Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = Rosa roxburghii Tratt fruit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3549 KB  
Article
A Proanthocyanidins-Rich Cili (Rosa roxburghii) Fruit Extract Protects CCl4-Induced Mouse Hepatic Fibrosis via Modulation of Ferroptosis and Gut Microbiota
by Yang Liu, Jingzhong Zheng, Xin Zheng, Dan Zhou, Hang Ma, Xue Zhou and Fahuan Ge
Nutrients 2025, 17(21), 3463; https://doi.org/10.3390/nu17213463 - 3 Nov 2025
Viewed by 1229
Abstract
Background: Cili (Rosa roxburghii Tratt) is a unique fruit native to China’s Yunnan–Guizhou Plateau, rich in vitamin C, polyphenols, and triterpene, with broad health-promoting effects. Although cili’s hepatoprotective properties are reported, the bioactive components and underlying mechanisms remain poorly defined. Methods: We [...] Read more.
Background: Cili (Rosa roxburghii Tratt) is a unique fruit native to China’s Yunnan–Guizhou Plateau, rich in vitamin C, polyphenols, and triterpene, with broad health-promoting effects. Although cili’s hepatoprotective properties are reported, the bioactive components and underlying mechanisms remain poorly defined. Methods: We enriched proanthocyanidins from cili using column chromatography, identified their components via UPLC-Q-TOF-MS/MS, and validated their anti-liver fibrosis effects through in vitro and in vivo experiments. Results: Herein, we developed a novel proanthocyanidin-rich cili fruit extract (PACs-CFE) containing 84.2% total proanthocyanidins, comprising catechins, epicatechins, and diverse B-type dimers, trimers, tetramers, and gallate esters, as characterized by UPLC-Q-TOF-MS/MS. PACs-CFE inhibited LX-2 activation, suppressed collagen III and α-SMA expression, and induced ferroptosis via mitochondrial injury, reactive oxygen species accumulation, and GPX4/ferritin downregulation. In vivo, PACs-CFE ameliorated liver fibrosis, restored hepatic architecture, and improved serum alanine aminotransferase, aspartate aminotransferase, and bilirubin profiles. Moreover, PACs-CFE modulated the TGF-β1/Smad3 signaling pathway and beneficially reshaped the gut microbiota, enriching anti-inflammatory and hepatoprotective genera while reducing pathogenic taxa. Conclusions: Our findings show that PACs-CFE exerts multi-targeted anti-fibrotic effects through hepatic stellate cell inactivation, ferroptosis induction, TGF-β1/Smad3 suppression, and gut–liver axis modulation. This study provides useful insight into the hepatoprotective potential of cili fruit and supports its development as standardized functional ingredients for liver health. Full article
Show Figures

Figure 1

16 pages, 7825 KB  
Article
Genome-Wide Characterization and Identification of Auxin Response Factor (ARF) Gene Family Reveals the Regulation of RrARF5 in AsA Metabolism in Rosa roxburghii Tratt. Fruits
by Tu Feng, Zhengliang Sun, Mingchun Liu, Hong Zhao, Yizhong Zhang, Pedro Garcia-Caparros, Bin Yang and Yingdie Yang
Biology 2025, 14(9), 1156; https://doi.org/10.3390/biology14091156 - 1 Sep 2025
Viewed by 850
Abstract
Rosa roxburghii Tratt., a fruit crop known for its high Vitamin C content and other nutritional compounds, has not yet been studied for its auxin response factor (ARF) family members. ARFs are important proteins in auxin-mediated pathways, playing a vital role [...] Read more.
Rosa roxburghii Tratt., a fruit crop known for its high Vitamin C content and other nutritional compounds, has not yet been studied for its auxin response factor (ARF) family members. ARFs are important proteins in auxin-mediated pathways, playing a vital role in plant physiological and biochemical processes such as plant development, and flower and fruit maturation. In the present study, we identified 14 ARF genes (designated as RrARFs) in R. roxburghii, which are distributed across seven chromosomes and grouped into four subfamilies. An analysis of cis-acting elements revealed that these genes might be involved in various biological processes, including plant development, flower development, light responses, cell cycle regulation, phytohormone responses, and responses to abiotic and biotic stresses. A gene expression analysis demonstrated differential expression of RrARF genes across different tissues and stages of fruit development, with four members showing higher expression during the fruit ripening stages. Furthermore, a coexpression analysis identified that RrARF5 was highly coexpressed with RrMDHAR1, a key enzyme involved in Vitamin C biosynthesis. Moreover, transactivation assays and transient overexpression experiments confirmed that RrARF5 activates the transcription of RrMDHAR1. The findings of this study suggest a potential role of the ARF gene family in Vitamin C accumulation in R. roxburghii and enhance our understanding of the diverse regulatory function of the ARF gene family in plants. Full article
(This article belongs to the Section Plant Science)
Show Figures

