Associations between Suspected Adverse Drug Reactions of HMG-CoA Reductase Inhibitors and Polypharmacology Using a National Registry Approach
Abstract
:1. Introduction
2. Aims
3. Results
3.1. Physicochemical Properties and Pharmacokinetics
3.2. Target Affinity
3.3. Adverse Drug Reactions
4. Discussion
4.1. ADR Incidence
4.2. Physicochemical Properties
4.3. Pharmacological Interactions
4.4. Limitations
5. Methods
5.1. Chemical Properties and Pharmacology
5.2. Pharmacological Interactions
5.3. Suspected Adverse Drug Reaction (ADR) Data
5.4. Prescribing Data
5.5. Statistical Analysis
5.6. Ethical Approval
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rang, H.P. Drugs affecting major organ systems. In Rang and Dale’s Pharmacology, 9th ed.; Churchill Livingstone: Edinburgh, UK, 2020; pp. 314–315. [Google Scholar]
- Brown, M.S.; Goldstein, J.L. A receptor-mediated pathway for cholesterol homeostasis. Science 1986, 232, 34–47. [Google Scholar] [CrossRef]
- Mortensen, M.B.; Nordestgaard, B.G. Elevated LDL cholesterol and increased risk of myocardial infarction and atherosclerotic cardiovascular disease in individuals aged 70–100 Years: A contemporary primary prevention cohort. Lancet 2020, 396, 1644–1652. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, S.M.; Defina, L.F.; Leonard, D.; Barlow, C.E.; Radford, N.B.; Willis, B.L.; Rohatgi, A.; McGuire, D.K.; de Lemos, J.A.; Grundy, S.M.; et al. Long-term association of low-density lipoprotein cholesterol with cardiovascular mortality in individuals at low 10-year risk of atherosclerotic cardiovascular disease. Circulation 2018, 138, 2315–2325. [Google Scholar] [CrossRef]
- Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian simvastatin survival study (4S). Lancet 1994, 344, 1383–1389. [CrossRef]
- Cholesterol Treatment Trialists’ (CTT) Collaborators. The effects of lowering LDL cholesterol with statin therapy in people at low risk of vascular disease: Meta-analysis of individual data from 27 randomised trials. Lancet 2012, 380, 581–590. [Google Scholar] [CrossRef]
- NHS. Statins. Available online: https://www.nhs.uk/conditions/statins/ (accessed on 15 December 2022).
- Edwards, I.R.; Aronson, J.K. Adverse drug reactions: Definitions, diagnosis, and management. Lancet 2000, 356, 1255–1259. [Google Scholar] [CrossRef] [PubMed]
- Pedro-Botet, J.; Núñez-Cortés, J.M.; Flores, J.A.; Rius, J. Muscle symptoms related with statin therapy in general practice. Atherosclerosis 2015, 241, e197. [Google Scholar] [CrossRef]
- Lotteau, S.; Ivarsson, N.; Yang, Z.; Restagno, D.; Colyer, J.; Hopkins, P.; Weightman, A.; Himori, K.; Yamada, T.; Bruton, J.; et al. A mechanism for statin-induced susceptibility to myopathy. JACC Basic Transl. Sci. 2019, 4, 509–523. [Google Scholar] [CrossRef]
- Isackson, P.J.; Wang, J.; Zia, M.; Spurgeon, P.; Levesque, A.; Bard, J.; James, S.; Nowak, N.; Lee, T.K.; Vladutiu, G.D. RYR1 and CACNA1S genetic variants identified with statin-associated muscle symptoms. Pharmacogenomics 2018, 19, 1235–1249. [Google Scholar] [CrossRef]
- Chou, R.; Cantor, A.; Dana, T. Statin Use for the Primary Prevention of Cardiovascular Disease in Adults: A Systematic Review for the U.S. Preventive Services Task Force. National Center for Biotechnology Information. Available online: https://www.ncbi.nlm.nih.gov/books (accessed on 7 January 2023).
