Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (106)

Search Parameters:
Keywords = S-glycosyl derivatives

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1460 KB  
Article
Potent Nrf2-Inducing C6-Isothiocyanate Glucose Derivatives with Dual Antioxidant and Antitumor Activity
by Luis Alberto Prieto, Nora Khiar-Fernández, Rocío Calderón-Ruiz, Emelyne Giraud, José Manuel Calderón-Montaño, Jesús Lucia-Tamudo, Rafael León, José Antonio Pérez-Simón, Miguel López-Lázaro, Rocío Recio, Elena de la Torre, Victoria Valdivia and Inmaculada Fernández
Antioxidants 2026, 15(1), 123; https://doi.org/10.3390/antiox15010123 (registering DOI) - 18 Jan 2026
Abstract
Isothiocyanates (ITCs) are well-known electrophilic agents with antioxidant and anticancer properties, largely attributed to their ability to activate the Nrf2/ARE pathway. Building on previous work with C1-ITC glycosyl derivatives, we designed and synthesized a new series of S-glycosyl isothiocyanates in which the ITC [...] Read more.
Isothiocyanates (ITCs) are well-known electrophilic agents with antioxidant and anticancer properties, largely attributed to their ability to activate the Nrf2/ARE pathway. Building on previous work with C1-ITC glycosyl derivatives, we designed and synthesized a new series of S-glycosyl isothiocyanates in which the ITC group was repositioned to the C6 carbon of the glucose scaffold. This structural rearrangement yielded stable and synthetically accessible derivatives with markedly enhanced biological profiles. Several compounds showed potent Nrf2 activation at non-cytotoxic concentrations, with CD values comparable to or exceeding those of natural ITCs. In parallel, the new C6-ITC derivatives displayed significant antiproliferative activity against leukemia and solid tumor cell lines. Among them, the phenylsulfone derivative 13 emerged as a particularly promising dual-action molecule, combining strong Nrf2 induction with low-micromolar cytotoxicity. Molecular docking was used as a hypothesis-generating approach and suggested a possible interaction with the STAT3 SH2 domain, although further studies are needed to validate this target. Overall, these results support glucose-based ITCs as a versatile platform for the development of multifunctional antioxidants with complementary anticancer properties. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

19 pages, 8155 KB  
Article
Hybrid Adjuvant-Allergen H1sD2 Proteoforms Enhance Innate Immunity Activation via Distinct N-Glycosylation Profiles
by Zorana Lopandić, Maša Babović, Tina Ravnsborg, Marina Atanasković-Marković, Ole N. Jensen and Marija Gavrović-Jankulović
Cells 2025, 14(24), 2008; https://doi.org/10.3390/cells14242008 - 16 Dec 2025
Viewed by 466
Abstract
Novel adjuvants are key to making allergen-specific immunotherapy (AIT) safer and more effective. Their development is crucial for moving AIT into a new generation of precision medicine. N-glycosylation of protein antigens plays a pivotal role in modulating innate immune responses through enhanced recognition [...] Read more.
Novel adjuvants are key to making allergen-specific immunotherapy (AIT) safer and more effective. Their development is crucial for moving AIT into a new generation of precision medicine. N-glycosylation of protein antigens plays a pivotal role in modulating innate immune responses through enhanced recognition by pattern recognition receptors. New AIT vaccine strategies aim to exploit this by using innate-targeting adjuvants, modifying allergen structures, and routing early responses toward tolerance. Thus, we engineered five distinct N-glycosylated adjuvant configurations, composed of the receptor-binding domain of hemagglutinin (H1s) and Der p 2 (D2) allergen, to explore how glycan profile affects innate immune response for the application in therapeutic strategies for Type 1 hypersensitivity. Glycoengineered proteoforms produced in Pichia pastoris were structurally verified by mass spectrometry. Using M0 and M2 THP-1-derived macrophages, binding of all H1sD2 proteoforms to DC-SIGN was confirmed via confocal microscopy and flow cytometry. Stimulation of PBMCs with these proteoforms led to increased IL-10 and IFN-γ levels, indicating a shift toward regulatory immune responses. Notably, the M2 glycovariant elicited the strongest immunomodulatory signature, suggesting significant promise as a therapeutic candidate. These findings support the potential of glycoengineered allergen-adjuvant proteoforms to fine-tune innate immunity and improve the safety and efficacy of AIT. Full article
(This article belongs to the Section Cellular Immunology)
Show Figures

