Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (15,782)

Search Parameters:
Keywords = R28 cells

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 960 KB  
Article
Integration of Circulating miR-31-3p and miR-196a-5p as Liquid Biopsy Markers in HPV-Negative Primary Laryngeal Squamous Cell Carcinoma
by Gergana Stancheva, Silva Kyurkchiyan, Iglika Stancheva, Julian Rangachev, Venera Dobriyanova, Diana Popova, Radka Kaneva and Todor M Popov
Diseases 2025, 13(9), 279; https://doi.org/10.3390/diseases13090279 - 27 Aug 2025
Abstract
Background and Objectives: Laryngeal cancer is a common head and neck tumor burden, with no significant improvements in long term patient survival. Despite the progress of molecular genetics and oncology strategies, there is still a lack of biomarker use in routine clinical practice [...] Read more.
Background and Objectives: Laryngeal cancer is a common head and neck tumor burden, with no significant improvements in long term patient survival. Despite the progress of molecular genetics and oncology strategies, there is still a lack of biomarker use in routine clinical practice for early laryngeal cancer screening or diagnosis. miRNAs are explored as promising molecules, that could serve as liquid biopsy. Our goal is to explore the screening potential of miR-31-3p and miR-196a-5p in early- and advanced-stage laryngeal HPV-negative plasma samples. Methods: In this study, 50 plasma samples obtained from early and advanced HPV-negative laryngeal cancer patients were included. The expression levels of mir-31-3p and miR-196a-5p were analyzed via TaqMan RT-qPCR. SPSS v27.0 was used for statistical analysis. Results: For the first time, miR-31-3p and miR-196a-5p were analyzed in plasma samples from early HPV-negative primary LSCC patients. Both circulating miRNAs showed significantly elevated expression levels in early and advanced laryngeal cancer samples. miR-31-3p was significantly associated with T stages (p < 0.001) and N stages (p = 0.009). The ROC analysis revealed that miR-31-3p could significantly discriminate early-stage from advanced-stage LSCC with an AUC of 0.850 (95% CI: 0.743–0.956, p < 0.001) at an RQ cutoff of 2.03, achieving a sensitivity of 95.5% and a specificity of 64%. Nevertheless, miR-196a-5p was found to be significantly overexpressed in early-stage LSCC, which could contribute to the development of its screening potential. For the first time, both miRNAs revealed a significant positive correlation, which indicates that miR-31-3p and miR-196a-5p could coregulate cancerogenesis. Conclusions: In conclusion, the data revealed that miR-31-3p has greater potential as an LSCC screening marker in comparison to miR-196a-5p. Still, miR-196a-5p also showed promising results in early-stage laryngeal cancer monitoring. The utilization of circulating miR-31-3p or miR-196a-5p analysis could enable liquid biopsy approaches, with results potentially informing treatment monitoring strategies, personalized oncological protocols, and early diagnosis. These advancements could ultimately benefit patient outcomes by improving laryngeal organ preservation and survival rates. Full article
Show Figures