- Omar, M.A.; Wilson, J.P. FDA adverse event reports on statin-associated rhabdomyolysis. Ann. Pharmacother. 2002, 36, 288–295. [Google Scholar] [CrossRef]
- Reith, C.; Reith, C.; Reith, C.; Baigent, C.; Baigent, C.; Baigent, C.; Blackwell, L.; Blackwell, L.; Blackwell, L.; Emberson, J.; et al. Effect of statin therapy on muscle symptoms: An individual participant data meta-analysis of large-scale, randomised, double-blind trials. Lancet 2022, 400, 832–845. [Google Scholar] [CrossRef]
- Jones, L.; Jones, A.M. Suspected Adverse Drug Reactions of the Type 2 Antidiabetic Drug class Dipeptidy-Peptidase IV inhbitors (DPP4i): Can polypharmacology help explain? Pharmacol. Res. Perspect. 2022, 10, e01029. [Google Scholar] [CrossRef] [PubMed]
- Salim, H.; Jones, A.M. Angiotensin II Receptor Blockers (ARBs) and Manufacturing Contamination: A Retrospective National Register Study into suspected associated adverse drug reactions. Brit. J. Clin. Pharmacol. 2022, 88, 4812–4827. [Google Scholar] [CrossRef] [PubMed]
- Sandhu, D.; Antolin, A.A.; Cox, A.R.; Jones, A.M. Identification of different side effects between PARP inhibitors and their polypharmacological multi-target rationale. Brit. J. Clin. Pharmacol. 2022, 88, 742–752. [Google Scholar] [CrossRef] [PubMed]
- Matharu, K.; Chana, K.; Ferro, C.; Jones, A.M. Polypharmacology of clinical sodium glucose co-transport protein 2 inhibitors and relationship to suspected adverse drug reactions. Pharmacol. Res. Perspect. 2021, 9, e00867. [Google Scholar] [CrossRef] [PubMed]
- Ferro, C.J.; Solkhon, F.; Jalal, Z.; Al-Hamid, A.M.; Jones, A.M. Relevance of physicochemical properties and functional pharmacology data to predict the clinical safety profile of direct oral anticoagulants. Pharmacol. Res. Perspect. 2020, 8, e00603. [Google Scholar] [CrossRef] [PubMed]
- Averbukh, L.D.; Turshudzhyan, A.; Wu, D.C.; Wu, G.Y. Statin-induced Liver Injury Patterns: A Clinical Review. J. Clin. Transl. Hepatol. 2022, 28, 543–552. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Health and Care Excellence. 1.9 Optimising treatment for people on statins: Grouping of Statins: Cardiovascular Disease: Risk Assessment and Reduction, Including Lipid Modification: Guidance. Available online: https://www.nice.org.uk/guidance/ng238/chapter/recommendations#optimising-treatment-for-people-on-statins-4 (accessed on 1 January 2023).
- National Institute for Health and Care Excellence. Recommendations: Cardiovascular Disease: Risk Assessment and Reduction, Including Lipid Modification: Guidance. Available online: https://www.nice.org.uk/guidance/cg181/chapter/Recommendations#lipid-modification-therapy-for-the-primary-and-secondary-prevention-of-cvd-2 (accessed on 1 January 2023).