Figure 1

23 pages, 1363 KB  
Review
Sialic Acid in Neurodegenerative and Psychiatric Disorders: From Molecular Regulation to Targeted Nanocarrier-Based Therapy
by Natalia Treder and Tomasz Bączek
Pharmaceutics 2025, 17(12), 1593; https://doi.org/10.3390/pharmaceutics17121593 - 10 Dec 2025
Viewed by 536
Abstract
In recent years, the exploration of molecular and cellular mechanisms underlying central nervous system (CNS) disorders has expanded beyond classical neurotransmitter- and receptor-based approaches toward a more integrated view including immune, metabolic, and glycosylation processes. Among these, sialic acid and its derivatives have [...] Read more.
In recent years, the exploration of molecular and cellular mechanisms underlying central nervous system (CNS) disorders has expanded beyond classical neurotransmitter- and receptor-based approaches toward a more integrated view including immune, metabolic, and glycosylation processes. Among these, sialic acid and its derivatives have emerged as critical regulators of neuronal communication, immune modulation, and synaptic plasticity. Their involvement ranges from maintaining neurochemical homeostasis under physiological conditions to contributing to the onset and progression of neurodegenerative and psychiatric diseases. Given the central role of sialylation in cellular recognition, receptor signaling, and blood–brain barrier (BBB) interactions, understanding these pathways provides valuable insight for the development of advanced therapeutic and diagnostic strategies. This review highlights recent evidence linking altered sialic acid metabolism and polysialylation to Alzheimer’s disease and other neurodegenerative and psychiatric disorders. It further discusses the potential of sialic acid-related mechanisms as novel molecular targets and their integration into innovative nanocarrier-based drug delivery systems designed to improve brain penetration, selectivity, and therapeutic efficacy. Finally, current challenges and future perspectives in translating sialic acid-based approaches into clinical applications are addressed. Full article
Show Figures

Figure 1

26 pages, 3962 KB  
Review
Exploring Small-Molecule Inhibitors of Glucosidase II: Advances, Challenges, and Therapeutic Potential in Cancer and Viral Infection
by Tay Zar Myo Oo, Yupanun Wuttiin, Kanyamas Choocheep, Warunee Kumsaiyai, Piyawan Bunpo and Ratchada Cressey
Int. J. Mol. Sci. 2025, 26(24), 11867; https://doi.org/10.3390/ijms262411867 - 9 Dec 2025
Viewed by 542
Abstract
Glucosidase II (GluII) is a heterodimeric enzyme localized in the endoplasmic reticulum (ER), essential for the sequential trimming of glucose residues during N-linked glycosylation. This critical function facilitates glycoprotein folding via the calnexin/calreticulin chaperone system, maintaining ER homeostasis. Dysregulation or inhibition of GluII [...] Read more.
Glucosidase II (GluII) is a heterodimeric enzyme localized in the endoplasmic reticulum (ER), essential for the sequential trimming of glucose residues during N-linked glycosylation. This critical function facilitates glycoprotein folding via the calnexin/calreticulin chaperone system, maintaining ER homeostasis. Dysregulation or inhibition of GluII has been implicated in various pathological processes, including cancer, viral infections, and glycoprotein misfolding disorders. This review summarizes the current knowledge of GluII’s structure and function, highlights a wide range of natural and synthetic GluII inhibitors—including iminosugar derivatives (e.g., deoxynojirimycin (DNJ), castanospermine (CAST)), non-iminosugar compounds (e.g., bromoconduritol, catechins), and mechanism-based cyclophellitol analogues—and evaluates their biological effects and therapeutic potential. The cellular impact of GluII inhibition is explored in the context of ER stress, unfolded protein response (UPR), tumor cell apoptosis, and viral replication. Key challenges in developing selective GluII inhibitors are discussed, with a focus on strategies to minimize off-target effects, including prodrug design, allosteric modulation, and emerging genetic approaches such as microRNA (miRNA)-mediated downregulation of GluII subunits. Taken together, these insights underscore the therapeutic relevance of GluII as a druggable target and pave the way for the rational design of next-generation inhibitors in oncology, infectious diseases, and metabolic disorders. Full article
(This article belongs to the Special Issue New Research Perspectives in Protein Glycosylation)
Show Figures

