Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = RabF1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1293 KB  
Article
RAB24 Missense Variant in Dogs with Cerebellar Ataxia
by Cleo Schwarz, Jan Wennemuth, Julien Guevar, Francesca Dörn, Vidhya Jagannathan and Tosso Leeb
Genes 2025, 16(8), 934; https://doi.org/10.3390/genes16080934 - 4 Aug 2025
Viewed by 437
Abstract
Hereditary ataxias are a highly heterogenous group of diseases characterized by loss of coordination. In this study, we investigated a family of random-bred dogs, in which two siblings were affected by a slowly progressive ataxia. They presented with clinical signs of progressive cerebellar [...] Read more.
Hereditary ataxias are a highly heterogenous group of diseases characterized by loss of coordination. In this study, we investigated a family of random-bred dogs, in which two siblings were affected by a slowly progressive ataxia. They presented with clinical signs of progressive cerebellar ataxia, hypermetria, and absent menace response. The MRI revealed generalized brain atrophy, reduced cortical demarcation, hypoplastic corpus callosum, and cerebellar folia thinning, highly suggestive of a neurodegenerative disorder. We sequenced the genomes of the two affected dogs and their unaffected parents. Filtering for protein-changing variants that had homozygous alternate genotypes in the affected dogs, heterozygous genotypes in the parents, and homozygous reference genotypes in 1576 control genomes yielded a single missense variant in the RAB24 gene, XM_038534663.1:c.239G>T or XP_038390591.1:p.(Gly80Val). Genotypes at this variant showed the expected co-segregation with the ataxia phenotype in the investigated family. The predicted amino acid affects the conserved RabF4 motif. Glycine-80 resides at the protein surface and the introduction of a hydrophobic isopropyl side chain of the mutant valine might impede solvent accessibility. Another missense variant in RAB24, p.Glu38Pro, was previously reported to cause a clinically similar form of cerebellar ataxia in Gordon Setters and Old English Sheepdogs. Taken together, the available data suggest that RAB24:p.Gly80Val represents the causal variant in the studied dogs. To the best of our knowledge, this is only the second report of a potentially pathogenic RAB24 variant in any species and further supports that RAB24 should be considered a candidate gene in human ataxia patients with unclear molecular etiology. Full article
(This article belongs to the Special Issue Hereditary Traits and Diseases in Companion Animals)
Show Figures

Figure 1

27 pages, 5470 KB  
Article
Age-Associated Proteomic Changes in Human Spermatozoa
by Mohd Amin Beg, Abrar Osama Ismail, Ayodele Alaiya, Firdous Ahmad Khan, Taha Abo-Almagd Abdel-Meguid Hamoda, Ishfaq Ahmad Sheikh, Priyanka Sharma, Omar Mohammed Baothman, Ali Hasan Alkhzaim, Zakia Shinwari, Rinad Fahad Abuzinadah, Arif Mohammed, Abdullah Mohammed Assiri, Adel Mohammad Abuzenadah, Erdogan Memili and Jean Magloire Feugang
Int. J. Mol. Sci. 2025, 26(13), 6099; https://doi.org/10.3390/ijms26136099 - 25 Jun 2025
Viewed by 1785
Abstract
Advancing age in men significantly contributes to declining sperm fertility. Information on age-related proteomic changes in spermatozoa is limited. This study involved normal fertile Arab men in three age groups: young adult (21–30 years; n = 6), late adult (31–40 years; n = [...] Read more.
Advancing age in men significantly contributes to declining sperm fertility. Information on age-related proteomic changes in spermatozoa is limited. This study involved normal fertile Arab men in three age groups: young adult (21–30 years; n = 6), late adult (31–40 years; n = 7), and advanced age (40–51 years; n = 5). Gradient-purified spermatozoa were analyzed using LC-MS/MS and proteomic data were processed using Progenesis QI (QIfp) v3.0 and UniProt/SwissProt. Significantly enriched annotations and clustering of proteins in the proteomic datasets were identified (2-fold change; p < 0.05). A total of 588 proteins were identified, with 93% shared across the three groups. Unique proteins were MYLK4 for the young adult group, PRSS57 for the late adult group, and HMGB4, KRT4, LPGAT1, OXCT2, and MGRN1 for the advanced age group. Furthermore, 261 (44%) proteins were differentially expressed (p < 0.05) across the three groups. Functional enrichment analysis suggested an aging-related significant increase in pathways associated with neurodegenerative diseases and protein folding, alongside decreases in glycolysis/gluconeogenesis, flagellated sperm motility, acetylation, phosphoprotein modifications, oxidation processes, and Ubl conjugation. Cluster analysis highlighted significantly upregulated proteins in young adults (e.g., H2BC1, LAP3, SQLE, LTF, PDIA4, DYNLT2) and late adults (e.g., ATP5F1B, ODF2, TUBA3C, ENO1, SPO11, TEX45, TEKT3), whereas most proteins in the advanced age group exhibited downregulation (e.g., SPESP1, RAB10, SEPTIN4, RAB15, PTPN7, USP5, ANXA1, PRDX1). In conclusion, this study revealed aging-associated proteomic changes in spermatozoa that impact critical processes, including spermatogenesis, motility, metabolism, and fertilization, potentially contributing to fertility decline. These changes provide a molecular framework for developing therapies to preserve sperm proteostasis and enhance fertility in older men. Full article
(This article belongs to the Special Issue Advances in Spermatogenesis and Male Infertility)
Show Figures