Figure 1

18 pages, 2301 KB  
Article
Optimization, Structural Characterization, and Bioactivities of Polysaccharides from Rosa roxburghii Tratt Fruit Using Enzyme-Assisted Extraction
by Qing Chen, Yue Zhang, Siyuan Zheng, Siming Zhu and Chao Li
Foods 2025, 14(14), 2423; https://doi.org/10.3390/foods14142423 - 9 Jul 2025
Cited by 1 | Viewed by 1430
Abstract
This study aimed to optimize the enzyme-assisted extraction of polysaccharides (RTFPs) from Rosa roxburghii fruit using response surface methodology. Under the optimal extraction conditions, the yield of RTFPs reached 14.02%, which was close to the predicted value of 13.96%. The primary structural characteristics [...] Read more.
This study aimed to optimize the enzyme-assisted extraction of polysaccharides (RTFPs) from Rosa roxburghii fruit using response surface methodology. Under the optimal extraction conditions, the yield of RTFPs reached 14.02%, which was close to the predicted value of 13.96%. The primary structural characteristics and the antioxidative and immunomodulatory activities of RTFPs were also examined. Structural characterization revealed that RTFPs comprise 36.38% neutral sugar, 48.83% uronic acid, and 7.29% protein. Their heteropolysaccharide structure features two distinct molecular weight fractions (1.87 × 105 Da and 4.75 × 103 Da) and a monosaccharide composition dominated by glucose (38.93%), arabinose (20.66%), galactose (20.58%), galacturonic acid (10.94%), and xylose (6.52%). Antioxidant assays demonstrated potent radical scavenging activity, with IC50 values of 11 μg/mL (DPPH) and 150 μg/mL (ABTS), comparable to conventional antioxidants. Immunomodulatory studies on RAW264.7 macrophages revealed that RTFPs (100–400 μg/mL) significantly enhanced phagocytosis by 12.61–76.63% and stimulated the secretion of nitric oxide (NO) and tumor necrosis factor-α (TNF-α). These bioactivities are attributed to RTFPs’ high uronic acid content, moderate molecular weight distribution, unique monosaccharide profile, and highly branched conformation. Full article
Show Figures

Figure 1

15 pages, 2664 KB  
Article
The Phytochemical Characterization of a Cili (Rosa roxburghii) Fruit Low-Temperature Extract with Hepatoprotective Effects
by Rifeng He, Ziling Lian, Zhongjun Cheng, Yang Liu, Xiaoyan Peng, Yong Wang, Hang Ma, Xue Zhou and Fahuan Ge
Foods 2025, 14(8), 1301; https://doi.org/10.3390/foods14081301 - 9 Apr 2025
Cited by 3 | Viewed by 1166
Abstract
Cili (Rosa roxburghii Tratt) fruit is a nutrient-rich edible plant known for its antioxidant and hepatoprotective properties. However, conventional extraction methods often lead to the degradation of its bioactive compounds. In this study, we developed a low-temperature homogenate-assisted high-pressure disruption extraction (HHPD) [...] Read more.
Cili (Rosa roxburghii Tratt) fruit is a nutrient-rich edible plant known for its antioxidant and hepatoprotective properties. However, conventional extraction methods often lead to the degradation of its bioactive compounds. In this study, we developed a low-temperature homogenate-assisted high-pressure disruption extraction (HHPD) method to obtain a phytochemically enriched cili fruit extract (HHPD-CFE). The chemical characterization of the HHPD-CFE showed that it contained higher levels of polyphenols, polysaccharides, and superoxide dismutase (SOD) than those in conventional squeeze extraction. The hepatoprotective effects of the HHPD-CFE were evaluated in oxidative stress-induced liver injury and hepatic fibrosis models. The HHPD-CFE mitigated oxidative damage by reducing malondialdehyde while enhancing SOD and glutathione activity. Additionally, the HHPD-CFE inhibited the activation of hepatic stellate cells (HSC-T6) and reduced collagen deposition, suggesting a protective role against liver fibrosis. These findings support that the HHPD-CFE is a promising botanical extract with enriched bioactive compounds and liver-protective properties. This study supports the potential application of optimized extraction techniques to preserve thermosensitive compounds and improve the efficacy of functional foods for liver health. Full article
Show Figures