Figure 1

18 pages, 1333 KB  
Review
Bacterial Adaptation to Stress Induced by Glyoxal/Methylglyoxal and Advanced Glycation End Products
by Dorota Kuczyńska-Wiśnik, Karolina Stojowska-Swędrzyńska and Ewa Laskowska
Microorganisms 2025, 13(12), 2778; https://doi.org/10.3390/microorganisms13122778 - 6 Dec 2025
Viewed by 743
Abstract
Glyoxal (GO) and methylglyoxal (MGO) are highly toxic metabolic byproducts that induce carbonyl stress in bacteria and eukaryotes. Their accumulation in cells is linked to non-enzymatic glycosylation (glycation) of proteins, nucleic acids, and lipids, leading to the formation of advanced glycation end products [...] Read more.
Glyoxal (GO) and methylglyoxal (MGO) are highly toxic metabolic byproducts that induce carbonyl stress in bacteria and eukaryotes. Their accumulation in cells is linked to non-enzymatic glycosylation (glycation) of proteins, nucleic acids, and lipids, leading to the formation of advanced glycation end products (AGEs). In humans, AGEs are associated with several health problems, such as diabetes, Alzheimer’s disease, cancer, and aging. Recent studies indicate that, despite their short lifespan, bacteria are also affected by AGEs formation. In this review, we summarize the pathways and mechanisms that help bacteria cope with GO, MGO, and AGEs. We also discuss the impact of dietary AGEs on gut microbiota and the antibacterial activity of host-derived GO/MGO. Recent studies highlight three main areas for future research: the role of AGEs in dysbiosis, the regulation of protein activities by MGO/GO-dependent modifications, and the potential use of glyoxalase pathway inhibitors to combat pathogens. This last point is especially important due to the rising prevalence of multidrug-resistant strains and the failure of antibiotic therapies. Full article
Show Figures

Figure 1

17 pages, 2333 KB  
Article
Chondroitin 4-Sulfate Disaccharide-Based Inhibitors of Cathepsin S
by Alexis David, Roxane Domain, Florian Surback, Aude Vibert, Pierre Buisson, Martyna Maszota-Zieleniak, Ludovic Landemarre, Marie Schuler, Gilles Lalmanach, Sergey A. Samsonov, Chrystel Lopin-Bon and Fabien Lecaille
Polysaccharides 2025, 6(4), 99; https://doi.org/10.3390/polysaccharides6040099 - 5 Nov 2025
Viewed by 639
Abstract
Cathepsin S (Cat S) is a cysteine protease involved in several human diseases (i.e., autoimmune, inflammatory and cardiovascular disorders, cancer, and psoriasis) and is an important target in drug development. Emerging evidence highlights the potential of inhibiting Cat S by glycosaminoglycans, particularly chondroitin [...] Read more.
Cathepsin S (Cat S) is a cysteine protease involved in several human diseases (i.e., autoimmune, inflammatory and cardiovascular disorders, cancer, and psoriasis) and is an important target in drug development. Emerging evidence highlights the potential of inhibiting Cat S by glycosaminoglycans, particularly chondroitin sulfates (CSs), as a promising therapeutic strategy. Given the limited and heterogeneous GAG materials from animal sources, a series of synthetic biotinylated non- or sulfated chondroitin oligomers were synthesized and assessed for their ability to inhibit Cat S. The biotinylated disaccharide C4S displayed in vitro potent inhibitory activity toward Cat S with IC50 value in the micromolar range and showed selectivity over cathepsins K and L. Molecular modeling studies suggested that only C4S dp2 but not C6S, C4,6S or non-sulfated chondroitin binds selectively to the active site of Cat S. In addition, a synthetic multivalent C4S dp2 glycosylated BSA was shown to be more efficient towards Cat S inhibition (nanomolar range) than the monovalent parent C4S dp2. Our findings also indicated that this new neoglycoconjugate displayed selectivity for Cat S vs. cysteine cathepsins expressed by differentiated THP-1 cells. This study reports a new approach for designing selective and potent inhibitors of Cat S using multivalent C4S derivatives as a molecular scaffold. Full article
Show Figures

