Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (53)

Search Parameters:
Keywords = Rx drugs

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 5014 KiB  
Article
Integrated Workflow for Drug Repurposing in Glioblastoma: Computational Prediction and Preclinical Validation of Therapeutic Candidates
by Nazareno Gonzalez, Melanie Pérez Küper, Matías Garcia Fallit, Jorge A. Peña Agudelo, Alejandro Nicola Candia, Maicol Suarez Velandia, Ana Clara Romero, Guillermo Videla Richardson and Marianela Candolfi
Brain Sci. 2025, 15(6), 637; https://doi.org/10.3390/brainsci15060637 - 13 Jun 2025
Cited by 1 | Viewed by 822
Abstract
Background: Glioblastoma (GBM) remains a significant challenge in oncology due to its resistance to standard treatments including temozolomide. This study aimed to develop and validate an integrated model for predicting GBM sensitivity to alternative chemotherapeutics and identifying new drugs and combinations with therapeutic [...] Read more.
Background: Glioblastoma (GBM) remains a significant challenge in oncology due to its resistance to standard treatments including temozolomide. This study aimed to develop and validate an integrated model for predicting GBM sensitivity to alternative chemotherapeutics and identifying new drugs and combinations with therapeutic potential. Research Design and Methods: We analyzed drug sensitivity data for 272 compounds from CancerRxTissue and employed in silico algorithms to assess blood-brain barrier permeability. The model was used to predict GBM sensitivity to various drugs, which was then validated using GBM cellular models. Alternative drugs targeting overexpressed and negative prognostic biomarkers in GBM were experimentally validated. Results: The model predicted that GBM is more sensitive to Etoposide and Cisplatin compared to Temozolomide, which was confirmed by experimental validation in GBM cells. We also identified novel drugs with high predicted sensitivity in GBM. Daporinad, a NAMPT inhibitor that permeates the blood-brain barrier was selected for further preclinical evaluation. This evaluation supported the in silico predictions of high potential efficacy and safety in GBM. Conclusions: Our findings using different cellular models suggest that this computational prediction model could constitute a valuable tool for drug repurposing in GBM and potentially in other tumors, which could accelerate the development of more effective cancer treatments. Full article
Show Figures

Figure 1

12 pages, 1552 KiB  
Review
Folate Receptor Alpha in Advanced Epithelial Ovarian Cancer: Diagnostic Role and Therapeutic Implications of a Clinically Validated Biomarker
by Gian Franco Zannoni, Angela Santoro, Antonio d’Amati, Nicoletta D’Alessandris, Giulia Scaglione, Belen Padial Urtueta, Michele Valente, Nadine Narducci, Francesca Addante, Saveria Spadola, Emma Bragantini and Giuseppe Angelico
Int. J. Mol. Sci. 2025, 26(11), 5222; https://doi.org/10.3390/ijms26115222 - 29 May 2025
Viewed by 1249
Abstract
Folate receptor alpha (FRα), a glycosylphosphatidylinositol-anchored glycoprotein encoded by the FOLR1 gene, plays a crucial role in folate transport during cell growth and development. While minimally expressed in most normal adult tissues, FRα is frequently overexpressed in several epithelial malignancies, particularly in high-grade [...] Read more.
Folate receptor alpha (FRα), a glycosylphosphatidylinositol-anchored glycoprotein encoded by the FOLR1 gene, plays a crucial role in folate transport during cell growth and development. While minimally expressed in most normal adult tissues, FRα is frequently overexpressed in several epithelial malignancies, particularly in high-grade serous ovarian carcinoma. An immunohistochemical (IHC) evaluation of FRα expression using the VENTANA FOLR1 (FOLR1-2.1) RxDx Assay is now approved as a companion diagnostic for selecting patients eligible for mirvetuximab soravtansine, an FRα-targeted antibody–drug conjugate. Clinical trials such as SORAYA and MIRASOL have demonstrated significant clinical benefit in platinum-resistant epithelial ovarian cancer patients with high FRα expression (≥75% of tumor cells with moderate to strong membrane staining). This review summarizes the biological significance of FRα in ovarian cancer progression, its predictive value for targeted therapy, and the technical aspects of IHC assessment, including scoring interpretation and pre-analytical variables. We also discuss heterogeneity in FRα expression across histological subtypes and tumor sites, as well as the impact of archival versus fresh tissue. Understanding FRα expression patterns across histologic subtypes and tissue samples is critical for optimizing clinical decision-making and expanding the role of FRα-targeted therapies in gynecologic oncology. Full article
(This article belongs to the Special Issue Molecular Insights and Treatments for Gynecological Cancers)
Show Figures