Figure 1

11 pages, 694 KB  
Article
Impact of Adipokine Expression on Tumor Characteristics and Survival Outcomes in Patients with Renal Cell Carcinoma
by Oktay Halit Aktepe, Tugce Ulasli, Aytac Terzi, Fatma Gundogdu, Eda Caliskan Yildirim, Ahmet Melih Arslan, Huseyin Salih Semiz, Kemal Kosemehmetoglu, Aziz Karaoglu, Mustafa Erman and Suayib Yalcin
Medicina 2025, 61(9), 1544; https://doi.org/10.3390/medicina61091544 - 27 Aug 2025
Abstract
Background and Objectives: To investigate the clinical significance of adipokines’ [leptin, leptin receptor (leptin-R), adiponectin, and resistin] expression on the characteristics and survival outcomes of patients with renal cell carcinoma (RCC). Materials and Methods: A total of 81 patients were included. [...] Read more.
Background and Objectives: To investigate the clinical significance of adipokines’ [leptin, leptin receptor (leptin-R), adiponectin, and resistin] expression on the characteristics and survival outcomes of patients with renal cell carcinoma (RCC). Materials and Methods: A total of 81 patients were included. The expressions of adipokines in the nephrectomy material of the patients were assessed using immunohistochemistry. Staining patterns were divided into two groups for statistical analyses: negative (no staining) and positive. Univariable and multivariable Cox regression models were used to evaluate the impact of the expression of adipokines on the survival outcomes of the patients. Results: The percentages of patients expressing leptin, leptin-R, adiponectin, and resistin were 36.4%, 30.7%, 32%, and 60.2%, respectively. The median overall survival (OS) of all patients was 53.7 months (95% confidence interval [CI]: 39.9–67.5). In the multivariate analyses, only leptin expression status was associated with OS among adipokines (hazard ratio [HR]: 1.98, 95%CI: 1.03–3.78, p = 0.039) in addition to the presence of distant metastasis (HR: 2.48, 95%CI: 1.16–5.29, p = 0.018). No significant associations were determined between adipokine expression and pathologic determinants of RCC, including tumor stage, grade, and histological subtype. Conclusions: Our study demonstrated that leptin expression was an independent prognostic factor for inferior OS in RCC patients treated with nephrectomy, even after adjusting for disease stage in multivariate analysis. Full article
(This article belongs to the Section Oncology)
14 pages, 746 KB  
Article
CD19 CAR-T Outcomes in Patients with Relapsed/Refractory Diffuse Large B-Cell Lymphoma: A Retrospective Cohort Study from the Calabria Referral Center in Southern Italy
by Daniele Caracciolo, Filippo Antonio Canale, Virginia Naso, Caterina Alati, Violetta Marafioti, Gaetana Porto, Ludovica Tedesco, Giulia Pensabene, Enrica Antonia Martino, Alessandro Allegra, Demetrio Gabriele Gerace, Michele Cimminiello, Massimo Gentile, Pierosandro Tagliaferri, Pierfrancesco Tassone and Massimo Martino
Cancers 2025, 17(17), 2796; https://doi.org/10.3390/cancers17172796 - 27 Aug 2025
Abstract
Background: Chimeric antigen receptor (CAR) T-cell therapy has transformed the therapeutic landscape for relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL). Our study aims to describe the clinical outcomes of CAR T-cell therapy in patients with R/R DLBCL treated at a single [...] Read more.
Background: Chimeric antigen receptor (CAR) T-cell therapy has transformed the therapeutic landscape for relapsed or refractory (R/R) diffuse large B-cell lymphoma (DLBCL). Our study aims to describe the clinical outcomes of CAR T-cell therapy in patients with R/R DLBCL treated at a single regional center in Italy, with the goal of comparing these outcomes to those reported by high-volume academic centers. Methods: Data were retrospectively collected from a cohort of consecutive 41 patients who underwent to CD19 CAR-T infusion from June 2020 until September 2024 at CAR-T center of Reggio Calabria (Italy). Results: The median age was 66 years, 60.9% were refractory to their most recent regimen, and 24.4% had previously failed autologous stem cell transplant. Bridging therapy was administered in 82.9% of cases. A total of 27 patients (65.8%) received Axi-cel, and 14 (34.2%) received Tisa-cel. At median follow-up of 6.9 months, the best ORR and CR rate were 63.4% and 51.2%, respectively. Median PFS was 3 months, and median OS was 8.4 months. A total of 81.4% of patients developed a CRS, grade 1 in most cases (78.4%); 26.8% developed ICANS: two (5.4%) and three (8.1%) had grade 2 and 3, respectively. In univariate analyses, early response predicted longer survival, whereas high tumor burden and more than one extranodal site were associated with worse outcomes. Conclusions: Our retrospective cohort study reports similar data in terms of clinical response as compared to pivotal trials and other reports, confirming that CAR-T may offer more durable response rates and longer progression-free intervals in R/R DLBCL in our real-world context. Full article
Show Figures

Figure 1

16 pages, 1593 KB  
Article
Machine Learning-Based Predictive Modeling for Solid Oxide Electrolysis Cell (SOEC) Electrochemical Performance
by Nathan Gil A. Estrada and Rinlee Butch M. Cervera
Appl. Sci. 2025, 15(17), 9388; https://doi.org/10.3390/app15179388 - 27 Aug 2025
Abstract
Solid oxide electrolysis cells (SOECs) are emerging as a promising technology for high-efficiency and environmentally friendly hydrogen production. While laboratory-scale experiments and physics-based simulations have significantly advanced SOEC research, there remains a need for faster, scalable, and cost-effective methods to predict electrochemical performance. [...] Read more.
Solid oxide electrolysis cells (SOECs) are emerging as a promising technology for high-efficiency and environmentally friendly hydrogen production. While laboratory-scale experiments and physics-based simulations have significantly advanced SOEC research, there remains a need for faster, scalable, and cost-effective methods to predict electrochemical performance. This study explores the feasibility of using machine learning (ML) techniques to model the performance of SOECs with the material configuration LSM-YSZ/YSZ/Ni-YSZ. A dataset of 593 records (from 31 IV curves) was compiled from 12 peer-reviewed sources and used to train and evaluate four ML algorithms: SVR, ANN, XGBoost, and Random Forest. Among these, XGBoost achieved the highest accuracy, with an R2 of 98.39% for cell voltage prediction and 98.10% for IV curve interpolation test under typical conditions. Extrapolation tests revealed the model’s limitations in generalizing beyond the bounds of the training data, emphasizing the importance of comprehensive data coverage. Overall, the results confirm that ML models, particularly XGBoost, can serve as accurate and efficient tools for predicting SOEC electrochemical behavior when applied with appropriate data coverage and guided by materials science concepts. Full article
Show Figures