Figure 1

18 pages, 5407 KB  
Article
Evaluation of 3D Printing of Cereal–Legume Starch-Based Gels Formulated with Red Adzuki Bean and Germinated Brown Rice Flour
by Ran Liu, Yu Zhuang, Jiakai Song, Liuyang Shen and Yanling Yin
Foods 2025, 14(10), 1791; https://doi.org/10.3390/foods14101791 - 18 May 2025
Viewed by 686
Abstract
Three-dimensional (3D) food printing (3DFP) is an emerging technology that enables the creation of personalized and functional foods by precisely controlling nutritional content and shape. This study investigated the 3D printability and rheological behavior of cereal–legume starch-based gels formulated with germinated brown rice [...] Read more.
Three-dimensional (3D) food printing (3DFP) is an emerging technology that enables the creation of personalized and functional foods by precisely controlling nutritional content and shape. This study investigated the 3D printability and rheological behavior of cereal–legume starch-based gels formulated with germinated brown rice (GBR) and red adzuki bean (RAB) flours, supplemented with xanthan and guar gums as functional additives. The physicochemical and structural properties of the gels were characterized through FT-IR, rheology, texture analysis, SEM, and sensory evaluation. In addition, the 3D printing fidelity, rheological behavior, color attributes, textural properties, microstructure, and sensory scoring of the printed products were evaluated. The results indicated that the gels exhibited pseudoplastic behavior, with the RABF/GBRF ratio of 1:2 (RG1:2) formulation showing optimal color properties (ΔE* = 0.60 ± 0.86) and the RABF/GBRF ratio of 2:1 (RG2:1) formulation demonstrating superior printing fidelity and structural stability (printing accuracy = 99.37 ± 0.39%). The gels’ mechanical properties, such as hardness and chewiness, were significantly influenced by the RABF and GBRF ratios, with RG2:1 exhibiting the highest hardness (1066.74 ± 102.09) and RG1:2 showing the best springiness (0.64 ± 0.10). The sensory evaluation results indicated that the RABF/GBRF ratios of 1:1 (RG1:1) and RG1:2 had relatively high overall acceptance scores. These findings indicate that specific ratios of RABF and GBRF improve the 3D printability and textural properties of cereal–legume starch-based gels, enhancing their suitability for 3D food printing applications. This study provides valuable insights into the development of personalized and functional cereal–legume starch-based foods using 3DFP technology. Full article
Show Figures

Figure 1

14 pages, 4222 KB  
Article
Genetic Structure and Selection Signals for Extreme Environment Adaptation in Lop Sheep of Xinjiang
by Chenchen Yang, Jieru Wang, Lanshu Bi, Di Fang, Xin Xiang, Abliz Khamili, Waili Kurban, Chunmei Han and Qinghua Gao
Biology 2025, 14(4), 337; https://doi.org/10.3390/biology14040337 - 25 Mar 2025
Viewed by 726
Abstract
Objective: Lop sheep species exhibit remarkable adaptability to desert pastures and extreme arid climates, demonstrating tolerance to rough feeding and high resistance to stress. However, little is known about the population genetic diversity of Lop sheep and the genetic mechanisms underlying their adaptability [...] Read more.
Objective: Lop sheep species exhibit remarkable adaptability to desert pastures and extreme arid climates, demonstrating tolerance to rough feeding and high resistance to stress. However, little is known about the population genetic diversity of Lop sheep and the genetic mechanisms underlying their adaptability to extreme environments. Methods: Blood samples were collected from a total of 110 individuals comprising 80 Ruoqiang Lop sheep and 30 Yuli Lop sheep. A total of 110 Lop sheep were subjected to whole genome resequencing to analyze genetic diversity, population structure, and signatures of selection in both regions. Results: The genetic diversity of the Lop sheep population is substantial, and the degree of inbreeding is low. In comparison to the Lop sheep in Yuli County, the genetic diversity and linkage disequilibrium analysis results for the Lop sheep population in Ruoqiang County are slightly lower. Population structure analysis indicates that Ruoqiang and Yuli Lop sheep have differentiated into two independent groups. Using Yuli Lop sheep as the reference group, an analysis of the extreme environmental adaptability selection signal of Lop sheep was conducted. The FST and π ratio under the 1% threshold identified 1686 and 863 candidate genes, respectively, with their intersection yielding a total of 122 candidate genes. Functional annotation revealed that these genes are associated with various traits, including immune response (SLC12A2, FOXP1, PANX1, DYNLRB2, RAP1B, and SEMA4D), heat and cold resistance (DNAJC13, PLCB1, HIKESHI, and PITPNC1), desert adaptation (F13A1, PANX1, ST6GAL1, STXBP3, ACTN4, and ATP6V1A), and reproductive performance (RAP1B, RAB6A, PLCB1, and METTL15). Conclusions: These research findings provide a theoretical foundation for understanding the survival and reproductive characteristics of Lop sheep in extreme environments, and they hold practical value for the conservation and utilization of Lop sheep genetic resources, as well as for genetic improvement efforts. Full article
(This article belongs to the Section Zoology)
Show Figures