Figure 1

37 pages, 8170 KiB  
Article
Drug Repurposing to Inhibit Oncostatin M in Crohn’s Disease
by Faranak Bahramimehr, Axel Guthart, Stefanie Kurz, Yuanping Hai, Mona Dawood, Rümeysa Yücer, Nasim Shahhamzehei, Ralf Weiskirchen, Wilfried Roth, Wolfgang Stremmel, Gerhard Bringmann and Thomas Efferth
Molecules 2025, 30(9), 1897; https://doi.org/10.3390/molecules30091897 - 24 Apr 2025
Viewed by 1068
Abstract
Crohn’s disease is an inflammatory bowel disease (IBD) that currently lacks satisfactory treatment options. Therefore, new targets for new drugs are urgently needed to combat this disease. In the present study, we investigated the transcriptomics-based mRNA expression of intestinal biopsies from patients with [...] Read more.
Crohn’s disease is an inflammatory bowel disease (IBD) that currently lacks satisfactory treatment options. Therefore, new targets for new drugs are urgently needed to combat this disease. In the present study, we investigated the transcriptomics-based mRNA expression of intestinal biopsies from patients with Crohn’s disease. We compared the mRNA expression profiles of the ileum and colon of patients with those of healthy individuals. A total of 72 genes in the ileum and 33 genes in the colon were differentially regulated. Among these, six genes were overexpressed in both tissues, including IL1B, TCL1A, HCAR3, IGHG1, S100AB, and OSM. We further focused on OSM/oncostatin M. To confirm the responsiveness of intestinal tissues from patients with Crohn’s disease to oncostatin M inhibition, we examined the expression of the oncostatin M using immunohistochemistry in patient biopsies as well as in kindlin-1−/− and kindlin-2−/− knockout mice, which exhibit an inflammatory bowel disease (IBD) phenotype, and found strong oncostatin M expression in all samples examined. Next, we conducted a drug-repurposing study using the supercomputer MOGON and bioinformatic methods. A total of 13 candidate compounds out of 1577 FDA-approved drugs were identified by PyRx-based virtual drug screening and AutoDock-based molecular docking. Their lowest binding energies (LBEs) ranged from −10.46 (±0.08) to −8.77 (±0.08) kcal/mol, and their predicted inhibition constants (pKi) ranged from 21.62 (±2.97) to 373.78 (±36.78) nM. Ecamsule has an interesting stereostructure with two C2-symmetric enantiomers (1S,4R-1′S,4′R and 1R,4S-1′R,4′S) (1a and 1b) and one meso diastereomer (1S,4R-1′R,4′S) (1c). These three stereoisomers showed strong, albeit differing, binding affinities in molecular docking. As examined by nuclear magnetic resonance and polarimetry, the 1S,4R-1′S,4′R isomer was the stereoisomer present in our commercially available preparations used for microscale thermophoresis. Ecamsule (1a) was chosen for in vitro validation using recombinant oncostatin M and microscale thermophoresis. Considerable dissociation constants were obtained for ecamsule after three repetitions with a Kd value of 11.36 ± 2.83 µM. Subsequently, we evaluated, by qRT-PCR, the efficacy of ecamsule (1a) as a potential drug that could prevent oncostatin M activation by inhibiting downstream inflammatory marker genes (IL6, TNFA, and CXCL11). In conclusion, we have identified oncostatin M as a promising new drug target for Crohn’s disease through transcriptomics and ecamsule as a potential new drug candidate for Crohn’s disease through a drug-repurposing approach both in silico and in vitro. Full article
(This article belongs to the Special Issue Bioorganic Chemistry in Europe)
Show Figures