Graphical abstract

18 pages, 435 KB  
Review
Molecular and Glycosylation Pathways in Osteosarcoma: Tumor Microenvironment and Emerging Strategies Toward Personalized Oncology
by Georgian Longin Iacobescu, Antonio-Daniel Corlatescu, Horia Petre Costin, Razvan Spiridonica, Mihnea-Ioan-Gabriel Popa and Catalin Cirstoiu
Curr. Issues Mol. Biol. 2025, 47(8), 629; https://doi.org/10.3390/cimb47080629 - 7 Aug 2025
Viewed by 1867
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents, which is also considered an aggressive disease due to its rapid growth rate, ability to metastasize early, and complex and heterogeneous tumor microenvironment (TME). Although we are developing improved surgical [...] Read more.
Osteosarcoma (OS) is the most common primary bone malignancy in children and adolescents, which is also considered an aggressive disease due to its rapid growth rate, ability to metastasize early, and complex and heterogeneous tumor microenvironment (TME). Although we are developing improved surgical and chemotherapeutic approaches, the presence of metastatic or recurrent disease is still detrimental to the patient’s outcome. Major advances in understanding the molecular mechanisms of OS are needed to substantially improve outcomes for patients being treated for OS. This review integrates new data on the molecular biology, pathophysiology, and immune landscape of OS, as well as introducing salient areas of tumorigenesis underpinning these findings, such as chromothripsis; kataegis; cancer stem cell dynamics; and updated genetic, epigenetic, and glycosylation modifiers. In addition, we review promising biomarkers, diagnostic platforms, and treatments, including immunotherapy, targeted small molecule inhibitors, and nanomedicine. Using genomic techniques, we have defined OS for its significant genomic instability due to TP53 and RB1 mutations, chromosomal rearrangements, and aberrant glycosylation. The TME is also characterized as immunosuppressive and populated by tumor-associated macrophages, myeloid-derived suppressor cells, and regulatory T cells, ultimately inhibiting immune checkpoint inhibitors. Emerging fields such as glycomics and epigenetics, as well as stem cell biology, have defined promising biomarkers and targets. Preclinical studies have identified that glycan-directed CAR therapies could be possible, as well as metabolic inhibitors and 3D tumor models, which presented some preclinical success and could allow for tumoral specificity and enhanced efficacy. OS is a biologically and clinically complex disease; however, advances in exploring the molecular and immunologic landscape of OS present new opportunities in biomarkers and the development of new treatment options with adjunctive care. Successful treatments in the future will require personalized, multi-targeted approaches to account for tumor heterogeneity and immune evasion. This will help us turn the corner in providing improved outcomes for patients with this resilient malignancy. Full article
Show Figures

Graphical abstract

27 pages, 3961 KB  
Article
Floridoside Phosphotriester Derivatives: Synthesis and Inhibition of Human Neutrophils’ Oxidative Burst
by Luís Pinheiro, Catarina Cipriano, Filipe Santos, Patrícia Máximo, Eduarda Fernandes, Marisa Freitas and Paula S. Branco
Molecules 2025, 30(13), 2850; https://doi.org/10.3390/molecules30132850 - 3 Jul 2025
Viewed by 1935
Abstract
Floridoside (2-O-D-glycerol-α-D-galactopyranoside) is a natural product typically found in red algae. It serves as the algae’s carbon reserve and is produced as a protective response against osmotic and heat stress. Both floridoside and its acylated derivatives have been associated [...] Read more.
Floridoside (2-O-D-glycerol-α-D-galactopyranoside) is a natural product typically found in red algae. It serves as the algae’s carbon reserve and is produced as a protective response against osmotic and heat stress. Both floridoside and its acylated derivatives have been associated with modulating redox homeostasis and inflammatory responses. Therefore, we aimed to evaluate whether the newly synthesized floridoside phosphotriesters (1b1d, 1f1h) and acylated floridoside derivative (1e) can modulate the oxidative burst in stimulated human neutrophils. Synthetic strategies included the glycosylation of the thioglycoside donor with glycerol derivatives, having NIS/TfOH as the promoter. Phosphorylation was achieved with POCl3 in the presence of pyridine. The compounds were analysed for their cytotoxicity, with 1b and 1h being cytotoxic at 50 μM, while the others showed no cytotoxicity in the tested concentrations. The detection of the neutrophils’ oxidative burst was performed using multiple probes [luminol, aminophenyl fluorescein (APF), and Amplex Red (AR)] to evaluate reactive species levels. Compound 1e prevented the oxidative burst in activated human neutrophils (IC50 = 83 ± 7 μM). All the other tested compounds were ineffective in inhibiting APF and AR oxidation under the present experimental conditions. These findings highlight the potential of floridoside-based derivatives as candidates for targeting inflammatory pathways. Full article
(This article belongs to the Section Bioorganic Chemistry)
Show Figures