Graphical abstract

16 pages, 3013 KB  
Article
Integrated Analysis of Transcriptomics and Proteomics Provides Insights into the Accumulation Mechanism of Ascorbic Acid in Rosa roxburghii Tratt
by Pei Li, Bo Mu, Jing Liu, Wenqing Wu, Can He, Boxi Tan, Shijing Tang and Lu Yu
Foods 2025, 14(5), 748; https://doi.org/10.3390/foods14050748 - 22 Feb 2025
Viewed by 1655
Abstract
Rosa roxburghii Tratt (RRT) is widely cultivated in Guizhou Province, China. In recent years, RRT has emerged as one of the most promising new fruit crops in China, primarily because of its remarkably high levels of ascorbic acid (AsA). In this research, we [...] Read more.
Rosa roxburghii Tratt (RRT) is widely cultivated in Guizhou Province, China. In recent years, RRT has emerged as one of the most promising new fruit crops in China, primarily because of its remarkably high levels of ascorbic acid (AsA). In this research, we assessed the AsA levels in RRT across various growth phases. The findings demonstrate that the AsA concentration in RRT fruits progressively increased in a linear fashion throughout development, peaking at 2274.60 mg/(100 g FW) when the fruit reached maturity (84 DAA). Furthermore, we conducted an integrated analysis of transcriptomic and proteomic data for the first time to investigate the mechanisms responsible for AsA accumulation in RRT. Our results show that differentially expressed genes (DEGs) and differentially abundant proteins (DAPs) were primarily associated with the ascorbate and aldarate metabolism pathway, suggesting that this pathway plays a crucial role in regulating AsA accumulation in RRT. This study elucidates the molecular mechanism underlying AsA accumulation in RRT and provides a robust scientific foundation for subsequent research on AsA accumulation in RRT. Full article
(This article belongs to the Section Foodomics)
Show Figures

Figure 1

23 pages, 6553 KB  
Article
Effects of Different Drying Methods on the Structural Characteristics and Multiple Bioactivities of Rosa roxburghii Tratt Fruit Polysaccharides
by Qiuqiu Zhang, Sha Wu, Qinghua Dai, Peng Hu and Guangjing Chen
Foods 2024, 13(15), 2417; https://doi.org/10.3390/foods13152417 - 30 Jul 2024
Cited by 17 | Viewed by 3494
Abstract
Drying conditions significantly impact the compositions and microstructures of polysaccharides, leading to various effects on their chemical characteristics and bioactivities. The objective of this study was to investigate how different industrial drying techniques, i.e., hot air drying, infrared drying, microwave vacuum drying, and [...] Read more.
Drying conditions significantly impact the compositions and microstructures of polysaccharides, leading to various effects on their chemical characteristics and bioactivities. The objective of this study was to investigate how different industrial drying techniques, i.e., hot air drying, infrared drying, microwave vacuum drying, and freeze drying, affect the structural properties and biological activities of polysaccharides extracted from Rosa roxburghii Tratt fruit (RRTP). Results revealed that these drying methods significantly altered the extraction yield, molecular weights, monosaccharide ratios, contents of uronic acid and total sugars, gelling properties, particle sizes, thermal stability, and microstructures of RRTPs. However, the monosaccharide composition and functional groups of polysaccharides remained consistent across the different drying techniques. Biological activity assays demonstrated that RRTPs, particularly those processed through microwave vacuum drying (MVD-RRTP), exhibited excellent anti-linoleic acid oxidation, robust anti-glycosylation effects, and significant α-glucosidase inhibition in vitro. The outcomes of this research demonstrate that microwave vacuum drying serves as an effective pre-extraction drying method for RRTPs, enhancing their biological activities. This technique is particularly advantageous for preparing RRTPs intended for use in functional foods and pharmaceuticals, optimizing their health-promoting properties for industrial applications. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

