Potent Nrf2-Inducing C6-Isothiocyanate Glucose Derivatives with Dual Antioxidant and Antitumor Activity
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Procedures and Analytical Techniques
2.2. Chemical Synthesis
2.2.1. General Procedure for the Synthesis of Isothiocyanates
2.2.2. General Procedure for the Oxidation of Thioethers to Sulfoxides
2.2.3. General Procedure for the Oxidation of Thioethers to Sulfones
2.3. Computational Protocol
2.4. Biological Activity
2.4.1. Reagents and Cell Lines
2.4.2. Cell Viability in Leukemic Cell Lines
2.4.3. Flow Cytometric Analysis of Cell Death
2.4.4. Cell Viability in Cancer Cell Lines
2.4.5. Antioxidant Activity (Nrf2 Induction Activity)
3. Results and Discussion
3.1. Synthesis of 6-ITC Glucose-Based Derivatives
3.2. In Silico Docking to STAT3 SH2 Domain (Computational Studies: Docking, Molecular Dynamics Simulations and Binding Free Energy Predictions)
3.3. Cytotoxicity Against Leukemia Cell Lines
3.4. Cytotoxicity Against Solid Tumor Cell Lines

| Entry | Y | Comp. a | IC50 (Mean ± SEM, µM) (Selectivity Index) b | |||
|---|---|---|---|---|---|---|
| HaCaT c | A549 d | MeWo e | T24 f | |||
| 1 | MeS | 6 | 19.8 ± 1.4 | 19.0 ± 1.3 (1.0 ± 0.1) | 18.8 ± 0.8 (1.1 ± 0.1) | 8.1 ± 0.9 (2.5 ± 0.3) |
| 2 | EtS | 7 | 11.1 ± 1.0 | 12.8 ± 0.7 (0.9 ± 0.1) | 12.8 ± 1.1 (0.9 ± 0.1) | 5.0 ± 0.4 (2.2 ± 0.2) |
| 3 | PhS | 8 | 11.8 ± 1.0 | 24.2 ± 0.8 (0.5 ± 0.1) | 8.4 ± 0.6 (1.4 ± 0.1) | 4.5 ± 0.4 (2.7 ± 0.1) |
| 4 | PhS | 9 | 6.4 ± 0.6 | 7.7 ± 1.0 (0.8 ± 0.0) | 8.1 ± 1.3 (0.8 ± 0.1) | 4.6 ± 0.6 (1.4 ± 0.2) |
| 5 | (R)-EtSO | (R)-10 | 12.0 ± 1.2 | 17.0 ± 0.1 (0.7 ± 0.1) | 11.3 ± 0.7 (1.1 ± 0.1) | 5.2 ± 0.4 (2.3 ± 0.2) |
| 6 | (S)-EtSO | (S)-10 | 9.1 ± 1.3 | 13.4 ± 0.8 (0.7 ± 0.1) | 11.3 ± 1.1 (0.8 ± 0.1) | 4.5 ± 0.9 (2.2 ± 0.5) |
| 7 | (S)-PhSO | (S)-11 | 3.7 ± 0.4 | 5.1 ± 0.2 (0.7 ± 0.1) | 5.0 ± 0.6 (0.8 ± 0.1) | 2.4 ± 0.5 (1.7 ± 0.3) |
| 8 | (R)-PhSO | (R)-11 | 9.7 ± 1.1 | 13.2 ± 1.0 (0.8 ± 0.1) | 12.8 ± 0.4 (0.8 ± 0.1) | 4.6 ± 0.3 (2.1 ± 0.3) |
| 9 | EtSO2 | 12 | 9.8 ± 1.1 | 14.6 ± 0.7 (0.7 ± 0.1) | 12.4 ± 1.1 (0.8 ± 0.1) | 4.6 ± 0.9 (2.3 ± 0.4) |
| 10 | PhSO2 | 13 | 3.2 ± 0.6 | 4.4 ± 0.3 (0.7 ± 0.1) | 4.3 ± 0.2 (0.7 ± 0.1) | 2.1 ± 0.5 (1.6 ± 0.1) |
| 11 | - | Iberverine | 28.6 ± 12.0 | 21.9 ± 7.9 (1.2 ± 0.4) | 20.5 ± 6.6 (1.2 ± 0.3) | 10.1 ± 2.7 (2.4 ± 0.6) |
| 12 | - | Iberin | 21.8 ± 9.8 | 16.6 ± 5.0 (1.2 ± 0.4) | 22.1 ± 7.3 (0.9 ± 0.1) | 9.2 ± 3.0 (2.1± 0.6) |
| 13 | - | Cheiroline | 21.9 ± 8.1 | 16.9 ± 5.4 (1.2 ± 0.3) | 19.6 ± 5.6 (1.0 ± 0.2) | 7.9 ± 2.0 (2.3 ± 0.5) |
| 14 | - | CBPT | 43.7 ± 12.7 | 20.3 ± 2.1 (2.1 ± 0.5) | 53.2 ± 6.4 (0.8 ± 0.2) | 14.5 ± 1.3 (3.3 ± 1.2) |
3.5. Nrf2 Activation and Antioxidant Profile

| Entry | Compound a | Y | CD ± st Desv (μM) |
|---|---|---|---|
| 1 | 6 | MeS | 2.64 ± 1.14 |
| 2 | 7 | EtS | 1.04 ± 0.30 |
| 3 | 8 | PhS | 0.96 ± 0.03 |
| 4 | 9 | PhS | 5.03 ± 1.66 |
| 5 | (R)-10 | (R)-EtSO | 7.91 ± 1.88 |
| 6 | (S)-10 | (S)-EtSO | 6.37 ± 1.61 |
| 7 | (S)-11 | (S)-PhSO | 3.34 ± 0.86 |
| 8 | (R)-11 | (R)-PhSO | 2.33 ± 0.25 |
| 9 | 12 | EtSO2 | 4.33 ± 0.03 |
| 10 | 13 | PhSO2 | 1.90 ± 0.70 |