Figure 1

15 pages, 1612 KB  
Brief Report
A Simple High-Throughput Procedure for Microscale Extraction of Bioactive Compounds from the Flowers of Saint John’s Wort (Hypericum perforatum L.)
by Mila Rusanova, Krasimir Rusanov, Marina Alekova, Liliya Georgieva, Pavlina Georgieva, Tzvetelina Zagorcheva and Ivan Atanassov
Appl. Sci. 2025, 15(13), 7334; https://doi.org/10.3390/app15137334 - 30 Jun 2025
Cited by 1 | Viewed by 903
Abstract
We report the development of a procedure for ultrasound-assisted microscale extraction of metabolites from the flowers of Saint John’s wort (Hypericum perforatum L.), designed for comparative metabolite analysis of plants from genetic resource collections and natural and segregating populations. The procedure involves [...] Read more.
We report the development of a procedure for ultrasound-assisted microscale extraction of metabolites from the flowers of Saint John’s wort (Hypericum perforatum L.), designed for comparative metabolite analysis of plants from genetic resource collections and natural and segregating populations. The procedure involves high-throughput methanol extraction of metabolites from ground-frozen flowers at a selected stage of flower development, which is carried out in a standard 2 mL Eppendorf tube. A total of 18 compounds, including chlorogenic acid, catechins, glycosylated flavonoids, hypericins, and hyperforin, were identified based on LC/DAD/QTOF analysis, of which 16 could be detected in the UV-Vis spectrum. Two alternative versions of the procedure were evaluated: the “single-flower” procedure, including repeated collection and analysis of single flowers from the tested plant, and the “bulk-flower” procedure, employing the collection of a bulk flower sample from the tested plant and analysis of a portion of the ground sample. The results showed excellent technical reproducibility of the “single-flower” procedure when used with the suggested combination of the peak areas for the proto- and stable forms of pseudohypericin and hypericin. Application of the developed “single-flower” procedure for comparison of the plants derived from seed progeny of the apomictic line Hp93 revealed significantly lower metabolite variation among the apomictic progeny plants compared to the variation observed among plants belonging to different genotypes. Full article
(This article belongs to the Special Issue Biosynthesis and Applications of Natural Products)
Show Figures

Figure 1

22 pages, 2043 KB  
Article
5′-Guanidino Xylofuranosyl Nucleosides as Novel Types of 5′-Functionalized Nucleosides with Biological Potential
by Jennifer Szilagyi, Tânia Moreira, Rafael Santana Nunes, Joana Silva, Celso Alves, Alice Martins, Rebeca Alvariño, Niels V. Heise, René Csuk and Nuno M. Xavier
Pharmaceuticals 2025, 18(5), 734; https://doi.org/10.3390/ph18050734 - 16 May 2025
Cited by 1 | Viewed by 1310
Abstract
Background/Objectives: While various nucleoside and nucleotide analogs have been approved as anticancer and antiviral drugs, their limitations, including low bioavailability and chemotherapeutic resistance, encourage the development of novel structures. In this context, and motivated by our previous findings on bioactive 3′-O-substituted [...] Read more.
Background/Objectives: While various nucleoside and nucleotide analogs have been approved as anticancer and antiviral drugs, their limitations, including low bioavailability and chemotherapeutic resistance, encourage the development of novel structures. In this context, and motivated by our previous findings on bioactive 3′-O-substituted xylofuranosyl nucleosides and 5-guanidine xylofuranose derivatives, we present herein the synthesis and biological evaluation of 5′-guanidino furanosyl nucleosides comprising 6-chloropurine and uracil moieties and a 3-O-benzyl xylofuranosyl unit. Methods: The synthetic methodology was based on the N-glycosylation of a 5-azido 3-O-benzyl xylofuranosyl acetate donor with the silylated nucleobase and a subsequent one-pot sequential two-step protocol involving Staudinger reduction of the thus-obtained 5-azido uracil and N7/N9-linked purine nucleosides followed by guanidinylation with N,N′-bis(tert-butoxycarbonyl)-N′′-triflylguanidine. The molecules were evaluated for their anticancer and anti-neurodegenerative diseases potential. Results: 5′-Guanidino 6-chloropurine nucleosides revealed dual anticancer and butyrylcholinesterase (BChE)-inhibitory effects. Both N9/N7-linked nucleosides exhibited mixed-type and selective submicromolar/micromolar BChE inhibiton. The N9 regioisomer was the best inhibitor (Ki/Ki′ = 0.89 μM/2.96 μM), while showing low cytotoxicity to FL83B hepatocytes and no cytotoxicity to human neuroblastoma cells (SH-SY5Y). Moreover, the N9-linked nucleoside exhibited selective cytotoxicity to prostate cancer cells (DU-145; IC50 = 27.63 μM), while its N7 regioisomer was active against all cancer cells tested [DU-145, IC50 = 24.48 μM; colorectal adenocarcinoma (HCT-15, IC50 = 64.07 μM); and breast adenocarcinoma (MCF-7, IC50 = 43.67 μM)]. In turn, the 5′-guanidino uracil nucleoside displayed selective cytotoxicity to HCT-15 cells (IC50 = 76.02 μM) and also showed neuroprotective potential in a Parkinson’s disease SH-SY5Y cells’ damage model. The active molecules exhibited IC50 values close to or lower than those of standard drugs, and comparable, or not significant, neuro- and hepatotoxicity. Conclusions: These findings demonstrate the interest of combining guanidine moieties with nucleoside frameworks towards the search for new therapeutic agents. Full article
Show Figures

