. Transcriptomic analysis of SAT revealed upregulation of genes involved in fatty acid activation and transport (e.g., Slc27a2, Plin5, Acot4, Acsm3, Rik). Functional enrichment highlighted the activation of the PPAR signaling pathway and enrichment of peroxisomal components in the BHB group. Together, these results suggest that BHB promotes lipid remodeling in SAT, enhancing fatty acid metabolism while suppressing thermogenic pathways, and thus may represent a novel mechanism contributing to adiposity reduction and metabolic improvement. Full article
Show Figures

Graphical abstract

27 pages, 3565 KiB  
Article
Thiocapsa, Lutimaribacter, and Delftia Are Major Bacterial Taxa Facilitating the Coupling of Sulfur Oxidation and Nutrient Recycling in the Sulfide-Rich Isinuka Spring in South Africa
by Henry Joseph Oduor Ogola, Ramganesh Selvarajan, Somandla Ncube and Lawrence Madikizela
Biology 2025, 14(5), 503; https://doi.org/10.3390/biology14050503 - 5 May 2025
Viewed by 661
Abstract
Sulfur cycling is a fundamental biogeochemical process, yet its microbial underpinnings in environments like the Isinuka sulfur pool remain poorly understood. Using high-throughput Illumina 16S rRNA sequencing and PICRUSt-based functional inference, we analyzed bacterial diversity and metabolic potential in sediment and water samples. [...] Read more.
Sulfur cycling is a fundamental biogeochemical process, yet its microbial underpinnings in environments like the Isinuka sulfur pool remain poorly understood. Using high-throughput Illumina 16S rRNA sequencing and PICRUSt-based functional inference, we analyzed bacterial diversity and metabolic potential in sediment and water samples. Sediments, characterized by high sulfide/sulfate/thiosulfate, salinity, alkalinity, and organic matter content under anoxic conditions, supported diverse sulfur-reducing and organic-degrading bacteria, primarily from the Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria phyla. In contrast, the anoxic water column harbored a less diverse community dominated by α-, γ-, and β-Proteobacteria, including Thiocapsa and Lutimaribacter. Sulfur oxidation genes (soxABCXYZ, sqr) were abundant in water, while sulfate reduction genes (dsrAB, aprAB, and sat/met3) were concentrated in sediments. Core microbiome analysis identified Thiocapsa, Lutimaribacter, and Delftia as functional keystones, integrating sulfur oxidation and nutrient recycling. Sediments supported dissimilatory sulfate-reducing bacteria (unclassified Desulfobacteraceae, Desulfosarcina, Desulfococcus, Desulfotignum, and Desulfobacter), while water samples were enriched in sulfur-oxidizing bacteria like Thiocapsa. Metabolic profiling revealed extensive sulfur, nitrogen, and carbon cycling pathways, with sulfur autotrophic denitrification and anoxygenic photosynthesis coupling sulfur–nitrogen and sulfur–carbon cycles. This study provides key theoretical insights into the microbial dynamics in sulfur-rich environments, highlighting their roles in biogeochemical cycling and potential applications in environmental management. Full article
Show Figures

Figure 1

15 pages, 2829 KiB  
Article
Converted Macrophage Polarization and Expression of COL6α3—Early Predictors of Remodeling Processes in Adipose Tissue of Male Children
by Robert Mujkić, Darija Šnajder Mujkić, Karla Rožac, Anita Matić, Tanja Kovač Lukić, Dalibor Divković and Kristina Selthofer-Relatić
Biomedicines 2025, 13(4), 935; https://doi.org/10.3390/biomedicines13040935 - 10 Apr 2025
Viewed by 561
Abstract
Background/Objectives: Overweight and obesity in early childhood is a serious public health problem as in most cases it persists into adulthood and significantly affects the quality of life. The aim of this study was to investigate the mechanisms that trigger extracellular matrix (ECM) [...] Read more.
Background/Objectives: Overweight and obesity in early childhood is a serious public health problem as in most cases it persists into adulthood and significantly affects the quality of life. The aim of this study was to investigate the mechanisms that trigger extracellular matrix (ECM) remodeling in the subcutaneous (SAT) and visceral (VAT) adipose tissue of male children in relation to their body weight. Methods: During elective abdominal surgery, SAT and VAT were acquired from 75 male subjects undergoing hernia repair (inguinal herniorrhaphy by Ferguson) or orchidopexy. Based on their Z-score, subjects were separated into two groups. The morphometry of both adipose tissue compartments was assessed after hematoxylin and eosin histological staining, immunohistochemistry to quantify CD163+ cells and the number of crown-like structures (CLSs), and real-time polymerase chain reaction to assess the relative gene expression for collagen VI subtype alpha 3 (COL6α3). Results: Obese and overweight individuals were found to have higher numbers of CD163+ cells, greater numbers of CLSs in VAT and SAT, and a higher expression of COL6α3 in both compartments. Conclusions: Obesity in childhood may lead to increased COL6α3 gene expression and promote the activation of macrophage polarization, compromise the structural integrity of the ECM, and thus influence the development of inflammatory processes. Full article
Show Figures