30 pages, 11846 KB  
Article
Inhibition of Proliferation and Induction of Apoptosis in Prostatic Carcinoma DU145 Cells by Polysaccharides from Yunnan Rosa roxburghii Tratt
by Ziyan Yang and Guiyuan Chen
Molecules 2024, 29(7), 1575; https://doi.org/10.3390/molecules29071575 - 1 Apr 2024
Cited by 7 | Viewed by 2534
Abstract
Objective: This study aimed to investigate methodologies for the extraction and purification of polysaccharides from Rosa roxburghii Tratt fruits and their impact on various cellular processes in prostate cancer DU145 cells, including survival rate, migration, invasion, cell cycle, and apoptosis. Results: Compared to [...] Read more.
Objective: This study aimed to investigate methodologies for the extraction and purification of polysaccharides from Rosa roxburghii Tratt fruits and their impact on various cellular processes in prostate cancer DU145 cells, including survival rate, migration, invasion, cell cycle, and apoptosis. Results: Compared to the control group, the polysaccharide exhibited a significant reduction in the viability, migration, and invasion rates of DU145 cells in a time- and dose-dependent manner within the polysaccharide-treated groups. Additionally, it effectively arrested the cell cycle of DU145 cells at the G0/G1 phase by downregulating the expressions of CDK-4, CDK-6, and Cyclin D1. Furthermore, it induced apoptosis by upregulating the expressions of Caspase 3, Caspase 8, Caspase 9, and BAX. Methods: Polysaccharides were extracted from Rosa roxburghii Tratt sourced from Yunnan, China. Extraction and decolorization methods were optimized using response surface methodology, based on a single-factor experiment. Polysaccharide purification was carried out using DEAE-52 cellulose and Sephadex G-100 column chromatography. The optimal dosage of R. roxburghii Tratt polysaccharide affecting DU145 cells was determined using the CCK-8 assay. Cell migration and invasion were assessed using transwell and scratch assays. Flow cytometry was employed to analyze the effects on the cell cycle and apoptosis. Western blotting and Quantitative real-time PCR were utilized to examine protein and mRNA expressions in DU145 cells, respectively. Conclusions: Rosa roxburghii Tratt polysaccharides, consisting of D-mannose, L-rhamnose, N-acetyl-D-glucosamine, D-galacturonic acid, D-glucose, D-galactcose, D-xylose, L-arabinose, and L-fucose, possess the ability to hinder DU145 cell proliferation, migration, and invasion while inducing apoptosis through the modulation of relevant protein and gene expressions. Full article
Show Figures

Figure 1

18 pages, 5204 KB  
Article
Protective Mechanism of Rosa roxburghii Tratt Fermentation Broth against Ultraviolet-A-Induced Photoaging of Human Embryonic Skin Fibroblasts
by Minglu Yuan, Hao Fu, Qiuting Mo, Shiwei Wang, Changtao Wang, Dongdong Wang, Jiachan Zhang and Meng Li
Antioxidants 2024, 13(3), 382; https://doi.org/10.3390/antiox13030382 - 21 Mar 2024
Cited by 6 | Viewed by 3565
Abstract
This study takes the fruit of Rosa roxburghii Tratt (RRT) as a fermentation substrate and carries out a quantitative visual analysis of the domestic and foreign literature on screenings of five different lactic acid bacteria to obtain a fermentation broth. Systemic anti-photoaging effects [...] Read more.
This study takes the fruit of Rosa roxburghii Tratt (RRT) as a fermentation substrate and carries out a quantitative visual analysis of the domestic and foreign literature on screenings of five different lactic acid bacteria to obtain a fermentation broth. Systemic anti-photoaging effects are analyzed at the biochemical, cellular, and molecular biological levels. DPPH and ABTS free radical scavenging activities are used to verify the antioxidant capacity of the RRT fruit fermentation broth in vitro. Human embryonic skin fibroblasts (HESs) are used to establish a UVA damage model, and the antioxidant capacity of the RRT fruit fermentation broth is verified in terms of intracellular reactive oxygen species (ROS) and antioxidant enzyme activity. RT-qPCR and ELISA are used to detect the expression of TGF-β/Smad, MMPs, and the MAPK/AP-1 and Nrf2/Keap-1 signaling pathways in order to explore the anti-oxidation and anti-photoaging effects of the RRT fruit fermentation broth by regulating different signaling pathways. The results show that an RRT fruit fermentation broth can effectively protect cells from oxidative stress caused by UVA and has significant anti-photoaging effects, with the co-cultured Lactobacillus Yogurt Starter LYS-20297 having the highest overall effect. Full article
Show Figures