Graphical abstract

18 pages, 2137 KB  
Article
Complex Metabolomic Changes in a Combined Defect of Glycosylation and Oxidative Phosphorylation in a Patient with Pathogenic Variants in PGM1 and NDUFA13
by Silvia Radenkovic, Isabelle Adant, Matthew J. Bird, Johannes V. Swinnen, David Cassiman, Tamas Kozicz, Sarah C. Gruenert, Bart Ghesquière and Eva Morava
Cells 2025, 14(9), 638; https://doi.org/10.3390/cells14090638 - 25 Apr 2025
Cited by 1 | Viewed by 2240
Abstract
Inherited metabolic disorders (IMDs) are genetic disorders that occur in as many as 1:2500 births worldwide. Nevertheless, they are quite rare individually and even more rare is the co-occurrence of two IMDs in one individual. To better understand the metabolic cross-talk between glycosylation [...] Read more.
Inherited metabolic disorders (IMDs) are genetic disorders that occur in as many as 1:2500 births worldwide. Nevertheless, they are quite rare individually and even more rare is the co-occurrence of two IMDs in one individual. To better understand the metabolic cross-talk between glycosylation changes and deficient energy metabolism, and its potential effect on outcomes, we evaluated patient fibroblasts with likely pathogenic variants in PGM1 and pathogenic variants in NDUFA13 derived from a patient who passed away at 16 years of age. The patient presented with characteristic of PGM1-CDG including bifid uvula, muscle involvement, abnormal glycosylation in blood, and elevated liver transaminases. In addition, hearing loss, seizures, elevated plasma and CSF lactate and a Leigh-like MRI brain pattern were present, which are commonly associated with Leigh syndrome. PGM1-CDG has been reported in about 70 individuals, while NDUFA13 deficiency has so far only been reported in 13 patients. As abundant energy is essential for glycosylation, and both PGM1 and NDUFA13 are linked to energy metabolism, we sought to better understand the underlying biochemical cause of the patient’s clinical presentation. To do so, we performed extensive investigations including tracer metabolomics, lipidomics and enzymatic studies on the patient’s fibroblasts. We found a profound depletion of UDP-hexoses, consistent with PGM1-CDG. Complex I enzyme activity and mitochondrial function were also impaired, corroborating complex I deficiency and Leigh syndrome. Further, lipidomics analysis showed similarities with both PGM1-CDG and OXPHOS-deficient patients. Based on our results, the patient was diagnosed with both PGM1-CDG and Leigh syndrome. In summary, we present the first case of combined CDG and Leigh syndrome, caused by (likely) pathogenic variants in PGM1 and NDUFA13, and underline the importance of considering the synergistic effects of multiple disease-causing variants in patients with complex clinical presentation, leading to the patient’s early demise. Full article
Show Figures