Figure 1

18 pages, 13489 KiB  
Article
Mechanisms of Adipose Tissue Metabolism in Naturally Grazing Sheep at Different Growth Stages: Insights from mRNA and miRNA Profiles
by Xige He, Yunfei Han, Lu Chen, Yueying Yun, Yajuan Huang, Gerelt Borjigin and Buhe Nashun
Int. J. Mol. Sci. 2025, 26(7), 3324; https://doi.org/10.3390/ijms26073324 - 2 Apr 2025
Viewed by 536
Abstract
Adipose tissue metabolism plays a crucial role in sheep meat quality and the optimization of adipose tissue utilization. To reveal the molecular mechanisms of adipose tissue metabolism during growth in naturally grazing sheep, we investigated the mRNA and miRNA profiles in subcutaneous adipose [...] Read more.
Adipose tissue metabolism plays a crucial role in sheep meat quality and the optimization of adipose tissue utilization. To reveal the molecular mechanisms of adipose tissue metabolism during growth in naturally grazing sheep, we investigated the mRNA and miRNA profiles in subcutaneous adipose tissue (SAT) from naturally grazing Sunit sheep at 6, 18, and 30 months of age (Mth-6, Mth-18, and Mth-30). We identified 927 differentially expressed (DE) genes and 134 DE miRNAs in the SAT of sheep at different growth stages. Specifically, the expressions of ACACA, FASN, DGAT2, GPAM, SCD, ELOVL6, HSD17B12, TECR, PKM, TKT, PCK1, CD44, and THBS2S genes were significantly upregulated in Mth-18 and Mth-30 compared to that in Mth-6. These genes promoted fatty acid synthesis, triglyceride synthesis, gluconeogenesis, and extracellular matrix–receptor interaction and decreased glycolysis, leading to increased adipocyte proliferation and fat deposition. Notably, our findings suggested that the reduced activity of the AMPK signaling pathway may be regulated by CAMKK2 and PP2A during sheep growth. Furthermore, our results revealed several DE miRNAs, mml-miR-320b, chi-miR-1388-3p, bta-miR-6715, oar-miR-143, and miR-424, that potentially influence fat metabolism. Overall, this study provides a theoretical basis and new insights into the molecular mechanisms of adipose tissue metabolism during growth in naturally grazing sheep. Full article
(This article belongs to the Special Issue Molecular Genetics and Genomics of Ruminants)
Show Figures