Figure 1

25 pages, 13717 KB  
Article
Comparative Study on the Impact of Different Extraction Technologies on Structural Characteristics, Physicochemical Properties, and Biological Activities of Polysaccharides from Seedless Chestnut Rose (Rosa sterilis) Fruit
by Kaiwen Chen, Qiuqiu Zhang, Shengzhen Yang, Shengyan Zhang and Guangjing Chen
Foods 2024, 13(5), 772; https://doi.org/10.3390/foods13050772 - 1 Mar 2024
Cited by 30 | Viewed by 2930
Abstract
Seedless chestnut rose (Rosa sterilis S. D. Shi, RS) is a fresh type of R. roxburghii Tratt with copious functional components in its fruit. Polysaccharides are recognized as one of the vital bioactive compounds in RS fruits, but their antioxidant and hypoglycemic [...] Read more.
Seedless chestnut rose (Rosa sterilis S. D. Shi, RS) is a fresh type of R. roxburghii Tratt with copious functional components in its fruit. Polysaccharides are recognized as one of the vital bioactive compounds in RS fruits, but their antioxidant and hypoglycemic properties have not been extensively explored. Hence, in this study, accelerated solvent extraction (RSP-W), citric acid (RSP-C), 5% sodium hydroxide/0.05% sodium borohydride (RSP-A), and 0.9% sodium chloride (RSP-S) solution extraction were individually utilized to obtain RS fruit polysaccharides. The physicochemical properties, structural characteristics, and biological activities were then compared. Results indicated that extraction methods had significant influences on the extraction yield, uronic acid content, monosaccharide composition, molecular weight, particle size, thermal stability, triple-helical structure, and surface morphology of RSPs apart from the major linkage bands and crystalline characteristics. The bioactivity tests showed that the RSP-S, which had the greatest amount of uronic acid and a comparatively lower molecular weight, exhibited more potent antioxidant and α-glucosidase inhibitory property. Furthermore, all RSPs inhibited α-glucosidase through a mixed-type manner and quenched their fluorescence predominantly via a static quenching mechanism, with RSP-S showing the highest binding efficiency. Our findings provide a theoretical basis for utilizing RSPs as functional ingredients in food industries. Full article
Show Figures

Figure 1

15 pages, 1549 KB  
Article
Effect of Intercropping on Fruit Yield and Financial Benefits of Rosa roxburghii Tratt Orchard in Southwest China
by Ying Liu, Yawen Zhang, Tianhao Xiao, Yuguo Wu, Yuan Li, Ji He, Yangzhou Xiang and Bin Yao
Agronomy 2023, 13(12), 2953; https://doi.org/10.3390/agronomy13122953 - 29 Nov 2023
Cited by 5 | Viewed by 3013
Abstract
The practice of intercropping in Rosa roxburghii Tratt orchards holds potential for enhancing fruit yield and financial benefits, yet remains insufficiently explored. To address this, we delved into the effects of intercropping on fruit yield and financial viability of R. roxburghii orchards in [...] Read more.
The practice of intercropping in Rosa roxburghii Tratt orchards holds potential for enhancing fruit yield and financial benefits, yet remains insufficiently explored. To address this, we delved into the effects of intercropping on fruit yield and financial viability of R. roxburghii orchards in Longli County, southern China. Orchards of varying ages (4 years old and 5 years old; 7 years old and 8 years old) were subjected to different treatments: (i) Zea mays and Capsicum annuum intercropping, and clean tillage for younger orchards, and (ii) Lolium perenne, natural grass, and clean tillage for older orchards. Each treatment was assessed for its impact on fruit yield and financial benefits. In younger orchards, intercropping with Z. mays and C. annuum did not significantly elevate fruit yield compared to clean tillage in the 4-year-old orchard; however, C. annuum intercropping significantly improved fruit yield in the 5-year-old orchard. Concurrently, intercropping significantly augmented the total financial benefit by 9234.35–10,486.25 CNY ha−1 (Z. mays) and 14,304.90–16,629.18 CNY ha−1 (C. annuum) compared to clean tillage. In older orchards, L. perenne intercropping significantly elevated fruit yield by 598.84–803.64 kg·ha−1, while natural grass reduced it by 394.61–986.24 kg·ha−1, compared to clean tillage. Additionally, L. perenne intercropping significantly boosted the total financial benefit by 8873.92–9956.56 CNY ha−1, whereas natural grass negatively impacted financial benefits by 78.42–2444.94 CNY ha−1 compared to clean tillage. Collectively, our results illustrate that judicious selection of intercrops, based on orchard age and conditions, can significantly enhance both fruit yield and financial advantages in R. roxburghii orchards. This study furnishes vital insights for orchard management and accentuates the prospective merits of intercropping in fruit production systems. Full article
Show Figures