Figure 1

16 pages, 3642 KB  
Article
miR-221-3p Exacerbates Obesity-Induced Insulin Resistance by Targeting SOCS1 in Adipocytes
by Nan Li, Liang Zhang, Qiaofeng Guo, Xiaoying Yang, Changjiang Liu and Yue Zhou
Metabolites 2025, 15(9), 572; https://doi.org/10.3390/metabo15090572 - 27 Aug 2025
Abstract
Objective: Insulin resistance (IR) is a complex and multifactorial disorder that contributes to type 2 diabetes and cardiovascular disease. MicroRNAs (miRNAs) play important roles in diverse developmental and disease processes. However, the molecular mechanisms of IR are unclear. This paper aims to explore [...] Read more.
Objective: Insulin resistance (IR) is a complex and multifactorial disorder that contributes to type 2 diabetes and cardiovascular disease. MicroRNAs (miRNAs) play important roles in diverse developmental and disease processes. However, the molecular mechanisms of IR are unclear. This paper aims to explore the role of miRNA in regulating IR and to elucidate the mechanisms responsible for these effects. Methods: IR models were created by feeding a high-fat diet (HFD) to mice or stimulating 3T3-L1 cells with palmitate. Twelve weeks of HFD trigger weight gain, leading to lipid accumulation and insulin resistance in mice. The expression profiles of miRNAs in adipose tissues (AT) from the HFD-induced mouse models were analyzed. The relationship between miR-221-3p and SOCS1 was determined using dual luciferase reporter gene assays. Metabolic alterations in AT were investigated by real-time PCR and Western blot. Results: miR-221-3p was significantly increased in AT. HFD-induced disturbances in glucose homeostasis were aggravated by miR-221-3p upregulation. The inhibition of miR-221-3p promoted insulin sensitivity including reduced lipid accumulation and the disruption of glucose metabolism. Of note, the 3′-UTR of SOCS1 was found to be a direct target of miR-221-3p. The SOCS1 inhibitor attenuated miR-221-3p-induced increases in IRS-1 phosphorylation, AKT phosphorylation, and GLUT4. miR-221-3p was considered to be involved in the PI3K/AKT signaling pathway, thus leading to increased insulin sensitivity and decreased IR in HFD-fed mice and 3T3-L1 adipocytes. Conclusions: The miR-221-3p/SOCS1 axis in AT plays a pivotal role in the regulation of glucose metabolism, providing a novel target for treating IR and diabetes. Full article
(This article belongs to the Section Endocrinology and Clinical Metabolic Research)
Show Figures

Figure 1

15 pages, 4902 KB  
Article
CRISPR-Mediated Analysis of p27 and PAK1 Phosphorylation Reveals Complex Regulation of Osteosarcoma Metastasis
by Junyan Wang, Benjamin B. Gyau, Jun Xu, Angela M. Major, John Hicks and Tsz-Kwong Man
Onco 2025, 5(3), 40; https://doi.org/10.3390/onco5030040 - 27 Aug 2025
Abstract
Background: Osteosarcoma (OS) is a fast-growing malignant bone tumor that occurs most often in children and teenagers. Development of pulmonary metastasis is the primary cause of treatment failure and mortality. Our previous studies demonstrated that cytoplasmic p27 interacts with PAK1, enhancing PAK1 phosphorylation [...] Read more.
Background: Osteosarcoma (OS) is a fast-growing malignant bone tumor that occurs most often in children and teenagers. Development of pulmonary metastasis is the primary cause of treatment failure and mortality. Our previous studies demonstrated that cytoplasmic p27 interacts with PAK1, enhancing PAK1 phosphorylation and promoting OS pulmonary metastasis. However, the cellular functions of p27 and PAK1 are primarily regulated by phosphorylation, and the roles of specific phosphorylation residues in modulating OS metastatic potential remain unclear. Methods: To study tumor invasiveness and lung metastasis, we employed a CRISPR-based knock-in method to introduce specific mutations—p27-T157A, p27-T157D, PAK1-T423E, and PAK1-K299R—into the 143B OS cell line, followed by in vitro invasion and orthotopic xenograft mouse experiments. These residues were selected for their therapeutic potential, as T157 regulates p27 nuclear–cytoplasmic shuttling, while T423 and K299 modulate PAK1 kinase activity. Results: No significant differences in pulmonary metastasis were observed across p27 mutants compared to parental controls. However, the p27-T157D mutant exhibited increased cytoplasmic mislocalization, elevated PAK1-S144 phosphorylation, and enhanced in vitro invasiveness compared to the p27-T157A mutant and parental 143B cells. The PAK1-K299R mutant, designed to be kinase-dead, showed negligible S144 phosphorylation, consistent with loss of kinase activity. Unexpectedly, this mutant displayed increased T423 phosphorylation and in vitro invasiveness, and significantly enhanced pulmonary metastasis in vivo compared to the PAK1-T423E mutant and parental controls. Conclusions: These findings highlight the complexity of targeting specific p27 and PAK1 phosphorylation sites as an anti-metastatic strategy for OS. While p27-T157 phosphorylation influences cytoplasmic localization and invasiveness, it does not significantly alter metastatic outcomes. Conversely, PAK1-T423 phosphorylation is critical in driving OS metastatic potential, and the kinase-dead K299R mutant’s unexpected pro-metastatic effect suggests that kinase-independent mechanisms or compensatory pathways may contribute to metastasis. Our findings suggest the necessity for a more comprehensive understanding of the phosphorylation dynamics of p27 and PAK1 in metastatic OS. They also indicate that conventional kinase inhibition may be insufficient and underscore the potential benefits of alternative or combinatorial therapeutic strategies, such as targeting kinase-independent functions or other upstream kinases involved in these regulatory pathways. Full article
Show Figures