Figure 1

26 pages, 16481 KiB  
Article
Systems Biology-Driven Discovery of Host-Targeted Therapeutics for Oropouche Virus: Integrating Network Pharmacology, Molecular Docking, and Drug Repurposing
by Pranab Dev Sharma, Abdulrahman Mohammed Alhudhaibi, Abdullah Al Noman, Emad M. Abdallah, Tarek H. Taha and Himanshu Sharma
Pharmaceuticals 2025, 18(5), 613; https://doi.org/10.3390/ph18050613 - 23 Apr 2025
Cited by 1 | Viewed by 1242
Abstract
Background: Oropouche virus (OROV), part of the Peribunyaviridae family, is an emerging pathogen causing Oropouche fever, a febrile illness endemic in South and Central America. Transmitted primarily through midge bites (Culicoides paraensis), OROV has no specific antiviral treatment or vaccine. This [...] Read more.
Background: Oropouche virus (OROV), part of the Peribunyaviridae family, is an emerging pathogen causing Oropouche fever, a febrile illness endemic in South and Central America. Transmitted primarily through midge bites (Culicoides paraensis), OROV has no specific antiviral treatment or vaccine. This study aims to identify host-targeted therapeutics against OROV using computational approaches, offering a potential strategy for sustainable antiviral drug discovery. Methods: Virus-associated host targets were identified using the OMIM and GeneCards databases. The Enrichr and DSigDB platforms were used for drug prediction, filtering compounds based on Lipinski’s rule for drug likeness. A protein–protein interaction (PPI) network analysis was conducted using the STRING database and Cytoscape 3.10.3 software. Four key host targets—IL10, FASLG, PTPRC, and FCGR3A—were prioritized based on their roles in immune modulation and OROV pathogenesis. Molecular docking simulations were performed using the PyRx software to evaluate the binding affinities of selected small-molecule inhibitors—Acetohexamide, Deptropine, Methotrexate, Retinoic Acid, and 3-Azido-3-deoxythymidine—against the identified targets. Results: The PPI network analysis highlighted immune-mediated pathways such as Fc-gamma receptor signaling, cytokine control, and T-cell receptor signaling as critical intervention points. Molecular docking revealed strong binding affinities between the selected compounds and the prioritized targets, suggesting their potential efficacy as host-targeting antiviral candidates. Acetohexamide and Deptropine showed strong binding to multiple targets, indicating broad-spectrum antiviral potential. Further in vitro and in vivo validations are needed to confirm these findings and translate them into clinically relevant treatments. Conclusions: This study highlights the potential of using computational approaches to identify host-targeted therapeutics for Oropouche virus (OROV). By targeting key host proteins involved in immune modulation—IL10, FASLG, PTPRC, and FCGR3A—the selected compounds, Acetohexamide and Deptropine, demonstrate strong binding affinities, suggesting their potential as broad-spectrum antiviral candidates. Further experimental validation is needed to confirm their efficacy and potential for clinical application, offering a promising strategy for sustainable antiviral drug discovery. Full article
(This article belongs to the Special Issue Computational Methods in Drug Development)
Show Figures