Figure 1

22 pages, 4245 KB  
Article
Rosa Roxburghii Tratt Fruit Extract Prevents Dss-Induced Ulcerative Colitis in Mice by Modulating the Gut Microbiota and the IL-17 Signaling Pathway
by Xingjie Li, Yihan Ling, Xiaoyi Huang, Ting Zhou, Shouxun Wu, Shuwen Zhang, Heting Zhou, Yuhong Kang, Liqun Wang, Xiaomeng Wang and Wenya Yin
Nutrients 2023, 15(21), 4560; https://doi.org/10.3390/nu15214560 - 27 Oct 2023
Cited by 22 | Viewed by 4256
Abstract
Ulcerative colitis (UC) is a non-specific inflammatory bowel illness characterized by intestinal mucosal barrier degradation, inflammation, oxidative damage, and gut microbiota imbalances. Rosa roxburghii Tratt Fruit extract (RRTE) was extracted from Rosa roxburghii Tratt fruit, exhibiting an excellent prevention effect against UC; RRTE [...] Read more.
Ulcerative colitis (UC) is a non-specific inflammatory bowel illness characterized by intestinal mucosal barrier degradation, inflammation, oxidative damage, and gut microbiota imbalances. Rosa roxburghii Tratt Fruit extract (RRTE) was extracted from Rosa roxburghii Tratt fruit, exhibiting an excellent prevention effect against UC; RRTE could prevent the damage of DSS-induced human normal colonic epithelial (NCM 460) cells, especially in cell viability and morphology, and oxidative damage. Additionally, in UC mice, RRTE could limit the intestinal mucosal barrier by increasing the expression of intestinal tight junction proteins and mucin, reducing inflammation and oxidative damage in colon tissue. More importantly, RRTE can increase the abundance of beneficial bacteria to regulate gut microbiota such as Ruminococcus, Turicibacter, and Parabacteroides, and reduce the abundance of harmful bacteria such as Staphylococcus and Shigella. Furthermore, transcriptomics of colonic mucosal findings point out that the beneficial effect of RRTE on UC could be attributed to the modulation of inflammatory responses such as the IL-17 and TNF signaling pathways. The qPCR results confirm that RRTE did involve the regulation of several genes in the IL-17 signaling pathway. In conclusion, RRTE could prevent DSS-induced damage both in vitro and in vivo. Full article
(This article belongs to the Special Issue Natural Products and Human Health)
Show Figures