| 11 | Iberverine | - | 2.94 ± 1.51 |
| 12 | Iberin | - | 3.12 ± 0.65 |
| 13 | Cheiroline | - | 3.22 ± 1.14 |
| 14 | TBHQ b | - | 1.68 ± 0.30 |
3.6. Structure–Activity Relationship (SAR) Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Recio, R.; Vengut-Climent, E.; Borrego, L.G.; Khiar, N.; Fernández, I. Biologically Active Isothiocyanates: Protecting Plants and Healing Humans. In Studies in Natural Products Chemistry; Elsevier: Amsterdam, The Netherlands, 2017; Volume 53, pp. 167–242. ISBN 978-0-444-63930-1. [Google Scholar]
- Fahey, J.W.; Zalcmann, A.T.; Talalay, P. The Chemical Diversity and Distribution of Glucosinolates and Isothiocyanates among Plants. Phytochemistry 2001, 56, 5–51, Erratum in Phytochemistry 2002, 59, 237.. [Google Scholar] [CrossRef]
- Liu, X.-L.; Zhang, J.; Yan, Q.; Miao, C.-L.; Han, W.-K.; Hou, W.; Yang, K.; Hansson, B.S.; Peng, Y.-C.; Guo, J.-M.; et al. The Molecular Basis of Host Selection in a Crucifer-Specialized Moth. Curr. Biol. 2020, 30, 4476–4482. [Google Scholar] [CrossRef]
- Health Benefits of Glucosinolates. In Advances in Botanical Research; Elsevier: Amsterdam, The Netherlands, 2016; Volume 80, pp. 247–279. ISBN 978-0-08-100327-5. [CrossRef]
- Zhang, Y. Cancer-Preventive Isothiocyanates: Measurement of Human Exposure and Mechanism of Action. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2004, 555, 173–190. [Google Scholar] [CrossRef]
- Tang, L.; Zhang, Y. Isothiocyanates in the Chemoprevention of Bladder Cancer. CDM 2004, 5, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Myzak, M.; Dashwood, R. Histone Deacetylases as Targets for Dietary Cancer Preventive Agents: Lessons Learned with Butyrate, Diallyl Disulfide, and Sulforaphane. CDT 2006, 7, 443–452. [Google Scholar] [CrossRef] [PubMed]
- Yadav, K.; Dhankhar, J.; Kundu, P. Isothiocyanates—A Review of Their Health Benefits and Potential Food Applications. Curr. Res. Nutr. Food Sci. 2022, 10, 476–502. [Google Scholar] [CrossRef]
- Alcarranza, M.; Villegas, I.; Muñoz-García, R.; Recio, R.; Fernández, I.; Alarcón-de-la-Lastra, C. Immunomodulatory Effects of (R)-Sulforaphane on LPS-Activated Murine Immune Cells: Molecular Signaling Pathways and Epigenetic Changes in Histone Markers. Pharmaceuticals 2022, 15, 966. [Google Scholar] [CrossRef]
- Yu, H.; Pardoll, D.; Jove, R. STATs in Cancer Inflammation and Immunity: A Leading Role for STAT3. Nat. Rev. Cancer 2009, 9, 798–809. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Guo, W.; Lu, N.; Tian, Y.; Yang, J.; Wang, L. Advances in Research on Unphosphorylated STAT3: A Review. Medicine 2025, 104, e43476. [Google Scholar] [CrossRef]
- Simões, B.M.; Santiago-Gómez, A.; Chiodo, C.; Moreira, T.; Conole, D.; Lovell, S.; Alferez, D.; Eyre, R.; Spence, K.; Sarmiento-Castro, A.; et al. Targeting STAT3 Signaling Using Stabilised Sulforaphane (SFX-01) Inhibits Endocrine Resistant Stem-like Cells in ER-Positive Breast Cancer. Oncogene 2020, 39, 4896–4908. [Google Scholar] [CrossRef]