Graphical abstract

9 pages, 204 KiB  
Proceeding Paper
Computational Drug-Likeness Studies of Selected Thiosemicarbazones: A Sustainable Approach for Drug Designing
by Ekhlakh Veg, Kulsum Hashmi, Satya, Seema Joshi and Tahmeena Khan
Eng. Proc. 2025, 87(1), 35; https://doi.org/10.3390/engproc2025087035 - 2 Apr 2025
Viewed by 398
Abstract
Drug intake, its absorption in the body, removal, and various side effects are factors considered when designing the drugs. Here, the in silico tools act as virtual shortcuts, assisting in the prediction of several important physicochemical properties like polar surface area (PSA), molecular [...] Read more.
Drug intake, its absorption in the body, removal, and various side effects are factors considered when designing the drugs. Here, the in silico tools act as virtual shortcuts, assisting in the prediction of several important physicochemical properties like polar surface area (PSA), molecular weight, and molecular flexibility, etc., to evaluate probable drug leads as potential drug candidates. These tools also play a vital role in the prediction of the bioactivity score of probable drug leads against various human receptors. This paper presents a virtual combinatorial library of selected thiosemicarbazones (TSCs) and their metal complexes. Different properties like bioactivity score, physicochemical, distribution, absorption, excretion, metabolism, and toxicity (ADMET) parameters were assessed. By using ChemDraw Ultra 12.0, the structures of ligands and complexes were drawn and downloaded in PDB format. Physicochemical parameters were calculated using online softwares viz. Molinspiration and SwissADME, and ADMET properties were calculated using admetSAR (2.0). Molecular docking was performed using PyRx Python Prescription 0.8. with Janus Kinase and Transforming Growth Factor Beta (Tgf-β). Janus Kinase and Tgf-β are some cytokines involved in cell development, proliferation, and cell death. Three important TSCs, i.e., salicyldehyde thiosemicarbazone, acenaphthenequinone thiosemicarbazone, 2-chloronicotinic thiosemicarbazone, and their virtually designed complexes exhibited appreciable in silico results. Most ligands and complexes had good bioactivity values against all the biological targets. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Applied Sciences)
22 pages, 6478 KiB  
Article
Immunomodulatory Effect of Rivaroxaban Nanoparticles Alone and in Combination with Sitagliptin on Diabetic Rat Model
by Mohamed M. Elbadr, Heba A. Galal, Helal F. Hetta, Hassabelrasoul Elfadil, Fawaz E. Alanazi, Shereen Fawzy, Hashim M. Aljohani, Noura H. Abd Ellah, Marwa F. Ali, Ahmed K. Dyab and Esraa A. Ahmed
Diseases 2025, 13(3), 87; https://doi.org/10.3390/diseases13030087 - 19 Mar 2025
Viewed by 969
Abstract
Background: Chronic inflammation and immune dysregulation are key drivers of diabetes complications. Rivaroxaban (RX) and sitagliptin (SITA) are established therapies for thromboembolism and glycemic control, respectively. This study evaluated the novel therapeutic potential of nano-rivaroxaban (NRX) alone and in combination with sitagliptin (SITA) [...] Read more.
Background: Chronic inflammation and immune dysregulation are key drivers of diabetes complications. Rivaroxaban (RX) and sitagliptin (SITA) are established therapies for thromboembolism and glycemic control, respectively. This study evaluated the novel therapeutic potential of nano-rivaroxaban (NRX) alone and in combination with sitagliptin (SITA) in mitigating inflammation and restoring immune balance in streptozotocin (STZ)-induced diabetic rats. Methods: Type 2 diabetes was induced in rats using a single injection of STZ (60 mg/kg). Animals were divided into five groups: control, STZ-diabetic, RX-treated (5 mg/kg), NRX-treated (5 mg/kg), and NRX+SITA-treated (5 mg/kg + 10 mg/kg). After 4 weeks of treatment, blood glucose, coagulation markers, pro-inflammatory cytokines (TNF-α, IL-1β, IL-6), and anti-inflammatory cytokines (IL-35, TGF-β1, IL-10) were analyzed. Histopathological examination of the liver, kidney, pancreas, and spleen was conducted. Immunohistochemistry was used to assess hepatic NF-κB expression. Results: STZ significantly elevated pro-inflammatory cytokines (IL-1β, TNF-α, IL-6) and anti-inflammatory cytokines (IL-35, TGF-β1, IL-10), along with increased hepatic NF-κB expression and histopathological abnormalities in immune organs. NRX significantly reduced inflammatory cytokines, improved histopathological changes in organs, and decreased hepatic NF-κB expression. The combination therapy (NRX + SITA) achieved superior immune modulation, with enhanced cytokine profile restoration, reduced hepatic NF-κB expression, and near-complete histopathological normalization. Conclusions: This study underscores the promise of combining nanoparticle-based drug delivery with established therapies like sitagliptin to achieve superior immune modulation and inflammation control, presenting a potential therapeutic strategy for managing diabetes complications. Full article
Show Figures

Figure 1

10 pages, 3747 KiB  
Article
Non-FFP-Based Magnetic Particle Imaging (NFMPI) with an Open-Type RF Coil System: A Feasibility Study
by Chan Kim, Jiyun Nan, Kim Tien Nguyen, Jong-Oh Park, Eunpyo Choi and Jayoung Kim
Sensors 2025, 25(3), 665; https://doi.org/10.3390/s25030665 - 23 Jan 2025
Viewed by 1078
Abstract
Active drug delivery systems for cancer therapy are gaining attention for their biocompatibility and enhanced efficacy compared to conventional chemotherapy and surgery. To improve precision in targeted drug delivery (TDD), actuating devices using external magnetic fields are employed. However, a key challenge is [...] Read more.
Active drug delivery systems for cancer therapy are gaining attention for their biocompatibility and enhanced efficacy compared to conventional chemotherapy and surgery. To improve precision in targeted drug delivery (TDD), actuating devices using external magnetic fields are employed. However, a key challenge is the inability to visually track magnetic drug carriers in blood vessels, complicating navigation to the target. Magnetic particle imaging (MPI) systems can localize magnetic carriers (MCs) but rely on bulky electromagnetic coils to generate a static magnetic field gradient, creating a field-free point (FFP) within the field of view (FOV). Also, additional coils are required to move the FFP across the FOV, limiting flexibility and increasing the system size. To address these issues, we propose a non-FFP-based, open-type RF coil system with a simplified structure composed of a Tx/Rx coil and a permanent magnet at the coil center, eliminating the need for an FFP. Furthermore, integrating a robotic arm for coil assembly enables easy adjustment of the FOV size and location. Finally, imaging tests with magnetic nanoparticles (MNPs) confirmed the system’s ability to detect and localize a minimum mass of 0.3 mg (Fe) in 80 × 80 mm2. Full article
(This article belongs to the Section State-of-the-Art Sensors Technologies)
Show Figures