Figure 1

14 pages, 1820 KB  
Article
DYRK1A Up-Regulation Specifically Impairs a Presynaptic Form of Long-Term Potentiation
by Aude-Marie Lepagnol-Bestel, Simon Haziza, Julia Viard, Paul A. Salin, Arnaud Duchon, Yann Herault and Michel Simonneau
Life 2025, 15(2), 149; https://doi.org/10.3390/life15020149 - 22 Jan 2025
Viewed by 1076
Abstract
Chromosome 21 DYRK1A kinase is associated with a variety of neuronal diseases including Down syndrome. However, the functional impact of this kinase at the synapse level remains unclear. We studied a mouse model that incorporated YAC 152F7 (570 kb), encoding six chromosome 21 [...] Read more.
Chromosome 21 DYRK1A kinase is associated with a variety of neuronal diseases including Down syndrome. However, the functional impact of this kinase at the synapse level remains unclear. We studied a mouse model that incorporated YAC 152F7 (570 kb), encoding six chromosome 21 genes including DYRK1A. The 152F7 mice displayed learning difficulties but their N-methyl-D-aspartate (NMDA)-dependent synaptic long-term potentiation is indistinguishable from non-transgenic animals. We have demonstrated that a presynaptic form of NMDA-independent long-term potentiation (LTP) at the hippocampal mossy fiber was impaired in the 152F7 animals. To obtain insights into the molecular mechanisms involved in such synaptic changes, we analyzed the Dyrk1a interactions with chromatin remodelers. We found that the number of DYRK1A-EP300 and DYRK1A-CREBPP increased in 152F7 mice. Moreover, we observed a transcriptional decrease in genes encoding presynaptic proteins involved in glutamate vesicle exocytosis, namely Rims1, Munc13-1, Syn2 and Rab3A.To refine our findings, we used a mouse BAC 189N3 (152 kb) line that only triplicates the gene Dyrk1a. Again, we found that this NMDA-independent form of LTP is impaired in this mouse line. Altogether, our results demonstrate that Dyrk1a up-regulation is sufficient to specifically inhibit the NMDA-independent form of LTP and suggest that this inhibition is linked to chromatin changes that deregulate genes encoding proteins involved in glutamate synaptic release. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

15 pages, 1629 KB  
Article
Francisella novicida-Containing Vacuole within Dictyostelium discoideum: Isolation and Proteomic Characterization
by Valentina Marecic, Olga Shevchuk, Marek Link, Ina Viduka, Mateja Ozanic, Rok Kostanjsek, Mirna Mihelcic, Masa Antonic, Lothar Jänsch, Jiri Stulik and Marina Santic
Microorganisms 2024, 12(10), 1949; https://doi.org/10.3390/microorganisms12101949 - 26 Sep 2024
Cited by 1 | Viewed by 1290
Abstract
Francisella is a highly infectious gram-negative bacterium that causes tularemia in humans and animals. It can survive and multiply in a variety of cells, including macrophages, dendritic cells, amoebae, and arthropod-derived cells. However, the intracellular life cycle of a bacterium varies depending on [...] Read more.
Francisella is a highly infectious gram-negative bacterium that causes tularemia in humans and animals. It can survive and multiply in a variety of cells, including macrophages, dendritic cells, amoebae, and arthropod-derived cells. However, the intracellular life cycle of a bacterium varies depending on the cell type. Shortly after the infection of mammalian cells, the bacterium escapes the phagosome into the cytosol, where it replicates. In contrast, in the amoebae Acanthamoeba castellanii and Hartmannella vermiformis, the bacterium replicates within the membrane-bound vacuole. In recent years, the amoeba Dictyostelium discoideum has emerged as a powerful model to study the intracellular cycle and virulence of many pathogenic bacteria. In this study, we used D. discoideum as a model for the infection and isolation of Francisella novicida-containing vacuoles (FCVs) formed after bacteria invade the amoeba. Our results showed that F. novicida localized in a vacuole after invading D. discoideum. Here, we developed a method to isolate FCV and determined its composition by proteomic analyses. Proteomic analyses revealed 689 proteins, including 13 small GTPases of the Rab family. This is the first evidence of F. novicida-containing vacuoles within amoeba, and this approach will contribute to our understanding of host–pathogen interactions and the process of pathogen vacuole formation, as vacuoles containing bacteria represent direct contact between pathogens and their hosts. Furthermore, this method can be translocated on other amoeba models. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