- Hutzen, B.; Willis, W.; Jones, S.; Cen, L.; Deangelis, S.; Fuh, B.; Lin, J. Dietary Agent, Benzyl Isothiocyanate Inhibits Signal Transducer and Activator of Transcription 3 Phosphorylation and Collaborates with Sulforaphane in the Growth Suppression of PANC-1 Cancer Cells. Cancer Cell. Int. 2009, 9, 24. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Wang, L.; Cao, L.; Zhang, Q.; Song, Q.; Meng, Z.; Wu, X.; Xu, K. Inhibition of Autophagy Potentiates the Anti-metastasis Effect of Phenethyl Isothiocyanate through JAK2/STAT3 Pathway in Lung Cancer Cells. Mol. Carcinog. 2018, 57, 522–535. [Google Scholar] [CrossRef]
- Zuo, M.; Chen, H.; Liao, Y.; He, P.; Xu, T.; Tang, J.; Zhang, N. Sulforaphane and Bladder Cancer: A Potential Novel Antitumor Compound. Front. Pharmacol. 2023, 14, 1254236. [Google Scholar] [CrossRef] [PubMed]
- Fimognari, C.; Lenzi, M.; Hrelia, P. Chemoprevention of Cancer by Isothiocyanates and Anthocyanins: Mechanisms of Action and Structure-Activity Relationship. CMC 2008, 15, 440–447. [Google Scholar] [CrossRef]
- Morimitsu, Y.; Hayashi, K.; Nakagawa, Y.; Horio, F.; Uchida, K.; Osawa, T. Antiplatelet and Anticancer Isothiocyanates in Japanese Domestic Horseradish, Wasabi. BioFactors 2000, 13, 271–276. [Google Scholar] [CrossRef]
- Alcarranza, M.; Alarcón-de-la-Lastra, C.; Recio Jiménez, R.; Fernández, I.; Castejón Martínez, M.L.; Villegas, I. Immunomodulatory Effects and Regulatory Mechanisms of (R)-6-HITC, an Isothiocyanate from Wasabi (Eutrema japonicum), in an Ex Vivo Mouse Model of LPS-Induced Inflammation. J. Agric. Food Chem. 2024, 72, 21520–21532. [Google Scholar] [CrossRef] [PubMed]
- Alcarranza, M.; Villegas, I.; Recio, R.; Muñoz-García, R.; Fernández, I.; Alarcón-de-la-Lastra, C. (R)-8-Methylsulfinyloctyl Isothiocyanate from Nasturtium officinale Inhibits LPS-Induced Immunoinflammatory Responses in Mouse Peritoneal Macrophages: Chemical Synthesis and Molecular Signaling Pathways Involved. Food Funct. 2023, 14, 7270–7283. [Google Scholar] [CrossRef]
- Recio, R.; Elhalem, E.; Benito, J.M.; Fernández, I.; Khiar, N. NMR Study on the Stabilization and Chiral Discrimination of Sulforaphane Enantiomers and Analogues by Cyclodextrins. Carbohydr. Polym. 2018, 187, 118–125. [Google Scholar] [CrossRef]
- Kensler, T.W.; Wakabayashi, N.; Biswal, S. Cell Survival Responses to Environmental Stresses Via the Keap1-Nrf2-ARE Pathway. Annu. Rev. Pharmacol. Toxicol. 2007, 47, 89–116. [Google Scholar] [CrossRef]
- Itoh, K.; Mimura, J.; Yamamoto, M. Discovery of the Negative Regulator of Nrf2, Keap1: A Historical Overview. Antioxid. Redox Signal. 2010, 13, 1665–1678. [Google Scholar] [CrossRef]
- Zhang, Y.; Gordon, G.B. A Strategy for Cancer Prevention: Stimulation of the Nrf2-ARE Signaling Pathway. Mol. Cancer Ther. 2004, 3, 885–893. [Google Scholar] [CrossRef] [PubMed]
- Khiar, N.; Werner, S.; Mallouk, S.; Lieder, F.; Alcudia, A.; Fernández, I. Enantiopure Sulforaphane Analogues with Various Substituents at the Sulfinyl Sulfur: Asymmetric Synthesis and Biological Activities. J. Org. Chem. 2009, 74, 6002–6009. [Google Scholar] [CrossRef]
- Najlah, M.; McCallum, N.; Pereira, A.M.; Alves, D.; Ansari-Fard, N.; Rehmani, S.; Kaya, A. Sugar-Linked Diethyldithiocarbamate Derivatives: A Novel Class of Anticancer Agents. IJMS 2025, 26, 5589. [Google Scholar] [CrossRef]