Figure 1

11 pages, 274 KiB  
Article
Associations between Suspected Adverse Drug Reactions of HMG-CoA Reductase Inhibitors and Polypharmacology Using a National Registry Approach
by Hasan Yousaf and Alan M. Jones
Pharmacoepidemiology 2024, 3(3), 241-251; https://doi.org/10.3390/pharma3030016 - 3 Jul 2024
Viewed by 1906
Abstract
Aims: The aim of this study was to explore the suspected adverse drug reaction (ADR) data of five licensed statins in the UK: atorvastatin, fluvastatin, pravastatin, rosuvastatin, and simvastatin. A secondary aim was to determine if there are any associations between the polypharmacological [...] Read more.
Aims: The aim of this study was to explore the suspected adverse drug reaction (ADR) data of five licensed statins in the UK: atorvastatin, fluvastatin, pravastatin, rosuvastatin, and simvastatin. A secondary aim was to determine if there are any associations between the polypharmacological properties of the statins and their associated muscle-related side effects. Methods: The chemical database of bioactive molecules with drug-like properties, European Molecular Biology Laboratory (ChEMBL), was used to obtain data on the pharmacological interactions of statins with human proteins. The Medicines and Healthcare Products Regulatory Agency’s (MHRA) Yellow Card scheme was used to obtain reports of suspected ADRs from 2018 to 2022. The OpenPrescribing database was used to obtain the prescribing rates for statistical interpretation. Results: The study found no significant difference between the statins association with suspected ADRs across all organ classes (X2, p > 0.05). Fluvastatin was found to have a higher incidence of ADRs/100,000 Rx across multiple system organ classes. Conclusions: No significant difference was found between the suspected ADR incidence of the statins across all system organ classes. Full article
24 pages, 6158 KiB  
Article
Computational Discovery of Novel Imidazole Derivatives as Inhibitors of SARS-CoV-2 Main Protease: An Integrated Approach Combining Molecular Dynamics and Binding Affinity Analysis
by Benjamin Ayodipupo Babalola and Abayomi Emmanuel Adegboyega
COVID 2024, 4(6), 672-695; https://doi.org/10.3390/covid4060046 - 23 May 2024
Cited by 8 | Viewed by 2832
Abstract
One of the most pressing challenges associated with SARS treatment is the emergence of new variants that may be transmissible, causing more severe disease or being resistant to the current standard of treatment. This study aimed to identify potential drug candidates from novel [...] Read more.
One of the most pressing challenges associated with SARS treatment is the emergence of new variants that may be transmissible, causing more severe disease or being resistant to the current standard of treatment. This study aimed to identify potential drug candidates from novel imidazole derivatives against SARS-CoV-2 main protease (Mpro), a crucial drug target for treating viral infection, using a computational approach that integrated molecular docking and dynamics simulation. In this study, we utilized AutoDock Vina within the PyRx workspace for molecular docking analysis to explore the inhibitory effects of the compounds on the Mpro, a drug target for SARS-CoV-2. The ADMET properties of these compounds, including absorption, distribution, metabolism, excretion, and toxicity, were evaluated using the SwissADME and ADMETLab servers. Each of the 18 compounds that were tested demonstrated strong binding affinities towards Mpro, with imidazolyl–methanone C10 showing the most significant binding affinity. Moreover, pyridyl–imidazole C5, thiophenyl–imidazole C1, and quinoline–imidazole C14 displayed binding affinities of −8.3, −8.2, and −7.7 Kcal/mol, respectively. These compounds interacted with specific amino acid residues (HIS A:41—CYS A:145) within the Mpro protein. To assess the stability of the ligand with the best binding affinity, molecular dynamics (MD) simulations were conducted using Schrodinger software, which revealed its stability over the simulation period. The study provides valuable insights into the potential of imidazole derivatives as SARS-CoV-2 Mpro inhibitors. All compounds including C10 display promising characteristics and hold potential as drug candidates for SARS-CoV-2. However, further optimization and experimental validation of these compounds are necessary to advance their development as effective therapeutics against viral infections. Full article
Show Figures

