Hereditary Traits and Diseases in Companion Animals

A special issue of Genes (ISSN 2073-4425). This special issue belongs to the section "Animal Genetics and Genomics".

Deadline for manuscript submissions: 25 December 2025 | Viewed by 687

Special Issue Editors


E-Mail Website
Guest Editor
1. Ecole Nationale Vétérinaire d’Alfort (Alfort National School of Veterinary Medicine), Maisons-Alfort, France
2. U955–IMRB, Team 10–Biology of the Neuromuscular System, Inserm, UPEC, EFS, EnvA, Maisons-Alfort, France
Interests: canine genetics; animal genetics; animal breeding; animal models
Special Issues, Collections and Topics in MDPI journals

E-Mail Website
Guest Editor
1. VetAgro Sup (Lyon National School of Veterinary Medicine), Lyon, France
2. INMG (Institut NeuroMyogène), CNRS UMR 5310—INSERM U1217—UCBL1-Université de Lyon, Lyon, France
Interests: feline genetics; animal genetics; animal breeding; animal models
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

The domestication, breed development, and selective breeding of companion animals have created unique populations with diverse and well-documented phenotypes. Dogs, cats, rabbits, ferrets, and other companion species offer exceptional models for exploring the genetic basis of morphology, behavior, and diseases. Studying hereditary traits in these animals not only supports responsible breeding practices that integrate health and welfare but also contributes to biomedical research and comparative genetics.

Spontaneous hereditary diseases in companion animals often mirror those in humans, providing highly valuable models for understanding pathophysiological mechanisms and developing therapeutic strategies in various medical fields. Characterizing the genetic determinism of these traits also facilitates the development of molecular tools for reasoned selection, balancing morphology and behavior with health-related concerns.

This Special Issue aims to gather original research articles and critical reviews that address all aspects of hereditary traits and diseases in companion animals. We welcome contributions across a range of disciplines, including, but not limited to, behavioral genetics, inherited disorders, cancer genetics, and traits of breeding interest such as coat color and texture, morphology, and reproductive characteristics.

By highlighting advances in the genetics of companion animals, this Special Issue seeks to enhance both animal health and our understanding of shared biological mechanisms between species.

Dr. Lucie Chevallier
Prof. Dr. Marie Abitbol
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Genes is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • genetic traits
  • hereditary diseases
  • companion animals
  • spontaneous disease models
  • veterinary genetics
  • genetic selection
  • breed-specific diseases

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (2 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

8 pages, 3739 KiB  
Communication
Molecular Screening of Feline Glycogen Storage Disease Type II (Pompe Disease): Allele Frequencies of the GAA:c.1799G>A and c.55G>A Variants
by Abdullah Al Faruq, Tofazzal Md Rakib, Md Shafiqul Islam, Akira Yabuki, Shahnaj Pervin, Shinichiro Maki, Shigeki Tanaka, Nanami Arakawa and Osamu Yamato
Genes 2025, 16(8), 938; https://doi.org/10.3390/genes16080938 - 7 Aug 2025
Viewed by 215
Abstract
Background/Objectives: Glycogen storage disease type II, also known as Pompe disease (PD), is a rare autosomal recessive genetic disorder triggered by a deficiency in lysosomal acid α-glucosidase (GAA). Recently, we discovered two deleterious missense variants of the GAA gene, c.1799G>A (p.Arg600His) (a pathogenic [...] Read more.
Background/Objectives: Glycogen storage disease type II, also known as Pompe disease (PD), is a rare autosomal recessive genetic disorder triggered by a deficiency in lysosomal acid α-glucosidase (GAA). Recently, we discovered two deleterious missense variants of the GAA gene, c.1799G>A (p.Arg600His) (a pathogenic mutation) and c.55G>A (p.Val19Met), in a domestic short-haired cat with PD. This study aimed to design genotyping assays for these two variants and ascertain their allele frequencies in Japanese cat populations. Methods: We developed fluorescent probe-based real-time polymerase chain reaction assays to genotype the c.1799G>A and c.55G>A variants. A total of 738 cats, comprising 99 purebred cats from 20 breeds and 540 mixed-breed cats, were screened using these assays. Results: Genotyping assays clearly differentiated all known genotypes of the two variants. None of the 738 cats tested carried the c.1799G>A variant. However, we identified cats with c.55G/A and c.55A/A genotypes in the purebred (A allele frequency: 0.081) and mixed-breed cats (0.473). A significant difference (p < 0.001) was observed in the A allele frequency between the two groups. Conclusions: The c.1799G>A mutation appears rare in cat populations, suggesting it may be confined to specific pedigree Japanese mixed-breed cats. The c.55G>A variant was detected in purebred and mixed-breed cats, suggesting that it may not be directly linked to feline PD. However, additional studies are required to elucidate the precise relationship between this variant and cardiac function. Genotyping assays will serve as valuable tools for diagnosing and genotyping feline PD. Full article
(This article belongs to the Special Issue Hereditary Traits and Diseases in Companion Animals)
Show Figures

Figure 1

11 pages, 1293 KiB  
Article
RAB24 Missense Variant in Dogs with Cerebellar Ataxia
by Cleo Schwarz, Jan Wennemuth, Julien Guevar, Francesca Dörn, Vidhya Jagannathan and Tosso Leeb
Genes 2025, 16(8), 934; https://doi.org/10.3390/genes16080934 - 4 Aug 2025
Viewed by 285
Abstract
Hereditary ataxias are a highly heterogenous group of diseases characterized by loss of coordination. In this study, we investigated a family of random-bred dogs, in which two siblings were affected by a slowly progressive ataxia. They presented with clinical signs of progressive cerebellar [...] Read more.
Hereditary ataxias are a highly heterogenous group of diseases characterized by loss of coordination. In this study, we investigated a family of random-bred dogs, in which two siblings were affected by a slowly progressive ataxia. They presented with clinical signs of progressive cerebellar ataxia, hypermetria, and absent menace response. The MRI revealed generalized brain atrophy, reduced cortical demarcation, hypoplastic corpus callosum, and cerebellar folia thinning, highly suggestive of a neurodegenerative disorder. We sequenced the genomes of the two affected dogs and their unaffected parents. Filtering for protein-changing variants that had homozygous alternate genotypes in the affected dogs, heterozygous genotypes in the parents, and homozygous reference genotypes in 1576 control genomes yielded a single missense variant in the RAB24 gene, XM_038534663.1:c.239G>T or XP_038390591.1:p.(Gly80Val). Genotypes at this variant showed the expected co-segregation with the ataxia phenotype in the investigated family. The predicted amino acid affects the conserved RabF4 motif. Glycine-80 resides at the protein surface and the introduction of a hydrophobic isopropyl side chain of the mutant valine might impede solvent accessibility. Another missense variant in RAB24, p.Glu38Pro, was previously reported to cause a clinically similar form of cerebellar ataxia in Gordon Setters and Old English Sheepdogs. Taken together, the available data suggest that RAB24:p.Gly80Val represents the causal variant in the studied dogs. To the best of our knowledge, this is only the second report of a potentially pathogenic RAB24 variant in any species and further supports that RAB24 should be considered a candidate gene in human ataxia patients with unclear molecular etiology. Full article
(This article belongs to the Special Issue Hereditary Traits and Diseases in Companion Animals)
Show Figures

Figure 1

Back to TopTop