Figure 1

23 pages, 1339 KB  
Review
Current State of Knowledge on Amiodarone (AMD)-Induced Reactive Oxygen Species (ROS) Production in In Vitro and In Vivo Models
by Konrad A. Szychowski
Oxygen 2025, 5(3), 16; https://doi.org/10.3390/oxygen5030016 - 26 Aug 2025
Abstract
Amiodarone (AMD) is an effective antiarrhythmic drug whose long-term use is limited by multi-organ toxicities linked to oxidative stress. This review synthesizes current evidence on how AMD induces reactive oxygen species (ROS) generation in vitro and in vivo, and the mechanistic pathways involved. [...] Read more.
Amiodarone (AMD) is an effective antiarrhythmic drug whose long-term use is limited by multi-organ toxicities linked to oxidative stress. This review synthesizes current evidence on how AMD induces reactive oxygen species (ROS) generation in vitro and in vivo, and the mechanistic pathways involved. AMD promotes ROS production through both direct and indirect mechanisms. Directly, AMD accumulates in mitochondria and impairs the electron transport chain, leading to electron leakage and superoxide formation. It also undergoes redox cycling, forming radical intermediates that trigger lipid peroxidation and deplete cellular antioxidants. AMD and its metabolites inhibit antioxidant enzymes (SOD, CAT, GPx) expression and/or activities and reduce glutathione level, compounding oxidative injury. Indirectly, AMD activates signaling pathways that exacerbate ROS generation. This compound can induce pro-inflammatory mediators such as TNF-α and modulate nuclear receptors such as AhR, PXR, CAR, and PPARs, altering the expression of metabolic enzymes and endogenous antioxidants. These processes are time- and dose-dependent: short exposures at low concentrations may transiently scavenge radicals, whereas chronic or higher-dose exposures consistently lead to net ROS accumulation. The oxidative effects of AMD vary by tissue and experimental models. In chronic models, organs such as the lung and liver show pronounced ROS-mediated injury, whereas acute or cell-based systems typically exhibit subtler changes. AMD-induced toxicity arises from multifactorial oxidative stress involving mitochondrial dysfunction, increased radical formation, depletion of antioxidant defenses, and activation of pro-oxidant signaling pathways. Recognizing these pathways suggests that antioxidant and mitochondria-targeted co-therapies could ameliorate the side effects of AMD. Full article
(This article belongs to the Special Issue Feature Papers in Oxygen Volume III)
Show Figures