Figure 1

11 pages, 244 KiB  
Article
Treatment of Heartburn: A Survey of Ontario and Québec Community Pharmacists
by Nardine R. Nakhla, Sherilyn K. D. Houle and Jeffrey G. Taylor
Pharmacy 2024, 12(3), 81; https://doi.org/10.3390/pharmacy12030081 - 22 May 2024
Viewed by 2093
Abstract
The shift of proton pump inhibitors (PPIs) from prescription to nonprescription (nonRx) status in Canada has altered pharmacist treatment options for heartburn. This report examines pharmacist approaches to therapy based on case severity; pharmacist confidence and consult duration were also explored. A 2022 [...] Read more.
The shift of proton pump inhibitors (PPIs) from prescription to nonprescription (nonRx) status in Canada has altered pharmacist treatment options for heartburn. This report examines pharmacist approaches to therapy based on case severity; pharmacist confidence and consult duration were also explored. A 2022 online survey gathered data from Ontario and Québec pharmacists regarding their therapeutic approaches for two hypothetical heartburn cases. A total of 715 pharmacists participated, with most having 1–10 years of experience. In Ontario, common choices for the milder case included a solo histamine-2 receptor antagonist (H2RA) (21.2%), combination H2RA + antacid (29.4%), and nonRx PPI (22.3%). For the more severe case, common choices for Québec were switches to nonRx H2RA (22.1%), combination H2RA + antacid (13.4%), a nonRx PPI (24.9%), or prescription PPI (22.5%). Pharmacists often recommended switching medications or referring patients with recurring symptoms after seven days. The approaches varied significantly between cases and provinces. The Ontario pharmacists favoured a combination H2RA + antacid for the milder case, while the Québec pharmacists preferred a solo H2RA. For the more severe case, both groups often chose nonRx H2RA followed by nonRx PPI. Despite the differences, the pharmacists demonstrated confidence in managing these situations. These findings highlight potential debates regarding optimal therapeutic approaches and the impact of drug scheduling on patient care. Full article
12 pages, 1602 KiB  
Article
Development of a Web Application for Simulating Plasma Drug Concentrations in Patients with Zolpidem Intoxication
by Hwa Jun Cha, Sungpil Han, Kwan Cheol Pak and Hyungsub Kim
Pharmaceutics 2024, 16(5), 689; https://doi.org/10.3390/pharmaceutics16050689 - 20 May 2024
Viewed by 1725
Abstract
Zolpidem is a widely prescribed hypnotic Z-drug used to treat short-term insomnia. However, a growing number of individuals intentionally overdose on these drugs. This study aimed to develop a predictive tool for physicians to assess patients with zolpidem overdose. A population pharmacokinetic (PK) [...] Read more.
Zolpidem is a widely prescribed hypnotic Z-drug used to treat short-term insomnia. However, a growing number of individuals intentionally overdose on these drugs. This study aimed to develop a predictive tool for physicians to assess patients with zolpidem overdose. A population pharmacokinetic (PK) model was established using digitized data obtained from twenty-three healthy volunteers after a single oral administration of zolpidem. Based on the final PK model, a web application was developed using open-source R packages such as rxode2, nonmem2rx, and shiny. The final model was a one-compartment model with first-order absorption and elimination with PK parameters, including clearance (CL, 16.9 L/h), absorption rate constant (Ka, 5.41 h−1), volume of distribution (Vd, 61.7 L), and lag time (ALAG, 0.394 h). Using the established population PK model in the current study, we developed a web application that enables users to simulate plasma zolpidem concentrations and visualize their profiles. This user-friendly web application may provide essential clinical information to physicians, ultimately helping in the management of patients with zolpidem intoxication. Full article
(This article belongs to the Special Issue Population Pharmacokinetics and Its Clinical Applications)
Show Figures