Figure 1

15 pages, 3471 KiB  
Article
Single-Cell Analysis of Molecular Mechanisms in Rapid Antler Osteogenesis During Growth and Ossification Stages
by Ranran Zhang and Xiumei Xing
Int. J. Mol. Sci. 2025, 26(6), 2642; https://doi.org/10.3390/ijms26062642 - 14 Mar 2025
Viewed by 1111
Abstract
Antlers, as the only fully regenerable bone tissue in mammals, serve as an exceptional model for investigating bone growth, mineralization, articular cartilage repair, and the pathophysiology of osteoporosis. Nevertheless, the exact molecular mechanisms governing osteogenesis, particularly the dynamic cellular interactions and signaling pathways [...] Read more.
Antlers, as the only fully regenerable bone tissue in mammals, serve as an exceptional model for investigating bone growth, mineralization, articular cartilage repair, and the pathophysiology of osteoporosis. Nevertheless, the exact molecular mechanisms governing osteogenesis, particularly the dynamic cellular interactions and signaling pathways coordinating these processes, remain poorly characterized. This study used single-cell RNA sequencing (scRNA-seq) on the 10× Genomics Chromium platform, combined with bulk-RNA sequencing results, to comprehensively analyze molecular regulatory mechanisms in rapid antler osteogenesis. The results showed that eight cell types were identified in sika deer antler during the growth and ossification stages: mesenchymal, chondrocyte, osteoblast, pericyte, endothelial, monocyte/macrophage, osteoclast, and NK cells. Chondrocytes were predominantly found during the growth stage, while osteoblasts were more abundant during the ossification stage. Mesenchymal cells were subclassified into three subcategories: MSC_1 (VCAN and SFRP2), MSC_2 (TOP2A, MKI67), and MSC_3 (LYVE1 and TNN). MSC_3 was predominantly present during the growth stage. During the growth stage, MSC_1 and MSC_2 upregulated genes related to vasculature development (COL8A1, NRP1) and cell differentiation (PTN, SFRP2). During the ossification stage, these subcategories upregulated genes involved in the positive regulation of p53 class mediator signal transduction (RPL37, RPL23, RPS20, and RPL26), osteoblast differentiation (SPP1, IBSP, BGLAP), and proton-motive ATP synthesis (NDUFA7, NDUFB3, NDUFA3, NDUFB1). Endothelial cells were categorized into five subpopulations: Enc_1 (SPARCL1, VWF), Enc_2 (MCM5), Enc_3 (ASPM, MKI67), Enc_4 (SAT1, CXCL12), and Enc_5 (ZFHX4, COL6A3). Combined scRNA-seq and bulk RNA-seq analysis revealed that the ossification stage’s upregulation genes included osteoclast- and endothelial cell-specific genes, while the growth stage’s upregulation genes were mainly linked to collagen organization, osteoblast differentiation, mitotic cell cycle, and chondrocyte differentiation. Overall, this study offers a detailed single-cell analysis of gene expression patterns in antlers during the growth and ossification stages, providing insights into the molecular mechanisms driving rapid osteogenesis. Full article
(This article belongs to the Special Issue Molecular Genetics and Genomics of Ruminants)
Show Figures

Figure 1

19 pages, 2340 KiB  
Article
Ferroptosis-Related Genes as Molecular Markers in Bovine Mammary Epithelial Cells Challenged with Staphylococcus aureus
by Yue Xing, Siyuan Mi, Gerile Dari, Zihan Zhang, Siqian Chen and Ying Yu
Int. J. Mol. Sci. 2025, 26(6), 2506; https://doi.org/10.3390/ijms26062506 - 11 Mar 2025
Cited by 1 | Viewed by 890
Abstract
Staphylococcus aureus-induced mastitis is a significant cause of economic losses in the dairy industry, yet its molecular mechanisms remain poorly defined. Although ferroptosis, a regulated cell death process, is associated with inflammatory diseases, its role in bovine mastitis is unknown. In this [...] Read more.
Staphylococcus aureus-induced mastitis is a significant cause of economic losses in the dairy industry, yet its molecular mechanisms remain poorly defined. Although ferroptosis, a regulated cell death process, is associated with inflammatory diseases, its role in bovine mastitis is unknown. In this study, 11 S. aureus strains were isolated from milk samples obtained from cows with clinical or subclinical mastitis. Transcriptome analysis of Mac-T cells challenged with isolated S. aureus identified differentially expressed genes (DEGs). Enrichment analysis revealed significant associations between DEG clusters and traits related to bovine mastitis. KEGG pathway enrichment revealed ferroptosis, Toll-like receptor, and TNF signaling as significantly enriched pathways. Weighted gene co-expression network analysis (WGCNA) further prioritized ferroptosis-related genes (HMOX1, SLC11A2, STEAP3, SAT1, and VDAC2) involved in iron metabolism. Notably, the expression levels of HMOX1 and SAT1 were significantly increased in S. aureus-challenged Mac-T cells, and this upregulation was consistent with trends observed in transcriptome data from mother–daughter pairs of cows with subclinical mastitis caused by S. aureus infection. Furthermore, Ferrostatin-1 treatment significantly reduced the expression of HMOX1 and SAT1 in S. aureus-challenged cells, confirming the involvement of ferroptosis in this process. This study reveals that ferroptosis plays a key role in S. aureus-induced mastitis and highlights its potential as a target for molecular breeding strategies aimed at improving bovine mastitis resistance. Full article
Show Figures