12 pages, 2934 KB  
Article
Effect of CFTR Modulators on Oxidative Stress and Autophagy in Non-CFTR-Expressing Cells
by Filippo Scialò, Gustavo Cernera, Lorenza Polise, Giuseppe Castaldo, Felice Amato and Valeria Rachela Villella
Int. J. Mol. Sci. 2024, 25(19), 10360; https://doi.org/10.3390/ijms251910360 - 26 Sep 2024
Cited by 3 | Viewed by 1662
Abstract
The triple combination therapy for cystic fibrosis (CF), including elexacaftor, tezacaftor and ivacaftor (ETI or Trikafta), has been shown to improve lung function and reduce pulmonary exacerbations, thereby enhancing the quality of life for most CF patients. Recent findings suggest that both the [...] Read more.
The triple combination therapy for cystic fibrosis (CF), including elexacaftor, tezacaftor and ivacaftor (ETI or Trikafta), has been shown to improve lung function and reduce pulmonary exacerbations, thereby enhancing the quality of life for most CF patients. Recent findings suggest that both the individual components and ETI may have potential off-target effects, highlighting the need to understand how these modulators impact cellular physiology, particularly in cells that do not express CF transmembrane conductance regulator (CFTR). We used HEK293 cells, as a cell model not expressing the CFTR protein, to evaluate the effect of ETI and each of its components on autophagic machinery and on the Rab5/7 components of the Rab pathway. We firstly demonstrate that the single modulators Teza and Iva, and the combinations ET and ETI, increased ROS production in the absence of their target while decreasing it in cells expressing the CFTR ∆F508del. This increase in cellular stress was followed by an increase in the total level of polyubiquitinated proteins as well as the p62 level and LC3II/LC3I ratio. Furthermore, we found that ETI had the opposite effect on Rabs by increasing Rab5 levels while decreasing Rab7. Interestingly, these changes were abolished by the expression of mutated CFTR. Overall, our data suggest that in the absence of their target, both the individual modulators and ETI increased ROS production and halted both autophagic flux and plasma membrane protein recycling. Full article
(This article belongs to the Special Issue Cystic Fibrosis: Molecular Pathogenesis, Diagnosis, and Treatment)
Show Figures

Figure 1

11 pages, 1590 KB  
Technical Note
Ex Vivo Simultaneous H215O Positron Emission Tomography and Magnetic Resonance Imaging of Porcine Kidneys—A Feasibility Study
by Maibritt Meldgaard Arildsen, Christian Østergaard Mariager, Christoffer Vase Overgaard, Thomas Vorre, Martin Bøjesen, Niels Moeslund, Aage Kristian Olsen Alstrup, Lars Poulsen Tolbod, Mikkel Holm Vendelbo, Steffen Ringgaard, Michael Pedersen and Niels Henrik Buus
J. Imaging 2024, 10(9), 209; https://doi.org/10.3390/jimaging10090209 - 25 Aug 2024
Viewed by 1572
Abstract
The aim was to establish combined H215O PET/MRI during ex vivo normothermic machine perfusion (NMP) of isolated porcine kidneys. We examined whether changes in renal arterial blood flow (RABF) are accompanied by changes of a similar magnitude in renal blood [...] Read more.
The aim was to establish combined H215O PET/MRI during ex vivo normothermic machine perfusion (NMP) of isolated porcine kidneys. We examined whether changes in renal arterial blood flow (RABF) are accompanied by changes of a similar magnitude in renal blood perfusion (RBP) as well as the relation between RBP and renal parenchymal oxygenation (RPO). Methods: Pig kidneys (n = 7) were connected to a NMP circuit. PET/MRI was performed at two different pump flow levels: a blood-oxygenation-level-dependent (BOLD) MRI sequence performed simultaneously with a H215O PET sequence for determination of RBP. Results: RBP was measured using H215O PET in all kidneys (flow 1: 0.42–0.76 mL/min/g, flow 2: 0.7–1.6 mL/min/g). We found a linear correlation between changes in delivered blood flow from the perfusion pump and changes in the measured RBP using PET imaging (r2 = 0.87). Conclusion: Our study demonstrated the feasibility of combined H215O PET/MRI during NMP of isolated porcine kidneys with tissue oxygenation being stable over time. The introduction of H215O PET/MRI in nephrological research could be highly relevant for future pre-transplant kidney evaluation and as a tool for studying renal physiology in healthy and diseased kidneys. Full article
(This article belongs to the Section Medical Imaging)
Show Figures