Figure 1

26 pages, 8814 KiB  
Article
Network Pharmacology, Molecular Docking, and Molecular Dynamics Simulation Analysis Reveal Insights into the Molecular Mechanism of Cordia myxa in the Treatment of Liver Cancer
by Li Li, Alaulddin Hazim Mohammed, Nazar Aziz Auda, Sarah Mohammed Saeed Alsallameh, Norah A. Albekairi, Ziyad Tariq Muhseen and Christopher J. Butch
Biology 2024, 13(5), 315; https://doi.org/10.3390/biology13050315 - 1 May 2024
Cited by 6 | Viewed by 5465
Abstract
Traditional treatments of cancer have faced various challenges, including toxicity, medication resistance, and financial burdens. On the other hand, bioactive phytochemicals employed in complementary alternative medicine have recently gained interest due to their ability to control a wide range of molecular pathways while [...] Read more.
Traditional treatments of cancer have faced various challenges, including toxicity, medication resistance, and financial burdens. On the other hand, bioactive phytochemicals employed in complementary alternative medicine have recently gained interest due to their ability to control a wide range of molecular pathways while being less harmful. As a result, we used a network pharmacology approach to study the possible regulatory mechanisms of active constituents of Cordia myxa for the treatment of liver cancer (LC). Active constituents were retrieved from the IMPPAT database and the literature review, and their targets were retrieved from the STITCH and Swiss Target Prediction databases. LC-related targets were retrieved from expression datasets (GSE39791, GSE76427, GSE22058, GSE87630, and GSE112790) through gene expression omnibus (GEO). The DAVID Gene Ontology (GO) database was used to annotate target proteins, while the Kyoto Encyclopedia and Genome Database (KEGG) was used to analyze signaling pathway enrichment. STRING and Cytoscape were used to create protein–protein interaction networks (PPI), while the degree scoring algorithm of CytoHubba was used to identify hub genes. The GEPIA2 server was used for survival analysis, and PyRx was used for molecular docking analysis. Survival and network analysis revealed that five genes named heat shot protein 90 AA1 (HSP90AA1), estrogen receptor 1 (ESR1), cytochrome P450 3A4 (CYP3A4), cyclin-dependent kinase 1 (CDK1), and matrix metalloproteinase-9 (MMP9) are linked with the survival of LC patients. Finally, we conclude that four extremely active ingredients, namely cosmosiin, rosmarinic acid, quercetin, and rubinin influence the expression of HSP90AA1, which may serve as a potential therapeutic target for LC. These results were further validated by molecular dynamics simulation analysis, which predicted the complexes with highly stable dynamics. The residues of the targeted protein showed a highly stable nature except for the N-terminal domain without affecting the drug binding. An integrated network pharmacology and docking study demonstrated that C. myxa had a promising preventative effect on LC by working on cancer-related signaling pathways. Full article
Show Figures

Figure 1

20 pages, 374 KiB  
Review
Personalized, Precision Medicine to Cure Alzheimer’s Dementia: Approach #1
by Jeffrey Fessel
Int. J. Mol. Sci. 2024, 25(7), 3909; https://doi.org/10.3390/ijms25073909 - 31 Mar 2024
Cited by 4 | Viewed by 2767
Abstract
The goal of the treatment for Alzheimer’s dementia (AD) is the cure of dementia. A literature review revealed 18 major elements causing AD and 29 separate medications that address them. For any individual with AD, one is unlikely to discern which major causal [...] Read more.
The goal of the treatment for Alzheimer’s dementia (AD) is the cure of dementia. A literature review revealed 18 major elements causing AD and 29 separate medications that address them. For any individual with AD, one is unlikely to discern which major causal elements produced dementia. Thus, for personalized, precision medicine, all causal elements must be treated so that each individual patient will have her or his causal elements addressed. Twenty-nine drugs cannot concomitantly be administered, so triple combinations of drugs taken from that list are suggested, and each triple combination can be administered sequentially, in any order. Ten combinations given over 13 weeks require 2.5 years, or if given over 26 weeks, they require 5.0 years. Such sequential treatment addresses all 18 elements and should cure dementia. In addition, any comorbid risk factors for AD whose first presence or worsening was within ±1 year of when AD first appeared should receive appropriate, standard treatment together with the sequential combinations. The article outlines a randomized clinical trial that is necessary to assess the safety and efficacy of the proposed treatments; it includes a triple-drug Rx for equipoise. Clinical trials should have durations of both 2.5 and 5.0 years unless the data safety monitoring board (DSMB) determines earlier success or futility since it is uncertain whether three or six months of treatment will be curative in humans, although studies in animals suggest that the briefer duration of treatment might be effective and restore defective neural tracts. Full article
(This article belongs to the Special Issue Neuroinflammatory Mediator in Neurodegenerative Disease)
10 pages, 1221 KiB  
Article
In Vivo Deposition of High-Flow Nasal Aerosols Using Breath-Enhanced Nebulization
by Jeyanthan Jayakumaran and Gerald C. Smaldone
Pharmaceutics 2024, 16(2), 182; https://doi.org/10.3390/pharmaceutics16020182 - 28 Jan 2024
Cited by 2 | Viewed by 1666
Abstract
Aerosol delivery using conventional nebulizers with fixed maximal output rates is limited and unpredictable under high-flow conditions. This study measured regulated aerosol delivery to the lungs of normal volunteers using a nebulizer designed to overcome the limitations of HFNC therapy (i-AIRE (InspiRx, [...] Read more.
Aerosol delivery using conventional nebulizers with fixed maximal output rates is limited and unpredictable under high-flow conditions. This study measured regulated aerosol delivery to the lungs of normal volunteers using a nebulizer designed to overcome the limitations of HFNC therapy (i-AIRE (InspiRx, Inc., Somerset, NJ, USA)). This breath-enhanced jet nebulizer, in series with the high-flow catheter, utilizes the high flow to increase aerosol output beyond those of conventional devices. Nine normal subjects breathing tidally via the nose received humidified air at 60 L/min. The nebulizer was connected to the HFNC system upstream to the humidifier and received radio-labeled saline as a marker for drug delivery (99mTc DTPA) infused by a syringe pump (mCi/min). The dose to the subject was regulated at 12, 20 and 50 mL/h. Rates of aerosol deposition in the lungs (µCi/min) were measured via a gamma camera for each infusion rate and converted to µg NaCl/min. The deposition rate, as expressed as µg of NaCl/min, was closely related to the infusion rate: 7.84 ± 3.2 at 12 mL/h, 43.0 ± 12 at 20 mL/h and 136 ± 45 at 50 mL/h. The deposition efficiency ranged from 0.44 to 1.82% of infused saline, with 6% deposited in the nose. A regional analysis indicated peripheral deposition of aerosol (central/peripheral ratio 0.99 ± 0.27). The data were independent of breathing frequency. Breath-enhanced nebulization via HFNC reliably delivered aerosol to the lungs at the highest nasal airflows. The rate of delivery was controlled simply by regulating the infusion rate, indicating that lung deposition in the critically ill can be titrated clinically at the bedside. Full article
(This article belongs to the Section Pharmaceutical Technology, Manufacturing and Devices)
Show Figures