Figure 1

21 pages, 16819 KB  
Article
LncRNA TSPEAR-AS2 Maintains the Stemness of Gastric Cancer Stem Cells by Regulating the miR-15a-5p/CCND1 Axis
by Qiong Li, Yanan Wang, Liyang Chen, Yan Shen, Shijiao Zhang, Dengyuan Yue and Xiaowei Chen
Biomolecules 2025, 15(9), 1227; https://doi.org/10.3390/biom15091227 - 26 Aug 2025
Abstract
Cancer stem cells (CSCs), a subpopulation of tumor cells endowed with self-renewal capacity, drive cancer initiation and progression. While long non-coding RNAs (lncRNAs) are increasingly recognized as critical regulators of CSC stemness, their specific roles in gastric cancer stem cells (GCSCs) remain poorly [...] Read more.
Cancer stem cells (CSCs), a subpopulation of tumor cells endowed with self-renewal capacity, drive cancer initiation and progression. While long non-coding RNAs (lncRNAs) are increasingly recognized as critical regulators of CSC stemness, their specific roles in gastric cancer stem cells (GCSCs) remain poorly understood. This study investigates the functional significance of lncRNA TSPEAR-AS2 in modulating GCSC properties and uncovers its underlying molecular mechanisms. Through integrated whole-transcriptome sequencing, bioinformatics analysis, and validation in 48 paired gastric cancer tissues and adjacent normal tissues, TSPEAR-AS2 was identified as a differentially expressed lncRNA upregulated in both GCSCs and tumor samples. Functional experiments revealed that TSPEAR-AS2 overexpression significantly enhanced GCSC sphere-forming ability, proliferation, cell cycle progression, epithelial–mesenchymal transition (EMT), and expression of stemness markers (CD54, CD44, OCT4, NANOG, and SOX2) while suppressing apoptosis. Conversely, TSPEAR-AS2 knockdown attenuated these malignant phenotypes. In vivo tumorigenicity assays in nude mice further confirmed that TSPEAR-AS2 promotes tumor growth, with overexpression accelerating and knockdown inhibiting tumor formation. Mechanistically, bioinformatics predictions and dual-luciferase reporter assays established TSPEAR-AS2 as a competing endogenous RNA (ceRNA) that sponges miR-15a-5p, thereby derepressing the miR-15a-5p target gene CCND1. Rescue experiments demonstrated that overexpression of miR-15a-5p phenocopied TSPEAR-AS2 knockdown, reducing GCSC stemness, while miR-15a-5p inhibition rescued the effects of TSPEAR-AS2 suppression. Collectively, these findings reveal a novel TSPEAR-AS2/miR-15a-5p/CCND1 regulatory axis that sustains GCSC stemness and tumorigenicity. These results highlight TSPEAR-AS2 as a potential therapeutic target for eradicating gastric cancer stem cells and improving clinical outcomes. Full article
(This article belongs to the Section Molecular Genetics)
Show Figures

Figure 1

13 pages, 1532 KB  
Article
miR-429 Acts as a Tumor Suppressor in Multiple Myeloma by Regulating Cell Proliferation
by Mohamed Abdelkarim, Inès Limam, Emna Berred, Rachid Kharrat, Brigitte Sola and Fatma Ben Aissa-Fennira
Hemato 2025, 6(3), 30; https://doi.org/10.3390/hemato6030030 - 26 Aug 2025
Abstract
Background/Objectives: Multiple myeloma (MM) is a hematologic malignancy characterized by the clonal proliferation of abnormal plasma cells in bone marrow, predominantly affecting individuals over 65 years of age. Despite recent therapeutic advances, MM remains largely incurable due to frequent relapses and the emergence [...] Read more.
Background/Objectives: Multiple myeloma (MM) is a hematologic malignancy characterized by the clonal proliferation of abnormal plasma cells in bone marrow, predominantly affecting individuals over 65 years of age. Despite recent therapeutic advances, MM remains largely incurable due to frequent relapses and the emergence of drug resistance. MicroRNAs have emerged as key post-transcriptional regulators implicated in cancer progression, with miR-429 exhibiting context-dependent oncogenic or tumor-suppressive roles in various cancers. However, its function in MM has not been thoroughly investigated. Methods: miR-429 expression was evaluated in MM cells and patient samples by qRT-PCR. Functional effects were assessed through inhibition studies, proliferation/apoptosis assays, and co-culture with stromal cells. Results: In this study, we found that miR-429 expression is significantly downregulated in MM cell lines and primary malignant plasma cells compared to normal plasma cells. The functional inhibition of miR-429 in U266 cells led to a significant increase in cell proliferation without affecting spontaneous apoptosis, as confirmed in both MM cell lines and patient-derived plasma cells. Additionally, the inhibition of miR-429 in HS-5 stromal cells enhanced the proliferation of co-cultured MM cells, highlighting the role of the bone marrow microenvironment in disease progression. Conclusions: These findings suggest that miR-429 may act as a tumor suppressor by modulating MM cell proliferation. Although preliminary, our results support the need for further investigation into miR-429 as a potential biomarker or therapeutic target. Full article
(This article belongs to the Section Plasma Cell Disorders)
Show Figures