- Mansour, M.; Carrozza, J.P.; Kuntz, R.E.; Fishman, R.F.; Pomerantz, R.M.; Senerchia, C.C.; Safian, R.D.; Diver, D.J.; Baim, D.S. Frequency and outcome of chest pain after two new coronary interventions (atherectomy and stenting). Am. J. Cardiol. 1992, 69, 1379–1382. [Google Scholar] [CrossRef] [PubMed]
- Naci, H.; Brugts, J.; Ades, T. Comparative tolerability and harms of individual statins. Circ. Cardiovasc. Qual. Outcomes 2013, 6, 390–399. [Google Scholar] [CrossRef]
- Schachter, M. Chemical, pharmacokinetic and pharmacodynamic properties of statins: An update. Fundam. Clin. Pharmacol. 2005, 19, 117–125. [Google Scholar] [CrossRef]
- Wood, W.G.; Eckert, G.P.; Igbavboa, U.; Müller, W.E. Statins and neuroprotection. Ann. N. Y. Acad. Sci. 2010, 1199, 69–76. [Google Scholar] [CrossRef]
- McFarland, A.J.; Anoopkumar-Dukie, S.; Arora, D.S.; Grant, G.D.; McDermott, C.M.; Perkins, A.V.; Davey, A.K. Molecular mechanisms underlying the effects of statins in the Central Nervous System. Int. J. Mol. Sci. 2014, 15, 20607–20637. [Google Scholar] [CrossRef] [PubMed]
- Shitara, Y. Clinical importance of OATP1B1 and OATP1B3 in drug drug interactions. Drug Metab. Pharmacokinet. 2011, 26, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Niemi, M. Transporter pharmacogenetics and statin toxicity. Clin. Pharmacol. Ther. 2009, 87, 130–133. [Google Scholar] [CrossRef] [PubMed]
- Shitara, Y.; Takeuchi, K.; Nagamatsu, Y.; Wada, S.; Sugiyama, Y.; Horie, T. Long-lasting inhibitory effects of cyclosporin A, but not tacrolimus, on OATP1B1- and OATP1B3-mediated uptake. Drug Metab. Pharmacokinet. 2012, 27, 368–378. [Google Scholar] [CrossRef] [PubMed]
- Matzno, S.; Yamauchi, T.; Gohda, M.; Ishida, N.; Katsuura, K.; Hanasaki, Y.; Tokunaga, T.; Itoh, H.; Nakamura, N. Inhibition of cholesterol biosynthesis by squalene epoxidase inhibitor avoids apoptotic cell death in L6 myoblasts. J. Lipid Res. 1997, 38, 1639–1648. [Google Scholar] [CrossRef] [PubMed]
- Chugh, A. Squalene epoxidase as hypocholesterolemic drug target revisited. Prog. Lipid Res. 2003, 42, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H. Photoreceptor-specific nuclear receptor NR2E3 functions as a transcriptional activator in rod photoreceptors. Hum. Mol. Genet. 2004, 13, 1563–1575. [Google Scholar] [CrossRef]
- Hazell, L.; Shakir, S.A. Under-reporting of Adverse Drug Reactions. Drug Saf. 2006, 29, 385–396. [Google Scholar] [CrossRef] [PubMed]
- Chong, P.H.; Seeger, J.D.; Franklin, C. Clinically relevant differences between the statins: Implications for therapeutic selection. Am. J. Med. 2001, 111, 390–400. [Google Scholar] [CrossRef]
- European Molecular Biology Laboratory. Chembl Database. EMBL-EBI Homepage. Available online: https://www.ebi.ac.uk/chembl/ (accessed on 30 November 2022).
- Electronic Medicines Compendium. Home—Electronic Medicines Compendium (EMC). Available online: https://www.medicines.org.uk/emc (accessed on 30 November 2022).