Figure 1

8 pages, 911 KiB  
Article
Analyzing Black Market Sales of the Second-Line ADHD Medication Atomoxetine
by Sophie A. Roe, Dayna S. DeSalve and Brian J. Piper
Pharmacoepidemiology 2023, 2(4), 320-327; https://doi.org/10.3390/pharma2040027 - 7 Nov 2023
Viewed by 4353
Abstract
Research Question and Objective: While the number of pharmacoepidemiological studies on stimulant-based ADHD medications has expanded rapidly in recent years, likely due to the stimulant shortage, few studies have analyzed non-stimulant ADHD medications from a pharmacoepidemiological perspective. Such research is important because a [...] Read more.
Research Question and Objective: While the number of pharmacoepidemiological studies on stimulant-based ADHD medications has expanded rapidly in recent years, likely due to the stimulant shortage, few studies have analyzed non-stimulant ADHD medications from a pharmacoepidemiological perspective. Such research is important because a significant number of individuals with ADHD have medical or psychiatric conditions that preclude stimulant use. Furthermore, no studies, to our knowledge, have analyzed atomoxetine exchanges on the black market. In this report, we seek to fill both these gaps in the research by analyzing black market diversions of atomoxetine, a non-stimulant medication for ADHD. As ADHD medication diversion is a growing issue, we also hypothesize the pharmacoepidemiologic contributors to and implications of such diversion. Method: This study analyzed black market atomoxetine purchases entered on the web-based platform StreetRx between January 2015 and July 2019. Data included the generic drug name, dosage, purchase price, date, and location in the United States. The mean price per milligram was determined and a heatmap was generated. Results: The average price per milligram of 113 diverted atomoxetine submissions was USD 1.35 (±USD 2.76 SD) (Median = USD 0.05, Min = USD 0.01, Max = USD 20.00). The states with the most submissions included Michigan (11), Pennsylvania (9), Indiana (8), and Ohio (8). Conclusion: The cost per milligram of atomoxetine on the black market is over 50 times the cost per milligram of the generic prescribed form. Future qualitative studies should investigate reasons why individuals are motivated to purchase atomoxetine, a non-stimulant medication, on the black market (recreational vs. nootropic vs. other clinical uses). Full article
(This article belongs to the Special Issue Pharmacoepidemiology and Addiction)
Show Figures

Figure 1

Back to TopTop