Figure 1

18 pages, 4246 KB  
Article
The Oncolytic Avian Reovirus p17 Protein Inhibits Invadopodia Formation in Murine Melanoma Cancer Cells by Suppressing the FAK/Src Pathway and the Formation of theTKs5/NCK1 Complex
by Chao-Yu Hsu, Jyun-Yi Li, En-Ying Yang, Tsai-Ling Liao, Hsiao-Wei Wen, Pei-Chien Tsai, Tz-Chuen Ju, Lon-Fye Lye, Brent L. Nielsen and Hung-Jen Liu
Viruses 2024, 16(7), 1153; https://doi.org/10.3390/v16071153 - 17 Jul 2024
Cited by 4 | Viewed by 1724
Abstract
To explore whether the p17 protein of oncolytic avian reovirus (ARV) mediates cell migration and invadopodia formation, we applied several molecular biological approaches for studying the involved cellular factors and signal pathways. We found that ARV p17 activates the p53/phosphatase and tensin homolog [...] Read more.
To explore whether the p17 protein of oncolytic avian reovirus (ARV) mediates cell migration and invadopodia formation, we applied several molecular biological approaches for studying the involved cellular factors and signal pathways. We found that ARV p17 activates the p53/phosphatase and tensin homolog (PTEN) pathway to suppress the focal adhesion kinase (FAK)/Src signaling and downstream signal molecules, thus inhibiting cell migration and the formation of invadopodia in murine melanoma cancer cell line (B16-F10). Importantly, p17-induced formation of invadopodia could be reversed in cells transfected with the mutant PTENC124A. p17 protein was found to significantly reduce the expression levels of tyrosine kinase substrate 5 (TKs5), Rab40b, non-catalytic region of tyrosine kinase adaptor protein 1 (NCK1), and matrix metalloproteinases (MMP9), suggesting that TKs5 and Rab40b were transcriptionally downregulated by p17. Furthermore, we found that p17 suppresses the formation of the TKs5/NCK1 complex. Coexpression of TKs5 and Rab40b in B16-F10 cancer cells reversed p17-modulated suppression of the formation of invadopodia. This work provides new insights into p17-modulated suppression of invadopodia formation by activating the p53/PTEN pathway, suppressing the FAK/Src pathway, and inhibiting the formation of the TKs5/NCK1 complex. Full article
(This article belongs to the Special Issue Recent Advances of Avian Viruses Research)
Show Figures