- Azzam, R.A.; Gad, N.M.; Elgemeie, G.H. Novel Thiophene Thioglycosides Substituted with the Benzothiazole Moiety: Synthesis, Characterization, Antiviral and Anticancer Evaluations, and NS3/4A and USP7 Enzyme Inhibitions. ACS Omega 2022, 7, 35656–35667. [Google Scholar] [CrossRef]
- Padilla-Pérez, M.C.; Rodríguez-Marín, R.; González-Bakker, A.; Khan, A.N.; Bastardo-Torío, M.; Padrón, J.M.; Martín-Loro, F.; Arroba, A.I.; García-Hernández, R.; Pérez-Victoria, J.M.; et al. Exploring the Influence of the Glycone Space on the Therapeutic Potential of Sp2-Iminoglycolipids. Eur. J. Med. Chem. 2026, 302, 118337. [Google Scholar] [CrossRef]
- Fedorov, S.N.; Kuzmich, A.S.; Sabutskii, Y.E.; Guzii, A.G.; Popov, R.S.; Ogurtsov, V.A.; Rakitin, O.A.; Polonik, S.G. Synthesis and Studies of Acetylthioglycoside Conjugates of 4-Chloro-1,2-Dithiole-3-Thione as Potential Antitumor Agents. Russ. Chem. Bull. 2021, 70, 573–579. [Google Scholar] [CrossRef]
- Prieto, L.A.; Khiar-Fernández, N.; Calderón-Montaño, J.M.; López-Lázaro, M.; Lucía-Tamudo, J.; Nogueira, J.J.; León, R.; Moreno, N.; Valdivia, V.; Recio, R.; et al. Exploring the Broad-Spectrum Activity of Carbohydrate-Based Iberin Analogues: From Anticancer Effect to Antioxidant Properties. Eur. J. Med. Chem. 2025, 289, 117469. [Google Scholar] [CrossRef] [PubMed]
- Zefirov, N.S.; Shekhtman, N.M. The Anomeric Effect. Russ. Chem. Rev. 1971, 40, 315–329. [Google Scholar] [CrossRef]
- Hanwell, M.D.; Curtis, D.E.; Lonie, D.C.; Vandermeersch, T.; Zurek, E.; Hutchison, G.R. Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminform. 2012, 4, 17. [Google Scholar] [CrossRef]
- Neese, F.; Wennmohs, F.; Becker, U.; Riplinger, C. The ORCA Quantum Chemistry Program Package. J. Chem. Phys. 2020, 152, 224108. [Google Scholar] [CrossRef]
- Becke, A.D. Density-Functional Thermochemistry. III. The Role of Exact Exchange. J. Chem. Phys. 1993, 98, 5648–5652. [Google Scholar] [CrossRef]
- Stephens, P.J.; Devlin, F.J.; Chabalowski, C.F.; Frisch, M.J. Ab Initio Calculation of Vibrational Absorption and Circular Dichroism Spectra Using Density Functional Force Fields. J. Phys. Chem. 1994, 98, 11623–11627. [Google Scholar] [CrossRef]
- Petersson, G.A.; Bennett, A.; Tensfeldt, T.G.; Al-Laham, M.A.; Shirley, W.A.; Mantzaris, J. A Complete Basis Set Model Chemistry. I. The Total Energies of Closed-Shell Atoms and Hydrides of the First-Row Elements. J. Chem. Phys. 1988, 89, 2193–2218. [Google Scholar] [CrossRef]
- La Sala, G.; Michiels, C.; Kükenshöner, T.; Brandstoetter, T.; Maurer, B.; Koide, A.; Lau, K.; Pojer, F.; Koide, S.; Sexl, V.; et al. Selective Inhibition of STAT3 Signaling Using Monobodies Targeting the Coiled-Coil and N-Terminal Domains. Nat. Commun. 2020, 11, 4115. [Google Scholar] [CrossRef]
- Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef]
- Mehler, E.L.; Solmajer, T. Electrostatic Effects in Proteins: Comparison of Dielectric and Charge Models. Protein Eng. Des. Sel. 1991, 4, 903–910. [Google Scholar] [CrossRef]
- Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated Docking Using a Lamarckian Genetic Algorithm and an Empirical Binding Free Energy Function. J. Comput. Chem. 1998, 19, 1639–1662. [Google Scholar] [CrossRef]
- Gasteiger, J.; Marsili, M. A New Model for Calculating Atomic Charges in Molecules. Tetrahedron Lett. 1978, 19, 3181–3184. [Google Scholar] [CrossRef]
- Adcock, S.A.; McCammon, J.A. Molecular Dynamics: Survey of Methods for Simulating the Activity of Proteins. Chem. Rev. 2006, 106, 1589–1615. [Google Scholar] [CrossRef]
- Braun, E.; Gilmer, J.; Mayes, H.B.; Mobley, D.L.; Monroe, J.I.; Prasad, S.; Zuckerman, D.M. Best Practices for Foundations in Molecular Simulations [Article v1.0]. Living J. Comput. Mol. Sci. 2019, 1, 5957. [Google Scholar] [CrossRef] [PubMed]
- Salomon-Ferrer, R.; Case, D.A.; Walker, R.C. An Overview of the Amber Biomolecular Simulation Package. WIREs Comput. Mol. Sci. 2013, 3, 198–210. [Google Scholar] [CrossRef]
- Case, D.A.; Cheatham, T.E.; Darden, T.; Gohlke, H.; Luo, R.; Merz, K.M.; Onufriev, A.; Simmerling, C.; Wang, B.; Woods, R.J. The Amber Biomolecular Simulation Programs. J. Comput. Chem. 2005, 26, 1668–1688. [Google Scholar] [CrossRef]
- Case, D.A.; Aktulga, H.M.; Belfon, K.; Ben-Shalom, I.Y.; Brozell, S.R.; Cerutti, D.S.; Cheatham, T.E., III; Cisneros, G.A.; Cruzeiro, V.W.D.; Darden, T.A.; et al. Amber; University of California: San Francisco, CA, USA, 2021. [Google Scholar]
- Tian, C.; Kasavajhala, K.; Belfon, K.A.A.; Raguette, L.; Huang, H.; Migues, A.N.; Bickel, J.; Wang, Y.; Pincay, J.; Wu, Q.; et al. ff19SB: Amino-Acid-Specific Protein Backbone Parameters Trained against Quantum Mechanics Energy Surfaces in Solution. J. Chem. Theory Comput. 2020, 16, 528–552. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Chandrasekhar, J.; Madura, J.D.; Impey, R.W.; Klein, M.L. Comparison of Simple Potential Functions for Simulating Liquid Water. J. Chem. Phys. 1983, 79, 926–935. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and Testing of a General Amber Force Field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef] [PubMed]
- Joung, I.S.; Cheatham, T.E. Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations. J. Phys. Chem. B 2008, 112, 9020–9041. [Google Scholar] [CrossRef]
- Lu, T.; Chen, F. Multiwfn: A Multifunctional Wavefunction Analyzer. J. Comput. Chem. 2012, 33, 580–592. [Google Scholar] [CrossRef]
- Hopkins, C.W.; Le Grand, S.; Walker, R.C.; Roitberg, A.E. Long-Time-Step Molecular Dynamics through Hydrogen Mass Repartitioning. J. Chem. Theory Comput. 2015, 11, 1864–1874. [Google Scholar] [CrossRef] [PubMed]
- Meza, J.C. Steepest Descent. WIREs Comput. Stats 2010, 2, 719–722. [Google Scholar] [CrossRef]
- Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald: An N log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys. 1993, 98, 10089–10092. [Google Scholar] [CrossRef]
- Ryckaert, J.-P.; Ciccotti, G.; Berendsen, H.J.C. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes. J. Comput. Phys. 1977, 23, 327–341. [Google Scholar] [CrossRef]