- Van de Waterbeemd, H.; Camenisch, G.; Folkers, G.; Chretien, J.R.; Raevsky, O.A. Estimation of blood-brain barrier crossing of drugs using molecular size and shape, and H-bonding descriptors. J. Drug Target. 1998, 6, 151–165. [Google Scholar] [CrossRef]
- Pajouhesh, H.; Lenz, G.R. Medicinal chemical properties of successful Central Nervous System Drugs. Neurotherapeutics 2005, 2, 541–553. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, A.L.; Keserü, G.M.; Leeson, P.D.; Rees, D.C.; Reynolds, C.H. The role of ligand efficiency metrics in drug discovery. Nat. Rev. Drug Discov. 2014, 13, 105–121. [Google Scholar] [CrossRef] [PubMed]
- Hann, M.M. Molecular obesity, potency and other addictions in Drug Discovery. MedChemComm 2011, 2, 349–355. [Google Scholar] [CrossRef]
- Lins, R.L.; Matthys, K.E.; Verpooten, G.A.; Peeters, P.C.; Dratwa, M.; Stolear, J.-C.; Lameire, N.H. Pharmacokinetics of atorvastatin and its metabolites after single and multiple dosing in hypercholesterolaemic haemodialysis patients. Nephrol. Dial. Transplant. 2003, 18, 967–976. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.R.; Chen, W.L.; Chu, N.N.; Li, X.N.; Zhu, J.R. The difference in pharmacokinetics and pharmacodynamics between extended-release fluvastatin and immediate-release fluvastatin in healthy Chinese subjects. J. Biomed. Biotechnol. 2012, 2012, 386230. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.; Xue, H.; Liu, H.; Cao, L. Study on bioequivalence of pravastatin sodium tablets in healthy volunteers. Chin. Pharm. Sci. 2005, 40, 451–453. [Google Scholar]
- Martin, P.D.; Warwick, M.J.; Dane, A.L.; Hill, S.J.; Giles, P.B.; Phillips, P.J.; Lenz, E. Metabolism, excretion, and pharmacokinetics of rosuvastatin in healthy adult male volunteers. Clin. Ther. 2003, 25, 2822–2835. [Google Scholar] [CrossRef] [PubMed]
- FDA: Center for Drug Evaluation and Research. Drug approval package. Clinical Pharmacology and Biopharmaceutics Review(s). Available online: https://www.accessdata.fda.gov/drugsatfda_docs/nda/2016/206679Orig1s000ClinPharmR.pdf (accessed on 16 December 2022).
- DrugBank Online: Database for Drug and Drug Target Info. Available online: https://go.drugbank.com/ (accessed on 18 December 2022).
- Alakhali, K. Pharmacokinetic of simvastatin study in Malaysian subjects. IOSR J. Pharm. 2013, 3, 46–51. [Google Scholar] [CrossRef]
- Goard, C.A.; Mather, R.G.; Vinepal, B.; Clendening, J.W.; Martirosyan, A.; Boutros, P.C.; Sharom, F.J.; Penn, L.Z. Differential interactions between statins and P-glycoprotein: Implications for exploiting statins as Anticancer Agents. Int. J. Cancer 2010, 127, 2936–2948. [Google Scholar] [CrossRef]
- Medicines and Healthcare Products Regulatory Agency. What is Being Reported. YellowCard. Available online: https://yellowcard.mhra.gov.uk/idaps (accessed on 30 November 2022).
- Bennett Institute for Applied Data Science, Department of Primary Care Health Sciences, University of Oxford. All Chemicals. OpenPrescribing. Available online: https://openprescribing.net/chemical/ (accessed on 5 December 2022).
Property vs. Drug | Atorvastatin | Fluvastatin | Pravastatin | Rosuvastatin | Simvastatin |
---|---|---|---|---|---|
cLog10P | 5.39 | 3.83 | 1.65 | 1.92 | 4.46 |
pIC50 | 8.06 | 7.85 | 7.52 | 8.35 | 7.59 |
LLE | 2.67 | 4.02 | 5.87 | 6.43 | 3.13 |
Log10D7.4 | 2.43 | 1.05 | −1.38 | −1.24 | 4.46 |
MW (Da) | 558.65 | 411.47 | 424.53 | 481.55 | 418.57 |
pKa | 4.31 | 4.54 | 4.21 | 4 | Neutral |
tPSA (Å) | 111.79 | 82.69 | 124.29 | 140.92 | 72.83 |
HB acceptors | 5 | 4 | 6 | 7 | 5 |
HB donors | 4 | 3 | 4 | 3 | 1 |
Bioavailability (F, %) | 12 | 24 | 17 | 20 | <5 |
Cmax (nM) | 118.5 | 687.78 | 189.57 | 39.04 | 130.71 |
Half-life (h) | 14 | 2.3 | 1.5–2 | 19 | 1.9 |
Vd (L/kg) | 381 | 330 | 0.5 | 134 | 233 |
PPB | ≥98% | >98% | 50% | 90% | >95% |
P-Glycoprotein substrate | Yes | No | No | No | Likely |
Liver CYP450 metabolism | 3A4 | 2C9, 3A4, 2C8 | Minimal | Minimal | 3A4, 3A5, 2C8, 2C9 |
Dosing regime | 10–80 mg OD | 20–80 mg OD/BID | 10–40 mg OD | 5–20 mg OD | 10–80 mg OD |
Target vs. Drug | Atorvastatin (µM) | Fluvastatin (µM) | Pravastatin (µM) | Rosuvastatin (µM) | Simvastatin (µM) |
---|---|---|---|---|---|
HMG-CoA Reductase | 0.009 | 0.014 | 0.03 | 0.005 | 0.026 |
OATP1B1 | 0.81 | n.r. | 3.6 | n.r. | 7.9 |
OATP1B3 | 3.4 | n.r. | 62 | n.r. | n.r. |
OATP2B1 | n.r. | n.r. | 190 | n.r. | n.r. |
CYP P450 2C9 | n.r. | 0.4 | n.r. | n.r. | 30 |
CYP P450 3A4 | 5.1 | n.r. | n.r. | n.r. | 30 |
CYP P450 2C8 | n.r. | n.r. | n.r. | n.r. | 3.7 |
CYP P450 2D6 | n.r. | n.r. | n.r. | n.r. | 30 |
CYP P450 2C19 | n.r. | n.r. | n.r. | n.r. | 30 |
CYP P450 1A2 | n.r. | n.r. | n.r. | n.r. | 30 |
HDAC1 | 11.4 | n.r. | n.r. | n.r. | n.r. |
HDAC6 | 14.3 | n.r. | n.r. | n.r. | n.r. |
HDAC2 | 22.5 | n.r. | n.r. | n.r. | n.r. |
BSEP4 | 13 | 36.1 | 133 | 133 | 24.7 |
MDRAP4 | 88.5 | 133 | 133 | 26.8 | 133 |
CMOAT1 | 133 | n.r. | 133 | 133 | 79 |
CMOAT2 | 14.2 | 57 | 125 | 58.3 | 133 |
P-glycoprotein 1 | 289 | 26.1 | |||
NR2E3 | n.r. | 0.53 | n.r. | n.r. | 1.2 |
SMO | n.r. | n.r. | 10 | n.r. | n.r. |
hOAT1 | n.r. | n.r. | 408 | n.r. | n.r. |
hOAT2 | n.r. | n.r. | 352 | n.r. | n.r. |
hOAT3 | n.r. | n.r. | 13.7 | n.r. | n.r. |
hOAT4 | n.r. | n.r. | 591 | n.r. | n.r. |
Cmax | 0.12 | 0.69 | 0.19 | 0.04 | 0.13 |
Atorvastatin | Fluvastatin | Pravastatin | Rosuvastatin | Simvastatin | p-Values | |
---|---|---|---|---|---|---|
Total Prescriptions | 226,846,930 | 496,892 | 11,536,965 | 13,173,853 | 94,630,298 | - |
Total ADRs | 4782 (2.11) | 28 (5.64) | 408 (3.54) | 644 (4.89) | 1331 (1.41) | 0.46 |
Total Fatalities | 20 (0.01) | 0 (0.00) | 3 (0.03) | 1 (0.01) | 6 (0.01) | - |
Gastrointestinal disorders | ||||||
Total ADRs | 549 (0.242) | 2 (0.403) | 42 (0.364) | 73 (0.554) | 130 (0.137) | 0.99 |
Total Fatalities | 3 (0.001) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | - |
General disorders and administration site conditions | ||||||