Figure 1

21 pages, 8112 KB  
Article
Improved Static and Dynamic Behavior of Auxetic Structures with Radial Limb Design
by Serdar Sayın and Zeki Kıral
Appl. Sci. 2025, 15(17), 9343; https://doi.org/10.3390/app15179343 - 26 Aug 2025
Abstract
Auxetic structures, also known as metamaterials, exhibit a negative Poisson’s ratio under applied load and have found use across a variety of applications. This behavior may arise from material properties or from the structural design itself. Depending on the intended application, such structures [...] Read more.
Auxetic structures, also known as metamaterials, exhibit a negative Poisson’s ratio under applied load and have found use across a variety of applications. This behavior may arise from material properties or from the structural design itself. Depending on the intended application, such structures can be subjected to either static or dynamic loading conditions. New geometries that potentially enhance energy absorption or damping in both static and dynamic conditions were investigated in this work, using the well-known Reentrant design reported in earlier research articles as a benchmark. As an alternative to the cellular limb angles employed in the well-known Reentrant model, the effect of radial limb radius was analyzed in the novel cell designs called Arched-Reentrant. Four alternative designs have been proposed, and all analyses were conducted in ANSYS-2025-R1. The specimens were manufactured by using the 3D printing method with thermoplastic polyurethane (TPU) material having a shore hardness of 95A. In the evaluation of the outcomes resulting from different designs, the specimens were analyzed under static, impulsive, and harmonic loading conditions. The energy absorption capacities of the samples were examined in relation to their design modifications. Within the scope of the study, it was observed that Arched-Reentrant structures are capable of absorbing higher amounts of energy under static loading and exhibit greater stiffness under dynamic loads compared to conventional Reentrant structures. The impulse analysis’s findings demonstrate that the suggested Arched-Reentrant-V3 model performs better, with over 50% less displacement and comparable reaction forces. In addition, the harmonic analysis findings show that the Arched-Reentrant-V3 model has lower ground reaction forces and displacement values. As a result, the suggested model can be regarded as an efficient damping component when dynamic loading occurs. Full article
Show Figures

Figure 1

22 pages, 5198 KB  
Article
Expandable Gastroretentive Films Based on Anthocyanin-Rich Rice Starch for Improved Ferulic Acid Delivery
by Nattawipa Matchimabura, Jiramate Poolsiri, Nataporn Phadungvitvatthana, Rachanida Praparatana, Ousanee Issarachot and Ruedeekorn Wiwattanapatapee
Polymers 2025, 17(17), 2301; https://doi.org/10.3390/polym17172301 - 25 Aug 2025
Abstract
Ferulic acid (FA) is a bioactive compound known for its potent antioxidant and anti-inflammatory properties; however, its poor water solubility significantly limits its bioavailability and therapeutic potential. In this study, a solid dispersion of FA (FA-SD) was developed using Eudragit® EPO via [...] Read more.
Ferulic acid (FA) is a bioactive compound known for its potent antioxidant and anti-inflammatory properties; however, its poor water solubility significantly limits its bioavailability and therapeutic potential. In this study, a solid dispersion of FA (FA-SD) was developed using Eudragit® EPO via the solvent evaporation method, achieving a 24-fold increase in solubility (42.7 mg/mL) at a 1:3 drug-to-polymer ratio. Expandable gastroretentive films were subsequently formulated using starches from Hom-Nil rice, glutinous rice, and white rice, combined with chitosan as the primary film-forming agents, via the solvent casting technique. Hydroxypropyl methylcellulose (HPMC) K100 LV was incorporated as an adjuvant to achieve controlled release. At optimal concentrations (3% w/w starch, 2% w/w chitosan, and 2% w/w HPMC), the films exhibited favorable mechanical properties, swelling capacity, and unfolding behavior. Sustained release of FA over 8 h was achieved in formulations containing HPMC with either Hom-Nil or glutinous rice starch. Among the tested formulations (R6, G6, and H6), those incorporating Hom-Nil rice starch demonstrated the most significant antioxidant (10.38 ± 0.23 μg/mL) and anti-inflammatory (9.26 ± 0.14 μg/mL) effects in murine macrophage cell line (RAW 264.7), surpassing the activities of both free FA and FA-SD. These results highlight the potential of anthocyanin-rich pigmented rice starch-based expandable films as effective gastroretentive systems for enhanced FA delivery. Full article
Show Figures