Figure 1

22 pages, 3512 KB  
Article
Effects of Salinity Stress on Growth and Physiological Parameters and Related Gene Expression in Different Ecotypes of Sesuvium portulacastrum on Hainan Island
by Yong Wang, Wei Ma, Haijiang Fu, Liting Li, Xueyu Ruan and Xueyan Zhang
Genes 2023, 14(7), 1336; https://doi.org/10.3390/genes14071336 - 25 Jun 2023
Cited by 13 | Viewed by 2352
Abstract
We conducted a study to examine the growth and physiological changes in 12 different ecotypes of Sesuvium portulacastrum collected from Hainan Island in China. These ecotypes were subjected to different concentrations (0, 200, 400, and 600 mmol/L) of sodium chloride (NaCl) salt stress [...] Read more.
We conducted a study to examine the growth and physiological changes in 12 different ecotypes of Sesuvium portulacastrum collected from Hainan Island in China. These ecotypes were subjected to different concentrations (0, 200, 400, and 600 mmol/L) of sodium chloride (NaCl) salt stress for 14 days. We also analyzed the expression of metabolic genes related to stress response. Under low salt stress, indicators such as plant height in region K (0 mmol/L: 45% and highest at 200 mmol/L: 80%), internode length (0 mmol/L: 0.38, 200 mmol/L: 0.87, 400 mmol/L: 0.25, and 600 mmol/L: 1.35), as well as leaf area, relative water content, fresh weight, and dry weight exhibited an overall increasing trend with the increase in salt concentration. However, as the salt concentration increased, these indicators showed a decreasing trend. Proline and malondialdehyde contents increased with higher salt concentrations. When the NaCl concentration was 400 mmol/L, MDA content in the leaves was highest in the regions E (196.23%), F (94.28%), J (170.10%), and K (136.08%) as compared to the control group, respectively. Most materials demonstrated a significant decrease in chlorophyll a, chlorophyll b, and total chlorophyll content compared to the control group. Furthermore, the ratio of chlorophyll a to chlorophyll b (Rab) varied among different materials. Using principal component analysis, we identified three ecotypes (L from Xinglong Village, Danzhou City; B from Shuigoupo Village, Lingshui County; and J from Haidongfang Park, Dongfang City) that represented high, medium, and low salt tolerance levels, respectively, based on the above growth and physiological indexes. To further investigate the expression changes of related genes at the transcriptional level, we employed qRT-PCR. The results showed that the relative expression of SpP5CS1, SpLOX1, and SpLOX1 genes increased with higher salt concentrations, which corresponded to the accumulation of proline and malondialdehyde content, respectively. However, the relative expression of SpCHL1a and SpCHL1b did not exhibit a consistent pattern. This study contributes to our understanding of the salt tolerance mechanism in the true halophyte S. portulacastrum, providing a solid theoretical foundation for further research in this field. Full article
Show Figures

Figure 1

16 pages, 3747 KB  
Article
Effects of Deciduous Forests on Adolescent Emotional Health in Urban Areas: An Example from the Autumn Ginkgo Forest in Chengdu
by Linjia Wu, Shixian Luo, Di Li, Qibing Chen, Jingting Li and Jiacai Wen
Forests 2023, 14(6), 1099; https://doi.org/10.3390/f14061099 - 26 May 2023
Cited by 9 | Viewed by 2669
Abstract
Many studies have shown that urban green spaces can promote emotional health. Deciduous forest is an important landscape and ecological resource of the city. However, the emotional impact of different behavior patterns in this kind of natural space with obvious seasonal changes are [...] Read more.
Many studies have shown that urban green spaces can promote emotional health. Deciduous forest is an important landscape and ecological resource of the city. However, the emotional impact of different behavior patterns in this kind of natural space with obvious seasonal changes are rarely discussed. This study explores the emotional feedback of two typical behavior patterns within an urban landscape forest in autumn: sitting and walking. We recruited 80 volunteers and divided them into a sitting viewing group (group S) and a walking viewing group (group W). On the premise of gender balance, they were randomly assigned to a natural path under a Ginkgo biloba forest in autumn for 15 min of viewing. Physiological and psychological indicators were used for monitoring. Blood pressure, heart rate and electroencephalography (EEG) were used for physiological indicators, and a POMS questionnaire was used for psychological indicators. A paired t-test and one-way ANOVA were used to analyze the physiological parameters of the two experimental groups, and a paired Wilcoxon signed-rank sum test was used to analyze the differences in psychological indexes between the two behavior groups. The results showed that the diastolic blood pressure and pulse of the sitting group decreased significantly under the seasonal deciduous forest, and the walking group attained higher “Engagement”, “Excitement”, and “Relaxation”. In the absolute α and β waves, there were significant differences in the parietal P8 channels between the sitting and walking groups, and significant differences in the RAB indicators of the AF3, F7, P7, FC5, FC6, F3 and T7 channels. The two behavior patterns can effectively reduce negative mood, and the “Vigor” mood in the walking group was significantly increased, which was significantly better than that of the sitting group in reducing negative mood. These results enrich research on the influence on emotional health in the field of seasonal green-space restoration. The differences of different behavior patterns can provide guidance for planning urban landscape forest construction and activity facilities. Full article
Show Figures