Total ADRs | 555 (0.245) | 4 (0.805) | 56 (0.485) | 65 (0.493) | 150 (0.159) | 0.96 |
Total Fatalities | 5 (0.002) | 0 (0) | 2 (0.017) | 0 (0) | 2 (0.002) | - |
Injury, poisoning and procedural complications | ||||||
Total ADRs | 161 (0.071) | 0 (0) | 25 (0.217) | 8 (0.061) | 93 (0.098) | 0.99 |
Total Fatalities | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (0.001) | - |
Investigations | ||||||
Total ADRs | 279 (0.123) | 1 (0.201) | 8 (0.069) | 18 (0.137) | 75 (0.079) | - |
Total Fatalities | 0 (0) | 0 (0) | 1 (0.009) | 0 (0) | 0 (0) | - |
Musculoskeletal and connective tissue disorders | ||||||
Total ADRs | 1057 (0.466) | 12 (2.415) | 77 (0.667) | 193 (1.465) | 306 (0.323) | 0.58 |
Total Fatalities | 3 (0.001) | 0 (0) | 0 (0) | 0 (0) | 1 (0.001) | - |
Nervous system disorders | ||||||
Total ADRs | 533 (0.235) | 4 (0.805) | 45 (0.390) | 93 (0.706) | 113 (0.119) | 0.94 |
Total Fatalities | 1 (0.0004) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | - |
Psychiatric disorders | ||||||
Total ADRs | 259 (0.114) | 1 (0.201) | 33 (0.286) | 40 (0.304) | 76 (0.080) | 1 |
Total Fatalities | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 1 (0.001) | - |
Skin and subcutaneous tissue disorders | ||||||
Total ADRs | 367 (0.162) | 1 (0.201) | 41 (0.355) | 59 (0.448) | 100 (0.106) | 0.99 |
Total Fatalities | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | - |
Statins | p-Value |
---|---|
fluvastatin vs. atorvastatin | 0.15 |
fluvastatin vs. pravastatin | 0.17 |
fluvastatin vs. rosuvastatin | 0.17 |
fluvastatin vs. simvastatin | 0.14 |
atorvastatin vs. simvastatin | 0.35 |
atorvastatin vs. pravastatin | 0.48 |
atorvastatin vs. rosuvastatin | 0.49 |
pravastatin vs. rosuvastatin | 0.59 |
pravastatin vs. simvastatin | 0.41 |
rosuvastatin vs. simvastatin | 0.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yousaf, H.; Jones, A.M. Associations between Suspected Adverse Drug Reactions of HMG-CoA Reductase Inhibitors and Polypharmacology Using a National Registry Approach. Pharmacoepidemiology 2024, 3, 241-251. https://doi.org/10.3390/pharma3030016
Yousaf H, Jones AM. Associations between Suspected Adverse Drug Reactions of HMG-CoA Reductase Inhibitors and Polypharmacology Using a National Registry Approach. Pharmacoepidemiology. 2024; 3(3):241-251. https://doi.org/10.3390/pharma3030016
Chicago/Turabian StyleYousaf, Hasan, and Alan M. Jones. 2024. "Associations between Suspected Adverse Drug Reactions of HMG-CoA Reductase Inhibitors and Polypharmacology Using a National Registry Approach" Pharmacoepidemiology 3, no. 3: 241-251. https://doi.org/10.3390/pharma3030016
APA StyleYousaf, H., & Jones, A. M. (2024). Associations between Suspected Adverse Drug Reactions of HMG-CoA Reductase Inhibitors and Polypharmacology Using a National Registry Approach. Pharmacoepidemiology, 3(3), 241-251. https://doi.org/10.3390/pharma3030016