Graphical abstract

17 pages, 1832 KB  
Article
Construction and Characterization of a Vesicular Stomatitis Virus Chimera Expressing Schmallenberg Virus Glycoproteins
by Huijuan Guo, Zhigang Jiang, Jing Wang, Fang Wang, Qi Jia, Zhigao Bu, Xin Yin and Zhiyuan Wen
Vet. Sci. 2025, 12(9), 809; https://doi.org/10.3390/vetsci12090809 - 25 Aug 2025
Abstract
Schmallenberg virus (SBV) is a negative-sense RNA virus transmitted by insect vectors, causing arthrogryposis-hydranencephaly syndrome in newborn ruminants. Since its discovery in Germany and the Netherlands in 2011, SBV has rapidly spread across multiple European countries, resulting in significant economic losses in the [...] Read more.
Schmallenberg virus (SBV) is a negative-sense RNA virus transmitted by insect vectors, causing arthrogryposis-hydranencephaly syndrome in newborn ruminants. Since its discovery in Germany and the Netherlands in 2011, SBV has rapidly spread across multiple European countries, resulting in significant economic losses in the livestock industry. With the increasing global animal trade and the expanded range of insect transmission, the risk of SBV introduction into non-endemic regions is also rising. As the gold standard for serological testing, the virus neutralization test (VNT) is crucial for tracking the spread of SBV and evaluating the efficacy of vaccines. However, in non-endemic regions, the lack of local viral strains and the biosafety risks associated with introducing foreign strains pose challenges to the implementation of VNT. In this study, we employed reverse genetics techniques using vesicular stomatitis virus (VSV) to substitute the VSV G protein with the envelope glycoproteins of SBV, thereby successfully generating and rescuing the recombinant virus rVSVΔG-eGFP-SBVGPC. The recombinant virus was then thoroughly characterized in terms of SBV Gc protein expression, viral morphology, and growth kinetics. Importantly, rVSVΔG-eGFP-SBVGPC exhibited SBV-specific cell tropism and was capable of reacting with SBV-positive serum, enabling the measurement of neutralizing antibody titers. The results suggest that this recombinant virus can serve as a feasible alternative for SBV neutralization tests, with promising potential for application in serological screening and vaccine evaluation. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

15 pages, 1682 KB  
Article
A Distinctive Metabolomics Pattern Associated with the Administration of Combined Sacubitril/Valsartan to Healthy Subjects: A Kinetic Approach
by Randh AlAhmari, Hana M. A. Fakhoury, Reem AlMalki, Hatouf H. Sukkarieh, Lina Dahabiyeh, Tawfiq Arafat and Anas M. Abdel Rahman
Pharmaceuticals 2025, 18(9), 1264; https://doi.org/10.3390/ph18091264 - 25 Aug 2025
Abstract
Background/Objective: Sacubitril/Valsartan are a combination drug approved for heart failure treatment, known to enhance natriuretic peptide activity and inhibit the renin–angiotensin–aldosterone system (RAAS). While its clinical efficacy is well-established, its broader impact on human metabolism remains insufficiently characterized. This study aimed to explore [...] Read more.
Background/Objective: Sacubitril/Valsartan are a combination drug approved for heart failure treatment, known to enhance natriuretic peptide activity and inhibit the renin–angiotensin–aldosterone system (RAAS). While its clinical efficacy is well-established, its broader impact on human metabolism remains insufficiently characterized. This study aimed to explore the time-resolved metabolic changes induced by Sacubitril/Valsartan in healthy individuals using an untargeted metabolomics approach. Methods: Fourteen healthy male volunteers received a single oral dose of Sacubitril/Valsartan (200 mg; 97.2 mg Sacubitril and 102.8 mg Valsartan) across two phases separated by a two-week washout period. Plasma samples were collected at eight individualized time points based on pharmacokinetic profiles. Metabolites were extracted and analyzed using high-resolution liquid chromatography–mass spectrometry (LC-QToF HRMS). Data processing included peak alignment, annotation via HMDB and METLIN, and statistical modeling through multivariate (PLS-DA, OPLS-DA) and univariate (ANOVA with FDR correction) analyses. Results: Out of 20,472 detected features, 13,840 were retained after quality filtering. A total of 315 metabolites were significantly dysregulated (FDR p < 0.05), of which 31 were confidently annotated as endogenous human metabolites. Among these, key changes were observed in the pyrimidine metabolism pathway, particularly elevated levels of uridine triphosphate (UTP) associated with cellular proliferation and metabolic remodeling. OPLS-DA models demonstrated clear separation between pre-dose and Cmax samples (R2Y = 0.993, Q2 = 0.768), supporting the robustness of the time-dependent effects. Conclusions: This is the first study to characterize the dynamic metabolomic signature of Sacubitril/Valsartan in healthy humans. The findings reveal a distinctive perturbation in pyrimidine metabolism, suggesting possible links to drug mechanisms relevant to cardiac cell cycle regulation. These results underscore the utility of untargeted pharmacometabolomics in uncovering systemic drug effects and highlight potential biomarkers for monitoring therapeutic response or guiding precision treatment strategies in heart failure. Full article
(This article belongs to the Section Pharmaceutical Technology)
Show Figures