Figure 1

15 pages, 1304 KiB  
Article
Analysis of Potential Genes, Oxidative, Metabolic, and Hormonal Markers Associated with Postpartum Disorder Susceptibility in Barki Sheep (Ovis aries)
by Asmaa Darwish, Ali J. Mohamed, Salah H. Faraj, Ahmed El-Sayed, Mansour A. Alghamdi, Ahmed M. Sallam, Attia Eissa, Belal F. Farag, Yasser Kamel, Eman M. Embaby and Ahmed Ateya
Vet. Sci. 2025, 12(3), 219; https://doi.org/10.3390/vetsci12030219 - 2 Mar 2025
Viewed by 1057
Abstract
This study purpose was to determine the gene expression as well as serum profile of acute phase proteins (APPs) and hormonal indicators linked to Barki sheep’s susceptibility to postpartum issues. Three equal-sized groups (each with fifty ewes) were created from the blood of [...] Read more.
This study purpose was to determine the gene expression as well as serum profile of acute phase proteins (APPs) and hormonal indicators linked to Barki sheep’s susceptibility to postpartum issues. Three equal-sized groups (each with fifty ewes) were created from the blood of 150 adult Barki ewes: the control group (CG), the inflammatory postpartum disorders group (IPG), and the non-inflammatory postpartum disorders group (NIPG). The expression levels of the oxidative stress (PGC-1αSIRT1GCLCGCLM, and EPAS1) and metabolic (FBXL12KPNA7, and LRRK1) genes were significantly higher in postpartum disorders sheep than in resistant ones. Ewes with inflammatory postpartum illnesses showed significantly higher levels of the examined markers than did the non-inflammatory and control groups. The serum profile analysis also revealed that the levels of Fb, Cp, Hp, SAA, cortisol, TIBC, UIBC, and ferritin were significantly higher in the IPG than in the NIPG and CG. Serum insulin, iron, transferrin, and Tf Sat.% levels, however, were all markedly lower. On the basis of the variance in the genes being studied and the modulation in the serum indicators being studied, it should be possible to monitor the health status in postpartum problems of sheep. Full article
(This article belongs to the Section Veterinary Internal Medicine)
Show Figures

Figure 1

18 pages, 2276 KiB  
Article
Inhibition of DPP-4 Attenuates Endotoxemia-Induced NLRC4 Inflammasome and Inflammation in Visceral Adipose Tissue of Mice Fed a High-Fat Diet
by Francesca Bianchi, Paola Roccabianca, Elena Vianello, Guendalina Gentile, Lucia La Sala, Francesco Bandera, Lorenza Tacchini, Riccardo Zoia, Massimiliano M. Corsi Romanelli and Elena Dozio
Biomolecules 2025, 15(3), 333; https://doi.org/10.3390/biom15030333 - 25 Feb 2025
Cited by 2 | Viewed by 2170
Abstract
Inflammasomes are protein complexes that trigger pro-inflammatory responses and promote many diseases, including adipose tissue dysfunction. Linagliptin (L), a DPP-4 inhibitor used for type 2 diabetes therapy, has putative anti-inflammatory effects. This work explores L effects on inflammasome regulation, inflammation, and adipose tissue [...] Read more.
Inflammasomes are protein complexes that trigger pro-inflammatory responses and promote many diseases, including adipose tissue dysfunction. Linagliptin (L), a DPP-4 inhibitor used for type 2 diabetes therapy, has putative anti-inflammatory effects. This work explores L effects on inflammasome regulation, inflammation, and adipose tissue dysfunction in obese mice. Male C57BL/6N mice were fed a normal chow (NC) diet, high-fat (HF) diet, or HF diet with L (HFL) for 15 weeks. Gene expression and histological examinations were performed on visceral (VAT) and subcutaneous (SAT) adipose tissue samples. Biomarkers were quantified on sera. Murine macrophages were utilized for in vitro analyses. L decreased HF-induced endotoxemia and circulating inflammatory indicators. Despite having no effect on body weight, L reduced VAT inflammation by decreasing endotoxemia-induced NLRC4 inflammasome, inflammation severity, and fat cell hypertrophy. Although SAT response differed from VAT, inflammation was slightly reduced in this tissue too. In vitro, L modulated inflammation by directly reducing the pro-inflammatory macrophage phenotype. In obesity, increased NLRC4 inflammasome expression links endotoxemia and VAT inflammation. L protected against endotoxemia, maybe by affecting gut permeability and VAT responses. The decreased polarization of macrophages toward a pro-inflammatory phenotype and the reduction in adipocyte hypertrophy are involved in the response to L. Full article
Show Figures