Figure 1

13 pages, 3762 KB  
Article
Vacuole Proteins with Optimized Microtubule Assembly Is Required for Fum1 Protein Localization and Fumonisin Biosynthesis in Mycotoxigenic Fungus Fusarium verticillioides
by Huijuan Yan, Zehua Zhou, Huan Zhang and Won Bo Shim
J. Fungi 2023, 9(2), 268; https://doi.org/10.3390/jof9020268 - 16 Feb 2023
Cited by 3 | Viewed by 2109
Abstract
Fumonisin contamination of corn caused by Fusarium verticillioides is a major concern worldwide. While key genes involved in fumonisin biosynthesis are known, the location within the fungal cell where this process occurs has yet to be fully characterized. In this study, three key [...] Read more.
Fumonisin contamination of corn caused by Fusarium verticillioides is a major concern worldwide. While key genes involved in fumonisin biosynthesis are known, the location within the fungal cell where this process occurs has yet to be fully characterized. In this study, three key enzymes, i.e., Fum1, Fum8, and Fum6, associated with early steps of fumonisin biosynthesis pathway, were tagged with GFP, and we examined their cellular localization. Results showed that these three proteins co-localized with the vacuole. To further understand the role of the vacuole in fumonisin B1 (FB1) biosynthesis, we disrupted two predicted vacuole associated proteins, FvRab7 and FvVam7, resulting in a significant reduction of FB1 biosynthesis and a lack of Fum1-GFP fluorescence signal. Furthermore, we used the microtubule-targeting drug carbendazim to show that proper microtubule assembly is critical for proper Fum1 protein localization and FB1 biosynthesis. Additionally, we found that α1 tubulin is a negative regulator in FB1 biosynthesis. We concluded that vacuole proteins with optimized microtubule assembly play a crucial role in proper Fum1 protein localization and fumonisin production in F. verticillioides. Full article
(This article belongs to the Special Issue Mycotoxins in Food: Biosynthesis, Detection, and Control)
Show Figures

Figure 1

25 pages, 2026 KB  
Article
Co-Expression Analysis of Airway Epithelial Transcriptome in Asthma Patients with Eosinophilic vs. Non-Eosinophilic Airway Infiltration
by Pawel Kozlik-Siwiec, Sylwia Buregwa-Czuma, Izabela Zawlik, Sylwia Dziedzina, Aleksander Myszka, Joanna Zuk-Kuwik, Andzelika Siwiec-Kozlik, Jacek Zarychta, Krzysztof Okon, Lech Zareba, Jerzy Soja, Bogdan Jakiela, Michał Kepski, Jan G. Bazan and Stanislawa Bazan-Socha
Int. J. Mol. Sci. 2023, 24(4), 3789; https://doi.org/10.3390/ijms24043789 - 14 Feb 2023
Cited by 2 | Viewed by 3926
Abstract
Asthma heterogeneity complicates the search for targeted treatment against airway inflammation and remodeling. We sought to investigate relations between eosinophilic inflammation, a phenotypic feature frequent in severe asthma, bronchial epithelial transcriptome, and functional and structural measures of airway remodeling. We compared epithelial gene [...] Read more.
Asthma heterogeneity complicates the search for targeted treatment against airway inflammation and remodeling. We sought to investigate relations between eosinophilic inflammation, a phenotypic feature frequent in severe asthma, bronchial epithelial transcriptome, and functional and structural measures of airway remodeling. We compared epithelial gene expression, spirometry, airway cross-sectional geometry (computed tomography), reticular basement membrane thickness (histology), and blood and bronchoalveolar lavage (BAL) cytokines of n = 40 moderate to severe eosinophilic (EA) and non-eosinophilic asthma (NEA) patients distinguished by BAL eosinophilia. EA patients showed a similar extent of airway remodeling as NEA but had an increased expression of genes involved in the immune response and inflammation (e.g., KIR3DS1), reactive oxygen species generation (GYS2, ATPIF1), cell activation and proliferation (ANK3), cargo transporting (RAB4B, CPLX2), and tissue remodeling (FBLN1, SOX14, GSN), and a lower expression of genes involved in epithelial integrity (e.g., GJB1) and histone acetylation (SIN3A). Genes co-expressed in EA were involved in antiviral responses (e.g., ATP1B1), cell migration (EPS8L1, STOML3), cell adhesion (RAPH1), epithelial–mesenchymal transition (ASB3), and airway hyperreactivity and remodeling (FBN3, RECK), and several were linked to asthma in genome- (e.g., MRPL14, ASB3) or epigenome-wide association studies (CLC, GPI, SSCRB4, STRN4). Signaling pathways inferred from the co-expression pattern were associated with airway remodeling (e.g., TGF-β/Smad2/3, E2F/Rb, and Wnt/β-catenin). Full article
(This article belongs to the Special Issue New Advances in Inflammation and Repair in Respiratory Diseases)
Show Figures