Figure 1

17 pages, 2838 KB  
Article
Synthesis and Antimicrobial Activity of Canthin-6-One Alkaloids
by Xubing Qi, Yogini Jaiswal, Xinrong Xie, Yu Fan, Rongping Wu, Shaoyang Su, Yifu Guan, Leonard Williams and Xun Song
Molecules 2025, 30(7), 1546; https://doi.org/10.3390/molecules30071546 - 31 Mar 2025
Viewed by 1553
Abstract
Canthin-6-one alkaloids have consistently attracted the interest of medicinal chemists due to their wide range of promising bioactivities, including antitumor, antifungal, antibacterial, and antiviral properties. However, their low natural abundance in plants has constrained the further exploration of their potential bioactivities. This study [...] Read more.
Canthin-6-one alkaloids have consistently attracted the interest of medicinal chemists due to their wide range of promising bioactivities, including antitumor, antifungal, antibacterial, and antiviral properties. However, their low natural abundance in plants has constrained the further exploration of their potential bioactivities. This study reports a comprehensive synthesis of canthin-6-one alkaloids, utilizing key Suzuki coupling and Cu-catalyzed amidation reactions to construct their core scaffold. Derivatives were synthesized with Koenig–Knorr glycosylation for the further modification of synthetic canthin-6-ones. The antimicrobial activities of the synthesized compounds were evaluated against C. albicansC. neoformans, S. aureus and E. coli using the micro-dilution method. In total, 17 compounds were synthesized, including nine canthin-6-ones. Notably, alkaloids 4, 5, 7 and 12-13 were prepared for the first time, along with 8 new derivatives. Their structures were confirmed by NMR and MS analyses. At 50 µg/mL, the alkaloids 1-4 and 9 exhibited antimicrobial properties against C. albicansC. neoformans and S. aureus. The antimicrobial activity of alkaloids 2, 4-5 and 12-13 against these four microbial human pathogens is reported here for the first time. Overall, this research not only advances our understanding of canthin-6-one alkaloid synthesis, but also provides a foundation for developing novel compounds with pharmaceutical properties. Full article
Show Figures

Figure 1

17 pages, 4367 KB  
Article
Biosynthesis of a Novel Ginsenoside with High Anticancer Activity by Recombinant UDP-Glycosyltransferase and Characterization of Its Biological Properties
by Dandan Wang, Yan Jin, Hongtao Wang, Chenwei Zhang, Yao Li, Sathiyamoorthy Subramaniyam, Jae-Kyung Sohng, Nam-In Baek and Yeon-Ju Kim
Molecules 2025, 30(4), 898; https://doi.org/10.3390/molecules30040898 - 14 Feb 2025
Cited by 1 | Viewed by 1983
Abstract
UDP-glycosyltransferases (UGTs) contribute to catalyzing the glycosylation of numerous functional natural products and novel derivatives with improved bioactivities. UDP-glucose sterol glucosyltransferase (SGT) is normally involved in the synthesis of sterol glycosides in a variety of organisms. SGT was derived from Salinispora tropica CNB-440 [...] Read more.
UDP-glycosyltransferases (UGTs) contribute to catalyzing the glycosylation of numerous functional natural products and novel derivatives with improved bioactivities. UDP-glucose sterol glucosyltransferase (SGT) is normally involved in the synthesis of sterol glycosides in a variety of organisms. SGT was derived from Salinispora tropica CNB-440 and heterologously expressed in Escherichia coli BL21 (DE3). Novel 12-O-glucosylginsenoside Rh2 was identified using HPLC, high-resolution MS (HR-MS), and NMR analysis. The cell viability assay was performed on 12-O-glucosylginsenoside-treated AGS stomach cancer, HeLa cervical cancer, U87MG glioma, and B16F10 melanoma cell lines. Protein structure modeling, molecular docking, and dynamics simulations were performed using AutoDock 4.2 and GROMACS 2020.1 software. The SGT gene is comprised of 1284 nucleotides and codes for 427 amino acids. The 12-O-glucosylginsenoside Rh2 may be a potential anticancer agent due to its potent viability inhibition of cancer cells. Structural analysis showed critical perspectives into the intermolecular interactions, stability, and binding energetics of the enzyme–ligand complex, with outcomes complementing the experimental data, thereby deepening our understanding of the structural basis of SGT-mediated glycosylation and its functional implications. This report presents a novel ginsenoside, 12-O-glucosylginsenoside Rh2, utilizing reshuffled SGT derived from S. tropica, and provides a promising candidate for anticancer drug research and development. Full article
Show Figures