Figure 1

15 pages, 3308 KiB  
Article
Identification and Expression Analysis of the Soybean Serine Acetyltransferase (SAT) Gene Family Under Salt Stress
by Caiyun Fan, Hui Zou, Miao Zhang, Yu Jiang, Baohui Liu, Zhihui Sun and Bohong Su
Int. J. Mol. Sci. 2025, 26(5), 1882; https://doi.org/10.3390/ijms26051882 - 22 Feb 2025
Cited by 1 | Viewed by 712
Abstract
Serine acetyltransferase (SAT) is a critical enzyme in the sulfur-assimilation pathway of cysteine, playing an essential role in numerous physiological functions in plants, particularly in their response to environmental stresses. However, the structural characteristics of the soybean SAT gene family remain poorly understood. [...] Read more.
Serine acetyltransferase (SAT) is a critical enzyme in the sulfur-assimilation pathway of cysteine, playing an essential role in numerous physiological functions in plants, particularly in their response to environmental stresses. However, the structural characteristics of the soybean SAT gene family remain poorly understood. Members of the soybean SAT gene family were identified using the Hidden Markov Model approach. Bioinformatics tools, such as ExPASy, PlantCARE, MEME, and TBtools-II, were employed to examine the physicochemical properties, cis-regulatory elements, conserved motifs, gene structures, and chromosomal positions of the GmSAT genes. RT-qPCR was conducted to evaluate the expression profiles of GmSAT genes under NaCl-induced stress, identifying genes likely involved in the salt-stress response. A total of ten GmSAT genes were identified in the soybean genome and grouped into three subfamilies. Genes within each subfamily shared notable structural similarities and conserved motifs. Analysis of cis-regulatory elements revealed that the promoters of these genes contain several elements linked to plant growth and stress-related responses. Expression patterns of GmSAT genes varied across different soybean tissues, with GmSAT10 showing higher expression in roots, while GmSAT1 and GmSAT2 had lower expression in the same tissue. Following NaCl treatment, expression levels of seven GmSAT genes were significantly increased in the roots, indicating their potential involvement in the plant’s adaptation to salt stress. GmSAT genes appear to play crucial roles in soybean’s response to salt stress, offering insights that could aid in the development of salt-tolerant soybean varieties. Full article
Show Figures

Figure 1

21 pages, 5323 KiB  
Article
Mixed Ammonium-Nitrate Nutrition Regulates Enzymes, Gene Expression, and Metabolic Pathways to Improve Nitrogen Uptake, Partitioning, and Utilization Efficiency in Rice
by Xianting Fan, Chusheng Lu, Zaid Khan, Zhiming Li, Songpo Duan, Hong Shen and Youqiang Fu
Plants 2025, 14(4), 611; https://doi.org/10.3390/plants14040611 - 18 Feb 2025
Cited by 3 | Viewed by 974
Abstract
Ammonium and nitrate nitrogen are the two main forms of inorganic nitrogen (N) available to crops. However, it is not clear how mixtures of ammonium and nitrate N affect N uptake and partitioning in major rice cultivars in southern China. This study investigated [...] Read more.
Ammonium and nitrate nitrogen are the two main forms of inorganic nitrogen (N) available to crops. However, it is not clear how mixtures of ammonium and nitrate N affect N uptake and partitioning in major rice cultivars in southern China. This study investigated the effects of different ammonium nitrogen and nitrate nitrogen mixture treatments (100:0, 75:25, 50:50, 25:75, and 0:100) on the growth, photosynthetic characteristics, nitrogen uptake, gene expression, and yield of different rice cultivars (Mei Xiang Zhan NO. 2: MXZ2; Nan Jing Xiang Zhan: NJXZ). Rice root biomass, tiller number, and yield were increased by 69.5%, 42.5%, and 46.8%, respectively, in the 75:25 ammonium-nitrate mixed treatment compared to the 100:0 ammonium-nitrate mixed treatment. The nitrogen content in rice roots, stems, leaves, and grains increased by 69.5%, 64.0%, 65.5%, and 17.5%, respectively. In addition, compared with MXZ2, NJXZ had a greater proportion of N allocated to leaves and grains. Analysis of root enzyme activities revealed that the 75:25 ammonium-nitrate mixed nutrient treatment increased rice root glutamine synthetase activity by an average of 35.0% and glutamate synthetase activity by an average of 52.0%. Transcriptome analysis revealed that the 75:25 mixed ammonium-nitrate nutrient treatment upregulated the expression of genes related to the nitrogen metabolism transporter pathway. Weighted correlation network analysis revealed that some differentially expressed genes (HISX and RPAB5) regulated the activities of nitrogen-metabolizing enzymes in rice and some (SAT2, CYSKP, SYIM, CHI1, and XIP1) modulated amino acid synthesis; greater expression of these genes was detected in the 75:25 ammonium-nitrate mixed nutrient treatment. The expression characteristics of the above genes were further confirmed by RT‒qPCR. Interestingly, the expression levels of the above genes were significantly correlated with the glutamate synthase activity, photosynthetic rate, and root volume. It is noteworthy that increasing the expression of the aforementioned genes coupled with nitrogen uptake was observed in the three main rice cultivars. These results suggest that the 75:25 ammonium-nitrate mixture may have increased nitrogen-metabolizing enzyme activities and promoted nitrogen uptake through the upregulated expression of nitrogen metabolism-related genes, thereby increasing tiller number and improving rice yield. Full article
Show Figures