Figure 1

12 pages, 315 KB  
Article
Determination of Virulence-Associated Genes and Antimicrobial Resistance Profiles in Brucella Isolates Recovered from Humans and Animals in Iran Using NGS Technology
by Maryam Dadar, Saeed Alamian, Hanka Brangsch, Mohamed Elbadawy, Ahmed R. Elkharsawi, Heinrich Neubauer and Gamal Wareth
Pathogens 2023, 12(1), 82; https://doi.org/10.3390/pathogens12010082 - 3 Jan 2023
Cited by 22 | Viewed by 4023
Abstract
Brucellosis is a common zoonotic disease in Iran. Antimicrobial-resistant (AMR) Brucella isolates have been reported from different developing countries, posing an imminent health hazard. The objective of this study was to evaluate AMR and virulence-associated factors in Brucella isolates recovered from humans and [...] Read more.
Brucellosis is a common zoonotic disease in Iran. Antimicrobial-resistant (AMR) Brucella isolates have been reported from different developing countries, posing an imminent health hazard. The objective of this study was to evaluate AMR and virulence-associated factors in Brucella isolates recovered from humans and animals in different regions of Iran using classical phenotyping and next generation sequencing (NGS) technology. Our findings revealed that B. melitensis is the most common species in bovines, small ruminants and camels. B. abortus was isolated only from one human case. Probable intermediate or resistant phenotype patterns for rifampicin, trimethoprim-sulfamethoxazole, ampicillin-sulbactam and colistin were found. Whole genome sequencing (WGS) identified mprF, bepG, bepF, bepC, bepE, and bepD in all isolates but failed to determine other classical AMR genes. Forty-three genes associated with five virulence factors were identified in the genomes of all Brucella isolates, and no difference in the distribution of virulence-associated genes was found. Of them, 27 genes were associated with lipopolysaccharide (LPS), 12 genes were related to a type IV secretion system (virB1-B12), two were associated with the toll-interleukin-1 receptor (TIR) domain-containing proteins (btpA, btpB), one gene encoded the Rab2 interacting conserved protein A (ricA) and one was associated with the production of cyclic β-1,2 glucans (cgs). This is the first investigation reporting the molecular-based AMR and virulence factors in brucellae isolated from different animal hosts and humans in Iran. Iranian B. abortus and B. melitensis isolates are still in vitro susceptible to the majority of antibiotics used for the treatment of human brucellosis. WGS failed to determine classical AMR genes and no difference was found in the distribution of virulence-associated genes in all isolates. Still, the absence of classical AMR genes in genomes of resistant strains is puzzling, and investigation of phenotypic resistance mechanisms at the proteomic and transcriptomic levels is needed. Full article
(This article belongs to the Section Bacterial Pathogens)
14 pages, 2603 KB  
Article
Overexpressing OsPYL/RCAR7 Improves Drought Tolerance of Maize Seedlings by Reducing Stomatal Conductance
by Joon Ki Hong, Yeon-Hee Lee, Beom-Gi Kim, Gang Seob Lee, Hee Jeung Jang, Giha Song, Eun Jung Suh and Sang Ryeol Park
Agriculture 2022, 12(12), 2140; https://doi.org/10.3390/agriculture12122140 - 13 Dec 2022
Cited by 2 | Viewed by 2211
Abstract
Drought stress is a serious abiotic factor limiting the quality and yield of maize (Zea mays). To produce maize plants with enhanced drought tolerance, we generated transgenic maize plants overexpressing OsPYL/RCAR7, encoding an abscisic acid receptor. We crossed the selected [...] Read more.
Drought stress is a serious abiotic factor limiting the quality and yield of maize (Zea mays). To produce maize plants with enhanced drought tolerance, we generated transgenic maize plants overexpressing OsPYL/RCAR7, encoding an abscisic acid receptor. We crossed the selected lines with maize variety B73 and obtained F1 hybrid seeds. Initial screening suggested that the transgenic lines were more drought tolerant than wild-type plants. Analysis using the DroughtSpotter platform indicated that expressing OsPYL/RCAR7 enhanced drought resistance in transgenic maize seedlings by reducing water loss. In addition, the stomatal conductance of the leaf surface was 30% lower in OsPYL/RCAR7-overexpressing plants than in wild-type ones. After drought treatment, OsPYL/RCAR7-overexpressing maize showed a much higher survival rate than the wild type, suggesting that expressing OsPYL/RCAR7 reduced the negative effects of drought exposure on stomatal conductance and enhanced water use efficiency. Furthermore, the expression levels of drought-tolerance–related abscisic acid–signaling genes ABP2 and RAB16A were higher in the transgenic plants than in the wild type. Taken together, our data indicate that the seedlings of transgenic maize expressing the gene OsPYL/RCAR7 showed increased tolerance to drought stress, raising the possibility that stress-related genes from monocotyledonous crops could be used as genetic resources to improve the agricultural traits of maize. Full article
(This article belongs to the Special Issue Molecular Genetics and Biotechnology of Crop Breeding)
Show Figures

Figure 1

Back to TopTop