Graphical abstract

22 pages, 12796 KB  
Article
Research on the Effect of Oriental Fruit Moth Feeding on the Quality Degradation of Chestnut Rose Juice Based on Metabolomics
by Tingyuan Ren, Bei Li, Fangyan Xu, Zhen Chen, Mintao Lu and Shuming Tan
Molecules 2023, 28(20), 7170; https://doi.org/10.3390/molecules28207170 - 19 Oct 2023
Cited by 5 | Viewed by 1915
Abstract
As a native fruit of China, chestnut rose (Rosa roxburghii Tratt) juice is rich in bioactive ingredients. Oriental fruit moth (OFM), Grapholita molesta (Busck), attacks the fruits and shoots of Rosaceae plants, and its feeding affects the quality and yield of chestnut [...] Read more.
As a native fruit of China, chestnut rose (Rosa roxburghii Tratt) juice is rich in bioactive ingredients. Oriental fruit moth (OFM), Grapholita molesta (Busck), attacks the fruits and shoots of Rosaceae plants, and its feeding affects the quality and yield of chestnut rose. To investigate the effects of OFM feeding on the quality of chestnut rose juice, the bioactive compounds in chestnut rose juice produced from fruits eaten by OFM were measured. The electronic tongue senses, amino acid profile, and untargeted metabolomics assessments were performed to explore changes in the flavour and metabolites. The results showed that OFM feeding reduced the levels of superoxide dismutase (SOD), tannin, vitamin C, flavonoid, and condensed tannin; increased those of polyphenols, soluble solids, total protein, bitterness, and amounts of bitter amino acids; and decreased the total amino acid and umami amino acid levels. Furthermore, untargeted metabolomics annotated a total of 426 differential metabolites (including 55 bitter metabolites), which were mainly enriched in 14 metabolic pathways, such as flavonoid biosynthesis, tryptophan metabolism, tyrosine metabolism, and diterpenoid biosynthesis. In conclusion, the quality of chestnut rose juice deteriorated under OFM feeding stress, the levels of bitter substances were significantly increased, and the bitter taste was subsequently enhanced. Full article
Show Figures

Graphical abstract

19 pages, 5383 KB  
Article
Effect and Correlation of Rosa roxburghii Tratt Juice Fermented by Lactobacillus paracasei SR10-1 on Oxidative Stress and Gut Microflora Dysbiosis in Streptozotocin (STZ)-Induced Type 2 Diabetes Mellitus Mice
by Maoyang Wei, Dandan Feng, Yulong Zhang, Yunyang Zuo, Jiuchang Li, Ling Wang and Ping Hu
Foods 2023, 12(17), 3233; https://doi.org/10.3390/foods12173233 - 28 Aug 2023
Cited by 7 | Viewed by 3240
Abstract
Rosa roxburghii Tratt (RRT) is a kind of excellent fruit, with many healthy functions. RRT fruit dietary interventions have demonstrated a remarkable potential to prevent type 2 diabetes mellitus (T2DM). In the present study, the effects of Lactobacillus paracasei SR10-1 fermented RRT juice [...] Read more.
Rosa roxburghii Tratt (RRT) is a kind of excellent fruit, with many healthy functions. RRT fruit dietary interventions have demonstrated a remarkable potential to prevent type 2 diabetes mellitus (T2DM). In the present study, the effects of Lactobacillus paracasei SR10-1 fermented RRT juice (FRRT) on the oxidative stress, short-chain fatty acids (SCFAs), and gut microbiota in T2DM mice induced by high-sugar and high-fat diets and streptozotocin (STZ) were investigated using GC–MS and 16S rRNA gene sequencing. The results showed that medium-dose FRRT intervention resulted in significantly decreased levels of TG, TC, LDL-C, BUN, creatinine, and MDA (p < 0.05) and significantly increased levels of HDL-C, GSH-PX, CAT, and SOD of T2DM mice (p < 0.05). The levels of acetic acid, propionic acid, butyric acid, and isovaleric acid were significantly increased, by 142.28%, 428.59%, 1968.66%, and 81.04% (p < 0.05), respectively. The relative abundance of Firmicutes, Lachnospiraceae, Verrucomicrobiaceae, Akkermansia, and Allobaculum was significantly increased (p < 0.05), and the relative abundance of Proteobacteria, Enterobacteriaceae, Veillonellaceae, Phascolarctobacterium, and Klebsiella was significantly decreased (p < 0.05). Correlation analysis showed that Phascolarctobacterium was significantly negatively correlated with weight (p < 0.05), SOD (p < 0.01), CAT (p < 0.05), and T-AOC (p < 0.05). Akkermansia was significantly negatively correlated with weight (p < 0.05). Conclusively, medium-dose FRRT potentially improved T2DM by reversing dyslipidemia, decreasing oxidative stress, increasing SCFAs, and regulating gut microbiota composition. The medium-dose FRRT may serve as a novel T2DM dietary strategy to prevent T2DM. Full article
Show Figures