- Hammonds, K.D.; Heyes, D.M. Shadow Hamiltonian in Classical NVE Molecular Dynamics Simulations: A Path to Long Time Stability. J. Chem. Phys. 2020, 152, 024114. [Google Scholar] [CrossRef] [PubMed]
- Yoneya, M.; Berendsen, H.J.C.; Hirasawa, K. A Non-Iterative Matrix Method for Constraint Molecular Dynamics Simulations. Mol. Simul. 1994, 13, 395–405. [Google Scholar] [CrossRef]
- Miller, B.R.; McGee, T.D.; Swails, J.M.; Homeyer, N.; Gohlke, H.; Roitberg, A.E. MMPBSA. Py: An Efficient Program for End-State Free Energy Calculations. J. Chem. Theory Comput. 2012, 8, 3314–3321. [Google Scholar] [CrossRef] [PubMed]
- Darabedian, N.; Gao, J.; Chuh, K.N.; Woo, C.M.; Pratt, M.R. The Metabolic Chemical Reporter 6-Azido-6-Deoxy-Glucose Further Reveals the Substrate Promiscuity of O-GlcNAc Transferase and Catalyzes the Discovery of Intracellular Protein Modification by O-Glucose. J. Am. Chem. Soc. 2018, 140, 7092–7100. [Google Scholar] [CrossRef] [PubMed]
- Günther, K.; Schips, C.; Ziegler, T. Preparation of Some Glycosyl Amino Acid Building Blocks via Click Reaction and Construction of a Glycotetrapeptide Library Using Spot Synthesis. J. Carbohydr. Chem. 2008, 27, 446–463. [Google Scholar] [CrossRef]
- Mehta, S.; Meldal, M.; Ferro, V.; Duus, J.Ø.; Bock, K. Internally Quenched Fluorogenic, α-Helical Dimeric Peptides and Glycopeptides for the Evaluation of the Effect of Glycosylation on the Conformation of Peptides. J. Chem. Soc. Perkin Trans. 1 1997, 1365–1374. [Google Scholar] [CrossRef]
- Nukada, T.; Berces, A.; Zgierski, M.Z.; Whitfield, D.M. Exploring the Mechanism of Neighboring Group Assisted Glycosylation Reactions. J. Am. Chem. Soc. 1998, 120, 13291–13295. [Google Scholar] [CrossRef]
- Tokatly, A.I.; Vinnitskiy, D.Z.; Ustuzhanina, N.E.; Nifantiev, N.E. Protecting Groups as a Factor of Stereocontrol in Glycosylation Reactions. Russ. J. Bioorg. Chem. 2021, 47, 53–70. [Google Scholar] [CrossRef]
- Daina, A.; Michielin, O.; Zoete, V. SwissADME: A Free Web Tool to Evaluate Pharmacokinetics, Drug-Likeness and Medicinal Chemistry Friendliness of Small Molecules. Sci. Rep. 2017, 7, 42717. [Google Scholar] [CrossRef]
- Delaney, J.S. ESOL: Estimating Aqueous Solubility Directly from Molecular Structure. J. Chem. Inf. Comput. Sci. 2004, 44, 1000–1005. [Google Scholar] [CrossRef]
- Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and Computational Approaches to Estimate Solubility and Permeability in Drug Discovery and Development Settings. Adv. Drug Deliv. Rev. 2001, 46, 3–26. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Z.; Qu, X.; Zhu, X.; Zhao, L.; Wei, R.; Guo, Q.; Sun, L.; Yin, X.; Zhang, Y.; et al. Roles of STAT3 in Leukemia (Review). Int. J. Oncol. 2018, 53, 7–20. [Google Scholar] [CrossRef]
- Rajakumar, T.; Pugalendhi, P. Allyl Isothiocyanate Inhibits Invasion and Angiogenesis in Breast Cancer via EGFR-Mediated JAK-1/STAT-3 Signaling Pathway. Amino Acids 2023, 55, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Hollenbach, P.W.; Nguyen, A.N.; Brady, H.; Williams, M.; Ning, Y.; Richard, N.; Krushel, L.; Aukerman, S.L.; Heise, C.; MacBeth, K.J. A Comparison of Azacitidine and Decitabine Activities in Acute Myeloid Leukemia Cell Lines. PLoS ONE 2010, 5, e9001. [Google Scholar] [CrossRef]
- Qin, T.; Youssef, E.M.; Jelinek, J.; Chen, R.; Yang, A.S.; Garcia-Manero, G.; Issa, J.-P.J. Effect of Cytarabine and Decitabine in Combination in Human Leukemic Cell Lines. Clin. Cancer Res. 2007, 13, 4225–4232. [Google Scholar] [CrossRef]
- Wang, S.; Zhang, H.; Malfatti, M.; De Vere White, R.; Lara, P.N.; Turteltaub, K.; Henderson, P.; Pan, C. Gemcitabine Causes Minimal Modulation of Carboplatin-DNA Monoadduct Formation and Repair in Bladder Cancer Cells. Chem. Res. Toxicol. 2010, 23, 1653–1655. [Google Scholar] [CrossRef] [PubMed]
- Elhalem, E.; Recio, R.; Werner, S.; Lieder, F.; Calderón-Montaño, J.M.; López-Lázaro, M.; Fernández, I.; Khiar, N. Sulforaphane Homologues: Enantiodivergent Synthesis of Both Enantiomers, Activation of the Nrf2 Transcription Factor and Selective Cytotoxic Activity. Eur. J. Med. Chem. 2014, 87, 552–563. [Google Scholar] [CrossRef] [PubMed]
- Manjunath, S.H.; Nataraj, P.; Swamy, V.H.; Sugur, K.; Dey, S.K.; Ranganathan, V.; Daniel, S.; Leihang, Z.; Sharon, V.; Chandrashekharappa, S.; et al. Development of Moringa oleifera as Functional Food Targeting NRF2 Signaling: Antioxidant and Anti-Inflammatory Activity in Experimental Model Systems. Food Funct. 2023, 14, 4734–4751. [Google Scholar] [CrossRef] [PubMed]
- Hoch, C.C.; Shoykhet, M.; Weiser, T.; Griesbaum, L.; Petry, J.; Hachani, K.; Multhoff, G.; Bashiri Dezfouli, A.; Wollenberg, B. Isothiocyanates in Medicine: A Comprehensive Review on Phenylethyl-, Allyl-, and Benzyl-Isothiocyanates. Pharmacol. Res. 2024, 201, 107107. [Google Scholar] [CrossRef]
- Olayanju, J.B.; Bozic, D.; Naidoo, U.; Sadik, O.A. A Comparative Review of Key Isothiocyanates and Their Health Benefits. Nutrients 2024, 16, 757. [Google Scholar] [CrossRef] [PubMed]
- Turley, A.E.; Zagorski, J.W.; Rockwell, C.E. The Nrf2 Activator tBHQ Inhibits T Cell Activation of Primary Human CD4 T Cells. Cytokine 2015, 71, 289–295. [Google Scholar] [CrossRef]
- Gong, T.-T.; Guo, Q.; Li, X.; Zhang, T.-N.; Liu, F.-H.; He, X.-H.; Lin, B.; Wu, Q.-J. Isothiocyanate Iberin Inhibits Cell Proliferation and Induces Cell Apoptosis in the Progression of Ovarian Cancer by Mediating ROS Accumulation and GPX1 Expression. Biomed. Pharmacother. 2021, 142, 111533. [Google Scholar] [CrossRef] [PubMed]
- Shoaib, S.; Tufail, S.; Sherwani, M.A.; Yusuf, N.; Islam, N. Phenethyl Isothiocyanate Induces Apoptosis Through ROS Generation and Caspase-3 Activation in Cervical Cancer Cells. Front. Pharmacol. 2021, 12, 673103. [Google Scholar] [CrossRef] [PubMed]
- NavaneethaKrishnan, S.; Rosales, J.L.; Lee, K.-Y. ROS-Mediated Cancer Cell Killing through Dietary Phytochemicals. Oxidative Med. Cell. Longev. 2019, 2019, 9051542. [Google Scholar] [CrossRef]
- Crowley, E.; Rowan, N.J.; Faller, D.; Friel, A.M. Natural and Synthetic Isothiocyanates Possess Anticancer Potential Against Liver and Prostate Cancer In Vitro. Anticancer Res. 2019, 39, 3469–3485. [Google Scholar] [CrossRef]
- Boukamp, P.; Petrussevska, R.T.; Breitkreutz, D.; Hornung, J.; Markham, A.; Fusenig, N.E. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J. Cell Biol. 1988, 106, 761–771. [Google Scholar] [CrossRef]