Figure 1

30 pages, 15235 KiB  
Article
Exploring the Efficacy and Target Genes of Atractylodes Macrocephala Koidz Against Alzheimer’s Disease Based on Multi-Omics, Computational Chemistry, and Experimental Verification
by Yuanteng Zheng, Xin Gao, Jiyang Tang, Li Gao, Xiaotong Cui, Kechun Liu, Xiujun Zhang and Meng Jin
Curr. Issues Mol. Biol. 2025, 47(2), 118; https://doi.org/10.3390/cimb47020118 - 11 Feb 2025
Viewed by 1666
Abstract
Objective: To unveil the efficacy and ferroptosis-related mechanisms of Atractylodes Macrocephala Koidz (AMK) against Alzheimer’s disease (AD), which is the most widespread neurodegenerative disease. Methods: Gene set variation analysis (GSVA) scores were used to investigate the relationship between ferroptosis and AD. Logistic regression [...] Read more.
Objective: To unveil the efficacy and ferroptosis-related mechanisms of Atractylodes Macrocephala Koidz (AMK) against Alzheimer’s disease (AD), which is the most widespread neurodegenerative disease. Methods: Gene set variation analysis (GSVA) scores were used to investigate the relationship between ferroptosis and AD. Logistic regression with seven feature selections and a deep learning model were utilized to identify potential targets of AMK based on transcriptomic data from multiple tissues. A transcriptome-wide association study (TWAS), summary-data-based mendelian randomization (SMR), and mendelian randomization (MR) were utilized to validate the causal relationship between target genes and AD risk. A single-gene gene set enrichment analysis (GSEA) was employed to investigate the biological pathways associated with the target genes. Three molecular docking strategies and a molecular dynamics simulation were employed to verify the binding domains interacting with AMK. Furthermore, the anti-AD effects of AMK were validated in a zebrafish AD model by testing behavior responses, apoptosis, and the deposition of beta-amyloid (Aβ) in the brain. Ultimately, real-time qPCR was used to verify the ferroptosis-related targets, which was identified via multi-omics. Results: Ferroptosis is an important pathogenic mechanism of AD, as suggested by the GSVA scores. AMK may exert its anti-AD activity through targets genes identified in the brain (ATP5MC3, GOT1, SAT1, EGFR, and MAPK9) and blood (G6PD, PGD, ALOX5, HMOX1, and ULK1). EGFR and HMOX1 were further confirmed as target genes mediating the anti-AD activity of AMK through TWAS, SMR, and MR analyses. The GSEA results indicated that EGFR may be involved in oxidative phosphorylation-related pathways, while HMOX1 may be associated with lysosome and phagosome pathways. The results of three molecular docking strategies and molecular dynamics simulations implied that the kinase domain of EGFR and the catalytic domain of HMOX1 played pivotal roles in the interaction between AMK and the targets. In a zebrafish model, AD-like symptoms including motor slowness and delayed responses, neuronal apoptosis, and plaque deposition in the brain, were significantly improved after AMK treatment. Accordingly, AMK reversed the abnormal expression of egfra and hmox1a, two core targets genes involved in ferroptosis. Conclusions: AMK significantly alleviated AD-like symptoms through the modulation of EGFR and HMOX1, which might reduce lipid peroxidation, thereby suppressing ferroptosis. This study provided evidence supporting the efficacy and therapeutic targets associated with ferroptosis in AMK-treated AD, which aid in the development of therapeutic interventions. Full article
(This article belongs to the Section Bioorganic Chemistry and Medicinal Chemistry)
Show Figures

Figure 1

Back to TopTop