Figure 1

23 pages, 3691 KB  
Article
Predicting Structural Consequences of Antibody Light Chain N-Glycosylation in AL Amyloidosis
by Gareth J. Morgan, Zach Yung, Brian H. Spencer, Vaishali Sanchorawala and Tatiana Prokaeva
Pharmaceuticals 2024, 17(11), 1542; https://doi.org/10.3390/ph17111542 - 16 Nov 2024
Cited by 2 | Viewed by 2817
Abstract
Background/Objectives: Antibody light chains form amyloid fibrils that lead to progressive tissue damage in amyloid light chain (AL) amyloidosis. The properties of each patient’s unique light chain appear to determine its propensity to form amyloid. One factor is N-glycosylation, which is more frequent [...] Read more.
Background/Objectives: Antibody light chains form amyloid fibrils that lead to progressive tissue damage in amyloid light chain (AL) amyloidosis. The properties of each patient’s unique light chain appear to determine its propensity to form amyloid. One factor is N-glycosylation, which is more frequent in amyloid-associated light chains than in light chains from the normal immune repertoire. However, the mechanisms underlying this association are unknown. Here, we investigate the frequency and position within the light chain sequence of the N-glycosylation sequence motif, or sequon. Methods: Monoclonal light chains from AL amyloidosis and multiple myeloma were identified from the AL-Base repository. Polyclonal light chains were obtained from the Observed Antibody Space resource. We compared the fraction of light chains from each group harboring an N-glycosylation sequon, and the positions of these sequons within the sequences. Results: Sequons are enriched among AL-associated light chains derived from a subset of precursor germline genes. Sequons are observed at multiple positions, which differ between the two types of light chains, κ and λ, but are similar between light chains from AL amyloidosis and multiple myeloma. Positions of sequons map to residues with surface-exposed sidechains that are compatible with the folded structures of light chains. Within the known structures of λ AL amyloid fibrils, many residues where sequons are observed are buried, inconsistent with N-glycosylation. Conclusions: There is no clear structural rationale for why N-glycosylation of κ light chains is associated with AL amyloidosis. A better understanding of the roles of N-glycosylation in AL amyloidosis is required before it can be used as a marker for disease risk. Full article
Show Figures

Graphical abstract

17 pages, 4200 KB  
Article
Characterization of Novel Multifunctional Xylanase from Rumen Metagenome and Its Effects on In Vitro Microbial Fermentation of Wheat Straw
by Moguang Zhang, Qinghua Qiu, Xianghui Zhao, Kehui Ouyang and Chanjuan Liu
Fermentation 2024, 10(11), 574; https://doi.org/10.3390/fermentation10110574 - 10 Nov 2024
Cited by 1 | Viewed by 1821
Abstract
This study investigated the characterization of a novel multifunctional enzyme, RuXyn394, derived from the metagenome of beef cattle rumen, and its impact on the in vitro microbial fermentation of wheat straw. RuXyn394, a member of the glycosyl hydrolase 11 family, displayed optimal activity [...] Read more.
This study investigated the characterization of a novel multifunctional enzyme, RuXyn394, derived from the metagenome of beef cattle rumen, and its impact on the in vitro microbial fermentation of wheat straw. RuXyn394, a member of the glycosyl hydrolase 11 family, displayed optimal activity under diverse pH and temperature conditions: xylanase at pH 5.5 and 50 °C, acetyl esterase at pH 6.5 and 60 °C, exoglucanase at pH 7.0 and 50 °C, and endoglucanase at pH 6.0 and 50 °C. The enzyme’s xylanase, endoglucanase, and exoglucanase activities exhibited remarkable pH stability across the range of pH 3–8 and maintained a relatively stable performance at temperatures from 20 to 50 °C, 20 to 60 °C, and 20 to 70 °C, respectively. The xylanase function, with the highest kcat/Km ratio, was identified as the predominant activity of RuXyn394. The enzyme’s various functions responded uniquely to metal ions; notably, the addition of 5 mM K+ significantly boosted the activities of xylanase, exoglucanase, and endoglucanase by 55.5%, 53.5%, and 16.4%, respectively, without affecting its acetyl esterase activity. Over the course of three time points (30 min, 60 min, 120 min), the degradation products of wheat straw xylan, including xylopentaose, xylotetraose, xylotriose, xylobiose, xylose, and total xylooligosaccharides, constituted an average of 18.4%, 33.7%, 20.6%, 22.9%, 4.3%, and 95.7% of the total products, respectively. RuXyn394 effectively hydrolyzed wheat straw, resulting in augmented volatile fatty acid production and ammonia-N levels during in vitro microbial fermentation. These findings indicate the potential of RuXyn394 as a novel and highly efficient enzyme preparation, offering promising prospects for the valorization of wheat straw, an agricultural by-product, in ruminant diets. Full article
(This article belongs to the Section Industrial Fermentation)
Show Figures

Figure 1

Back to TopTop