| Entry | X | Y | Z | Comp a | IC50 (Mean ± SEM, µM) b | |||
|---|---|---|---|---|---|---|---|---|
| HL60 c | U937 d | OPM-2 e | Jurkat f | |||||
| 1 | OAc | EtS | NCS | 7 | 7.2 ± 0.5 | 22.2 ± 3.9 | 7.4 ± 0.3 | 13.4 ± 0.6 |
| 2 | OAc | PhS | NCS | 8 | 10.2 ± 1.2 | 9.9 ± 0.9 | 7.6 ± 0.7 | 20.7 ± 2.8 |
| 3 | OAc | (S)-PhSO | NCS | (S)-11 | 7.6 ± 1.4 | 9.6 ± 0.7 | 8.1 ± 0.3 | >25 |
| 4 | OAc | (R)-PhSO | NCS | (R)-11 | 5.3 ± 0.4 | 11.2 ± 1.2 | 5.7 ± 0.4 | 16.2 ± 1.0 |
| 5 | OAc | EtSO2 | NCS | 12 | >25 | >25 | >25 | >25 |
| 6 | OAc | PhSO2 | NCS | 13 | 4.2 ± 0.4 | 7.6 ± 0.6 | 3.4 ± 0.1 | 9.8 ± 0.6 |
| 7 | OAc | NCS | OAc | 14 | >25 | >25 | >25 | >25 |
| 8 | MeS | NCS | OAc | 15 | 16.4 ± 2.8 | 15.0 ± 5.0 | >25 | >25 |
| 9 | PhS | NCS | OAc | 16 | 7.2 ± 1.0 | 11.4 | >25 | >25 |
| 10 | (S)-PhSO | NCS | OAc | (S)-17 | >25 | >25 | >25 | >25 |
| 11 | (R)-PhSO | NCS | OAc | (R)-17 | >25 | >25 | > 25 | >25 |
| 12 | MeSO2 | NCS | OAc | 18 | 13.8 ± 1.3 | > 25 | > 25 | >25 |
| 13 | EtSO2 | NCS | OAc | 19 | >25 | >25 | >25 | 21.9 ± 1.5 |
| 14 | PhSO2 | NCS | OAc | 20 | 7.8 ± 0.6 | 5.7 ± 0.3 | 10.2 ± 0.7 | 7.4 ± 0.5 |
| 15 | - | - | - | Iberverine | 10.3 ± 0.5 | 6.7 ± 0.6 | 8.8 ± 0.4 | 9.7 ± 0.5 |
| 16 | - | - | - | Iberin | 12.7 ± 0.7 | 8.6 ± 1.2 | 14.0 ± 0.9 | 11.4 ± 0.7 |
| 17 | - | - | - | Cheiroline | 10.2 ± 1.5 | 8.3 ± 1.4 | 10.3 ± 0.5 | 9.1 ± 0.4 |
| 18 | - | - | - | Azacitidine | >25 | 1.6 ± 0.4 | >25 | 3.2 ± 1.6 |
| 19 | - | - | - | Cytarabine | >25 | 0.3 ± 0.2 | >25 | 0.1 ± 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Prieto, L.A.; Khiar-Fernández, N.; Calderón-Ruiz, R.; Giraud, E.; Calderón-Montaño, J.M.; Lucia-Tamudo, J.; León, R.; Pérez-Simón, J.A.; López-Lázaro, M.; Recio, R.; et al. Potent Nrf2-Inducing C6-Isothiocyanate Glucose Derivatives with Dual Antioxidant and Antitumor Activity. Antioxidants 2026, 15, 123. https://doi.org/10.3390/antiox15010123
Prieto LA, Khiar-Fernández N, Calderón-Ruiz R, Giraud E, Calderón-Montaño JM, Lucia-Tamudo J, León R, Pérez-Simón JA, López-Lázaro M, Recio R, et al. Potent Nrf2-Inducing C6-Isothiocyanate Glucose Derivatives with Dual Antioxidant and Antitumor Activity. Antioxidants. 2026; 15(1):123. https://doi.org/10.3390/antiox15010123
Chicago/Turabian StylePrieto, Luis Alberto, Nora Khiar-Fernández, Rocío Calderón-Ruiz, Emelyne Giraud, José Manuel Calderón-Montaño, Jesús Lucia-Tamudo, Rafael León, José Antonio Pérez-Simón, Miguel López-Lázaro, Rocío Recio, and et al. 2026. "Potent Nrf2-Inducing C6-Isothiocyanate Glucose Derivatives with Dual Antioxidant and Antitumor Activity" Antioxidants 15, no. 1: 123. https://doi.org/10.3390/antiox15010123
APA StylePrieto, L. A., Khiar-Fernández, N., Calderón-Ruiz, R., Giraud, E., Calderón-Montaño, J. M., Lucia-Tamudo, J., León, R., Pérez-Simón, J. A., López-Lázaro, M., Recio, R., de la Torre, E., Valdivia, V., & Fernández, I. (2026). Potent Nrf2-Inducing C6-Isothiocyanate Glucose Derivatives with Dual Antioxidant and Antitumor Activity. Antioxidants, 15(1), 123. https://doi.org/10.3390/antiox15010123