Graphical abstract

16 pages, 3664 KB  
Article
Overexpression of RrGGP2 and RrDHAR Increases Ascorbic Acid Content in Tomato
by Zeyang Liu, Tianzhi Rao, Richard A. Ludlow, Yali Yan, Min Lu and Huaming An
Horticulturae 2023, 9(5), 587; https://doi.org/10.3390/horticulturae9050587 - 16 May 2023
Cited by 2 | Viewed by 2791
Abstract
Ascorbic acid (AsA) is the most abundant antioxidant in plants and is an important nutritional index for agricultural products. Some plants, such as Rosa roxburghii Tratt., contain exceptionally high levels of AsA, but are relatively unpalatable. In view of its role in human [...] Read more.
Ascorbic acid (AsA) is the most abundant antioxidant in plants and is an important nutritional index for agricultural products. Some plants, such as Rosa roxburghii Tratt., contain exceptionally high levels of AsA, but are relatively unpalatable. In view of its role in human health, as well as plant growth and development, we examined the effects of two important AsA regulatory genes from R. roxburghii in tomato, with the aim of producing a crop of higher nutritional quality. RrGGP2 and RrDHAR were cloned from R. roxburghii fruit. The overexpression vectors were made using 35S promoters and mediated by Agrobacterium tumefaciens to obtain the overexpression lines. A PCR and qRT-PCR verified that the two genes had been inserted and overexpressed in the tomato leaves and fruits. The results showed that the overexpression of RrGGP2 increased tomato leaf and fruit AsA content by 108.5% and 294.3%, respectively, while the overexpression of RrDHAR increased tomato leaf and fruit AsA content by 183.9% and 179.9%. The overexpression of RrGGP2 and RrDHAR further changed the expression of genes related to AsA metabolism, and the upregulation of one such gene, SlGGP, may have contributed greatly to the increase in AsA. Results here indicate that RrGGP2 contributes more towards fruit AsA accumulation in tomato than RrDHAR. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

15 pages, 4540 KB  
Article
Transcriptome Analysis Reveals Regulatory Networks and Hub Genes in the Flavonoid Metabolism of Rosa roxburghii
by Xiaolong Huang, Guilian Sun, Qiaohong Li and Huiqing Yan
Horticulturae 2023, 9(2), 233; https://doi.org/10.3390/horticulturae9020233 - 9 Feb 2023
Cited by 10 | Viewed by 2888
Abstract
Rosa roxburghii Tratt, the most popular fruit that blooms in the southwest of China, has high antioxidant properties and is rich in different flavonoids. However, the regulatory network and critical genes that regulate the flavonoid biosynthesis of R. roxburghii are still unknown. In [...] Read more.
Rosa roxburghii Tratt, the most popular fruit that blooms in the southwest of China, has high antioxidant properties and is rich in different flavonoids. However, the regulatory network and critical genes that regulate the flavonoid biosynthesis of R. roxburghii are still unknown. In this study, HPLC analysis revealed that total flavonoids, anthocyanins, and catechin were enriched in mature fruits, flowers, and leaves, respectively. Differentially expressed genes (DEGs) between five organs of R. roxburghii involved in flavonoid metabolism were obtained by transcriptome sequencing. A total of 1130 DEGs were identified, including 166 flavonoid pathway biosynthesis genes, 622 transcription factors (TFs), 301 transporters, and 221 cytochrome P450 proteins. A weighted gene co-expression network analysis (WGCNA) of the DEGs was conducted to construct co-expression networks. Regarding enzymes in the biosynthesis of flavonoids, cytochrome P450 CYP749A22 and CYP72A219 were highlighted in the regulation of total flavonoids of mature fruits. Anthocyanin 3-O-glucosyltransferase and F3′H were the top two critical enzymes for anthocyanin accumulation in flowers. By contrast, caffeic acid 3-O-methyltransferase, 4-coumarate-CoA ligase, and shikimate O-hydroxycinnamoyltransferase were essential for catechin accumulation in leaves. Additionally, we analyzed the eigengene network of the “black” module, which had high correlations with total flavonoids (r = 0.9, p = 5 × 10−6). There were 26 eigengenes in the “black” module, consisting of 6 flavonoid biosynthesis, 14 TFs, and 6 transporters. Among them, the transcription factors RrWRKY45 (DN142829_c1_g5), RrTCP20 (DN146443_c1_g1), and RrERF118 (DN141507_c3_g2) were screened as the hub genes, which significantly correlated with total flavonoids in R. roxburghii. The present biochemical and transcriptomic data provide insights into functional genomics for breeding R. roxburghii with flavonoid accumulation. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

Back to TopTop