Figure 1

11 pages, 1398 KB  
Article
MicroRNA Regulation in the Freeze-Tolerant Heart of Dryophytes versicolor
by Saif Rehman, Sarah A. Breedon, Imane Rhzali and Kenneth B. Storey
Genes 2025, 16(9), 997; https://doi.org/10.3390/genes16090997 - 25 Aug 2025
Abstract
Background: Freeze tolerance is an uncommon but highly effective strategy that allows certain vertebrates to survive prolonged exposure to subzero temperatures in a frozen, ischemic state. While past studies have characterized the metabolic and biochemical adaptations involved, including cryoprotectant accumulation and metabolic rate [...] Read more.
Background: Freeze tolerance is an uncommon but highly effective strategy that allows certain vertebrates to survive prolonged exposure to subzero temperatures in a frozen, ischemic state. While past studies have characterized the metabolic and biochemical adaptations involved, including cryoprotectant accumulation and metabolic rate suppression, the contribution of post-transcriptional gene regulation by microRNAs (miRNAs) remains largely unexplored. This study investigated freeze-responsive miRNAs in cardiac tissue of the gray tree frog, Dryophytes versicolor, to better understand the molecular mechanisms that support ischemic survival and tissue preservation. Methods: Adult frogs were subjected to controlled freezing at −2.5 °C, and cardiac tissue was collected from frozen and control animals. Total RNA was extracted and analyzed via small RNA sequencing to identify differentially expressed miRNAs, followed by target gene prediction and KEGG pathway enrichment analysis. Results: A total of 3 miRNAs were differentially expressed during freezing, with significant upregulation of miR-93-5p and let-7b-5p and downregulation of miR-4485-3p. Predicted targets of upregulated miRNAs included genes involved in immune signaling pathways (e.g., cytokine–cytokine receptor interaction), steroid hormone biosynthesis, and neuroactive ligand–receptor interaction, suggesting suppression of energetically costly signaling processes. Downregulation of miRNAs targeting cell cycle, insulin signaling, and WNT pathways indicates possible selective preservation of cytoprotective and repair functions. Conclusion: Overall, these results suggest that D. versicolor employs miRNA-mediated regulatory networks to support metabolic suppression, maintain essential signaling, and prevent damage during prolonged cardiac arrest. This work expands our understanding of freeze tolerance at the molecular level and may offer insights into biomedical strategies for cryopreservation and ischemia–reperfusion injury. Full article
(This article belongs to the Section RNA)
Show Figures

Figure 1

10 pages, 1338 KB  
Article
Genomic Analysis of Cardiovascular Diseases Utilizing Space Omics and Medical Atlas
by Ryung Lee, Abir Rayhun, Jang Keun Kim, Cem Meydan, Afshin Beheshti, Kyle Sporn, Rahul Kumar, Jacques Calixte, M. Windy McNerney, Jainam Shah, Ethan Waisberg, Joshua Ong and Christopher Mason
Genes 2025, 16(9), 996; https://doi.org/10.3390/genes16090996 - 25 Aug 2025
Abstract
Background: The Space Omics and Medical Atlas (SOMA) is an extensive database containing gene expression information from samples collected during the short-duration Inspiration4 spaceflight mission in 2021. Given our prior understanding of the genetic basis for cardiovascular diseases in spaceflight, including orthostatic intolerance [...] Read more.
Background: The Space Omics and Medical Atlas (SOMA) is an extensive database containing gene expression information from samples collected during the short-duration Inspiration4 spaceflight mission in 2021. Given our prior understanding of the genetic basis for cardiovascular diseases in spaceflight, including orthostatic intolerance and cardiac deconditioning, we aimed to characterize changes in differential gene expression among astronauts using SOMA-derived data and curated cardiovascular pathways. Methods: Using the KEGG 2021 database, we curated a list of genes related to cardiovascular adaptations in spaceflight, focusing on pathways such as fluid shear stress and atherosclerosis, lipid metabolism, arrhythmogenic ventricular hypertrophy, and cardiac muscle contraction. Genes were cross-matched to spaceflight-relevant datasets from the Open Science Data Repository (OSDR). Differential expression analysis was performed using DESeq2 (v1.40.2, R) with normalization by median-of-ratios, paired pre-/post-flight covariates, and log2 fold change shrinkage using apeglm. Differentially expressed genes (DEGs) were defined as |log2FC| ≥ 1 and FDR < 0.05 (Benjamini–Hochberg correction). Module score analyses were conducted across SOMA cell types to confirm conserved cardiac adaptation genes. Results: A total of 185 spaceflight-relevant genes were analyzed. Statistically significant changes were observed in immune-related cardiovascular pathways, particularly within monocytes and T cells. Persistent upregulation of arrhythmogenic genes such as GJA1 was noted at post-flight day 82. WikiPathways enrichment revealed additional pathways, including focal adhesion, insulin signaling, and heart development. Conclusions: Short-duration spaceflight induces significant gene expression changes that are relevant to cardiovascular disease risk. These changes are mediated largely through immune signaling and transcriptional regulation in peripheral blood mononuclear cells. Findings highlight the need for tailored countermeasures and longitudinal monitoring in future long-duration missions. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop