Current State of Knowledge on Amiodarone (AMD)-Induced Reactive Oxygen Species (ROS) Production in In Vitro and In Vivo Models
Abstract
1. Introduction
2. Mechanisms of AMD-Induced ROS Generation
3. In Vitro Studies on AMD, ROS, and Antioxidant Enzymes
Cell Line (Species) | Measured Parameter | Reference |
---|---|---|
ARPE-19 (human retinal pigment epithelial cell line) | ↑ ROS and ↑ MDA from 10 to 100 µM AMD | [33] |
BEAS-2B (human bronchial epithelial cell line) | ↑ ROS level at 3 µM AMD | [29] |
D407 (human retinal pigment epithelial cell line) | ↑ ROS level, ↑ HO-1 level at 5 µM AMD | [34] |
EA.hy926 (human umbilical vein endothelial hybrid cell line) | ↑ MDA level from 45 to 90 µM AMD | [35] |
H9c2 (rat embryonic ventricular cardiomyoblast cell line) | ↑ ROS level at 0.5–4 μM AMD | [36] |
HeLa (human cervical adenocarcinoma) | ↑ ROS level at 30 µM AMD | [37] |
Hep3B (human hepatocellular carcinoma cell line) | ↑ GSSG level at 7.5 µM AMD | [5] |
Hepa1c1c7 (mouse hepatoma cell line) | ↑ ROS and MDA levels at 35 µM AMD | [25] |
HepG2 (human hepatocellular carcinoma cell line) | ↑ MDA level from 52.5 to 105 µM AMD | [35] |
HepG2 (human hepatocellular carcinoma cell line) | ↑ ROS level from 20 to 50 µM AMD, ↑ SOD activity and ↓ CAT level at 10 µM AMD | [30] |
HPL1A (human peripheral lung epithelial cell line) | ↑ ROS level at 100 µM AMD | [9] |
L132 (human embryonic lung epithelial cell line) | ↓ SOD activity from 1 to 10 µM AMD | [5] |
MRC-5 (human fetal lung fibroblast cell line) | ↑ lipid peroxidation, ↑ protein carbonyls, ↓ SOD activity and ↓ CAT activity at 100 µ AMD | [38] |
primary adult canine cardiac myocytes | 0.1–100 µM AMD showed direct radical-scavenging ability | [31] |
Vero (African green monkey kidney epithelial cell line) | ↑ MDA level from 32.5 to 65 µM AMD | [35] |
4. In Vivo Animal and Clinical Evidence of Oxidative Stress in AMD Toxicity
Species (Strain) | Organ | AMD Dose | Duration | ROS/MDA/LPO | SOD | CAT | GPx | GSH | Reference |
---|---|---|---|---|---|---|---|---|---|
Rat (albino) | Kidneys and serum | 30 mg/kg/day oral gavage | 8 weeks (chronic) | ↑ MDA level | ↓ SOD activity | - | - | - | [55] |
Rat (Fischer-344) | Lung, Liver, Spleen, Kidney, Heart | 60 mg/kg/day i.p. injection | 21 days (sub-chronic) | ↑ MDA level | - | - | - | - | [7] |
Rat (Sprague–Dawley) | Lung | 80 mg/kg/day i.p. injection | 1–4 weeks (chronic) | ↑ MDA level | ↓ SOD activity | ↓ CAT activity | ↓ GPx activity | ↓ GSH level | [12] |
Rat (Sprague–Dawley) | Heart | 100 mg/kg/day oral gavage | 7 days (acute) | ↑ LPO level | ↓ SOD activity | ↓ CAT activity | - | ↓ GSH level | [56] |
Rat (Sprague–Dawley) | Lung | 40 mg/kg/day oral gavage | 4 weeks (chronic) | ↑ MDA | ↓ SOD activity | - | - | ↓ GSH level | [57] |
Rat (Sprague–Dawley) | Liver | 40 mg/kg/day oral gavage | 8 weeks (chronic) | ↑ ROS and ↑ MDA levels | ↓ SOD activity | ↓ CAT activity | ↓ GPx activity | - | [58] |
Rat (Sprague–Dawley) | Lung | 80 mg/kg/day i.p. injection | 7 and 14 days (acute) 21 and 28 days (sub-chronic) | ↑ MDA level | ↑ SOD (7 and 14 days), ↓ SOD (21 and 28 days) activity | ↓ CAT activity | ↓ GPx activity | ↓ GSH level | [12] |
Rat (Swiss albino) | Lung | 100 mg/kg/day i.p. injection | 10 days (acute) | - | ↓ SOD activity | ↓ CAT activity | - | ↓ GSH level | [59] |
Rat (Wistar) | Liver, Kidney, Testis | 0.17 mg/kg/day oral gavage | 30 days (sub-chronic) | ↑ LPO level | ↑ SOD activity | ↑ CAT activity | - | - | [60] |
Rat (Wistar) | Lung | 30 mg/kg/day oral gavage | 60 days (chronic) | ↑ MDA level | ↓ SOD activity | ↓ CAT activity | ↓ GPx activity | ↓ GSH level | [11] |
Rat (Wistar) | Lung | 30 mg/kg/day oral gavage | 6 weeks (chronic) | ↑ MDA level | ↓ SOD activity | - | - | ↓ GSH level | [40] |
Rat (Wistar) | Liver | 20 mg on day 1 and a maintenance dose of 8 mg from day 2 to day 6 oral gavage | 6 days (acute) | ↑ LPO level | - | - | - | ↓ GSH level | [10] |
Rat (Wistar) | Lung | 40 mg/kg/day oral gavage | 4 weeks (chronic) | ↑ MDA level | - | - | - | ↓ GSH level | [61] |
Rat (Wistar) | Lung | 30 mg/kg/day oral gavage | 4 weeks (chronic) | ↑ ROS and ↑ MDA levels | - | - | - | - | [62] |
Rat (Wistar) | Optic nerve tissue | 50 mg/kg/day and 100 mg/kg/day oral gavage | 14 days (acute) | ↑ MDA level | ↓ SOD activity | ↓ CAT activity | - | ↓ GSH level | [63] |
Mouse (C57BL/6) | Liver | 1000 mg/kg p.o. daily | 3 days (acute) | ↑ LPO level | - | - | - | ↓ GSH level | [42] |
C. elegans (N2 and CF1553 strains) | Whole worm | 10 µM in media | 24 h | ↑ ROS level | ↑ SOD3 expression | - | - | - | [43] |
Population/Clinical Context | AMD Dose | Duration | Effect on Oxidative Stress | Source |
---|---|---|---|---|
Patients with arrhythmia and pulmonary toxicity | 340–440 mg/day (oral) | 12 months | ↓ SOD | [64] |
Healthy volunteers or stable patients | 200 mg/day (oral) | 4 weeks | ↓ LPO; ↓ ROS | [65] |
CABG patients (post-operative AF prevention) | 4 × 400 mg day before surgery; 2 × 600 mg on surgery day; 2 × 400 mg/day for 4 days post-op (~6 g total) | 5 days | ↑ NO; no change in MDA, SOD, CAT, or GPx | [66] |
Patients with autoimmune thyroid disease treated with AMD | Not specified, chronic oral therapy | 6 months | ↑ MDA, ↓ GSH and ↓ SOD; redox imbalance observed | [67] |
Heart failure patients | Not specified, chronic oral therapy | 6 months | ↓ SOD, ↓ CAT, ↓ GSH, ↓ MDA | [68] |
5. Potential AMD Impact on Nuclear Receptors and Its Links to Oxidative Stress
6. Conclusions and Future Perspectives
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AAON | amiodarone-associated optic neuropathy |
ACE | angiotensin-converting enzyme |
AIPT | amiodarone-induced pulmonary toxicity |
AhR | aryl hydrocarbon receptor |
AITC | allyl isothiocyanate |
Akt | protein kinase B |
AMD | amiodarone |
AMPK | AMP-activated protein kinase |
ARB | angiotensin receptor blocker |
ARDS | acute respiratory distress syndrome |
ARNT | aryl hydrocarbon receptor nuclear translocator |
CABG | coronary artery bypass grafting |
CAR | constitutive androstane receptor |
CaMKK2 | calcium/calmodulin-dependent protein kinase kinase 2 |
CAT | catalase |
CYP | cytochrome P450 |
CYP1A1 | cytochrome P450 1A1 |
CYP1A2 | cytochrome P450 1A2 |
CYP2B6 | cytochrome P450 2B6 |
CYP3A4 | cytochrome P450 3A4 |
DEA | desethylamiodarone |
DMPO | 5,5-dimethyl-1-pyrroline N-oxide |
DR4 | direct repeat 4 (nuclear-receptor response element) |
FADS2 | fatty acid desaturase 2 |
FoxO3a | forkhead box O3a |
GPx | glutathione peroxidase |
GPx3 | glutathione peroxidase 3 |
GSH | reduced glutathione |
GSSG | oxidized glutathione |
GST | glutathione S-transferase |
H2DCF | 2′,7′-dichlorodihydrofluorescein |
HO-1 | heme oxygenase-1 |
IGF-1 | insulin-like growth factor-1 |
iNOS | inducible nitric oxide synthase |
i.p. | intraperitoneal (route of administration) |
KEAP1 | Kelch-like ECH-associated protein 1 |
KL-6 | Krebs von den Lungen-6 (MUC1 epitope) |
LC50 | median lethal concentration |
LPO | lipid peroxidation |
MDA | malondialdehyde |
NAC | N-acetyl-L-cysteine |
NF-κB | nuclear factor kappa-light-chain-enhancer of activated B cells |
NO | nitric oxide |
NRF1 | nuclear respiratory factor 1 |
Nrf2 | nuclear factor erythroid 2-related factor 2 |
p.o. | per os (oral administration) |
PGC-1α | peroxisome proliferator-activated receptor-γ coactivator-1α |
PI3K | phosphoinositide 3-kinase |
PPAR | peroxisome proliferator-activated receptor |
PPARα | peroxisome proliferator-activated receptor-alpha |
PPARγ | peroxisome proliferator-activated receptor-gamma |
PPRE | peroxisome proliferator response element |
PXR | pregnane X receptor |
RAS | renin–angiotensin system |
RGC | retinal ganglion cell |
RNS | reactive nitrogen species |
ROS | reactive oxygen species |
RPE | retinal pigment epithelium/epithelial cells |
RXR | retinoid X receptor |
SCD | stearoyl-CoA desaturase |
SOD | superoxide dismutase |
SOD1 | superoxide dismutase 1 |
SOD2 | superoxide dismutase 2 |
SOD3 | superoxide dismutase 3 |
SRSF3 | serine/arginine-rich splicing factor 3 |
TFAM | mitochondrial transcription factor A |
TNF-α | tumor necrosis factor-alpha |
XRE | xenobiotic response element |
References
- Punnam, S.R.; Goyal, S.K.; Kotaru, V.P.K.; Pachika, A.R.; Abela, G.S.; Thakur, R.K. Amiodarone—A “broad spectrum” antiarrhythmic drug. Cardiovasc. Hematol. Disord. Drug Targets 2010, 10, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Royster, R.L.; Groban, L.; Locke, A.Q.; Morris, B.N.; Slaughter, T.F. Cardiovascular Pharmacology. In Kaplan’s Essentials of Cardiac Anesthesia; Elsevier: Amsterdam, The Netherlands, 2018; pp. 132–166. [Google Scholar]
- Mitchell, R.; Chacko, J. Clinical and Mechanistic Review of Amiodarone-Associated Optic Neuropathy. Biomolecules 2022, 12, 1298. [Google Scholar] [CrossRef]
- Bulut, S.; Aksakal, E.; Süleyman, H. Pathogenesis of Amiodarone-Related Toxicity. Arch. Basic Clin. Res. 2025, 7, 68–70. [Google Scholar] [CrossRef]
- Trivier, J.M.; Pommery, N.; Lhermitte, M. Antioxidant defence capacity modulation of two human cell lines by amiodarone and desethylamiodarone. Toxicol. Vitr. 1997, 11, 209–216. [Google Scholar] [CrossRef]
- Leeder, R.G.; Rafeiro, E.; Brien, J.F.; Mandin, C.C.; Massey, T.E. Evaluation of reactive oxygen species involvement in amiodarone pulmonary toxicity in vivo and in vitro. J. Biochem. Toxicol. 1996, 11, 147–160. [Google Scholar] [CrossRef]
- Sarma, J.; Pei, H.; Venkataraman, K. Role of Oxidative Stress in Amiodarone-induced Toxicity. J. Cardiovasc. Pharmacol. Ther. 1997, 2, 53–60. [Google Scholar] [CrossRef]
- Bețiu, A.M.; Chamkha, I.; Gustafsson, E.; Meijer, E.; Avram, V.F.; Åsander Frostner, E.; Ehinger, J.K.; Petrescu, L.; Muntean, D.M.; Elmér, E. Cell-Permeable Succinate Rescues Mitochondrial Respiration in Cellular Models of Amiodarone Toxicity. Int. J. Mol. Sci. 2021, 22, 1786. [Google Scholar] [CrossRef]
- Nicolescu, A.C.; Ji, Y.; Comeau, J.L.; Hill, B.C.; Takahashi, T.; Brien, J.F.; Racz, W.J.; Massey, T.E. Direct mitochondrial dysfunction precedes reactive oxygen species production in amiodarone-induced toxicity in human peripheral lung epithelial HPL1A cells. Toxicol. Appl. Pharmacol. 2008, 227, 370–379. [Google Scholar] [CrossRef]
- Serviddio, G.; Bellanti, F.; Giudetti, A.M.; Gnoni, G.V.; Capitanio, N.; Tamborra, R.; Romano, A.D.; Quinto, M.; Blonda, M.; Vendemiale, G.; et al. Mitochondrial oxidative stress and respiratory chain dysfunction account for liver toxicity during amiodarone but not dronedarone administration. Free Radic. Biol. Med. 2011, 51, 2234–2242. [Google Scholar] [CrossRef]
- Dawood, S.A.; Asseri, A.A.; Shati, A.A.; Eid, R.A.; El-Gamal, B.; Zaki, M.S.A. L-Carnitine Ameliorates Amiodarone-Mediated Alveolar Damage: Oxidative Stress Parameters, Inflammatory Markers, Histological and Ultrastructural Insights. Pharmaceuticals 2024, 17, 1004. [Google Scholar] [CrossRef]
- Al-Shammari, B.; Khalifa, M.; Bakheet, S.A.; Yasser, M. A Mechanistic Study on the Amiodarone-Induced Pulmonary Toxicity. Oxid. Med. Cell. Longev. 2016, 2016, 6265853. [Google Scholar] [CrossRef] [PubMed]
- Kinoshita, S.; Hosomi, K.; Yokoyama, S.; Takada, M. Time-to-onset analysis of amiodarone-associated thyroid dysfunction. J. Clin. Pharm. Ther. 2020, 45, 65–71. [Google Scholar] [CrossRef] [PubMed]
- McDonald, M.G.; Au, N.T.; Rettie, A.E. P450-Based Drug-Drug Interactions of Amiodarone and its Metabolites: Diversity of Inhibitory Mechanisms. Drug Metab. Dispos. 2015, 43, 1661–1669. [Google Scholar] [CrossRef]
- Varkhede, N.R.; Jhajra, S.; Ahire, D.S.; Singh, S. Metabolite identification studies on amiodarone in in vitro (rat liver microsomes, rat and human liver S9 fractions) and in vivo (rat feces, urine, plasma) matrices by using liquid chromatography with high-resolution mass spectrometry and multiple-stage m. Rapid Commun. Mass Spectrom. 2014, 28, 311–331. [Google Scholar] [CrossRef]
- Shen, C.; Zhang, G.; Meng, Q. Evaluation of amiodarone-induced phospholipidosis by in vitro system of 3D cultured rat hepatocytes in gel entrapment. Biochem. Eng. J. 2010, 49, 308–316. [Google Scholar] [CrossRef]
- Berson, A.; De Beco, V.; Letteron, P.; Robin, M.A.; Moreau, C.; El Kahwaji, J.; Verthier, N.; Feldmann, G.; Fromenty, B.; Pessayre, D. Steatohepatitis-inducing drugs cause mitochondrial dysfunction and lipid peroxidation in rat hepatocytes. Gastroenterology 1998, 114, 764–774. [Google Scholar] [CrossRef] [PubMed]
- Wandrer, F.; Frangež, Ž.; Liebig, S.; John, K.; Vondran, F.; Wedemeyer, H.; Veltmann, C.; Pfeffer, T.J.; Shibolet, O.; Schulze-Osthoff, K.; et al. Autophagy alleviates amiodarone-induced hepatotoxicity. Arch. Toxicol. 2020, 94, 3527–3539. [Google Scholar] [CrossRef]
- Lee, K.-Y.; Oh, S.; Choi, Y.-J.; Oh, S.-H.; Yang, Y.-S.; Yang, M.-J.; Lee, K.; Lee, B.-H. Activation of Autophagy Rescues Amiodarone-Induced Apoptosis of Lung Epithelial Cells and Pulmonary Toxicity in Rats. Toxicol. Sci. 2013, 136, 193–204. [Google Scholar] [CrossRef]
- Ernst, M.C.; Sinal, C.J.; Pollak, P.T. Influence of peroxisome proliferator-activated receptor-alpha (PPARα) activity on adverse effects associated with amiodarone exposure in mice. Pharmacol. Res. 2010, 62, 408–415. [Google Scholar] [CrossRef]
- Song, M.; Kim, Y.-J.; Ryu, J.-C. Phospholipidosis Induced by PPARγ Signaling in Human Bronchial Epithelial (BEAS-2B) Cells Exposed to Amiodarone. Toxicol. Sci. 2011, 120, 98–108. [Google Scholar] [CrossRef]
- Okuno, Y.; Matsuda, M.; Miyata, Y.; Fukuhara, A.; Komuro, R.; Shimabukuro, M.; Shimomura, I. Human catalase gene is regulated by peroxisome proliferator activated receptor-gamma through a response element distinct from that of mouse. Endocr. J. 2010, 57, 303–309. [Google Scholar] [CrossRef]
- Chung, S.S.; Kim, M.; Youn, B.-S.; Lee, N.S.; Park, J.W.; Lee, I.K.; Lee, Y.S.; Kim, J.B.; Cho, Y.M.; Lee, H.K.; et al. Glutathione Peroxidase 3 Mediates the Antioxidant Effect of Peroxisome Proliferator-Activated Receptor γ in Human Skeletal Muscle Cells. Mol. Cell. Biol. 2009, 29, 20–30. [Google Scholar] [CrossRef]
- Winterbourn, C.C.; Kettle, A.J.; Hampton, M.B. Reactive Oxygen Species and Neutrophil Function. Annu. Rev. Biochem. 2016, 85, 765–792. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Miyakawa, K.; Roth, R.A.; Ganey, P.E. Tumor necrosis factor-alpha potentiates the cytotoxicity of amiodarone in Hepa1c1c7 cells: Roles of caspase activation and oxidative stress. Toxicol. Sci. 2013, 131, 164–178. [Google Scholar] [CrossRef]
- Nikaido, A.; Tada, T.; Nakamura, K.; Murakami, M.; Banba, K.; Nishii, N.; Fuke, S.; Nagase, S.; Sakuragi, S.; Morita, H.; et al. Clinical features of and effects of angiotensin system antagonists on amiodarone-induced pulmonary toxicity. Int. J. Cardiol. 2010, 140, 328–335. [Google Scholar] [CrossRef] [PubMed]
- Kosseifi, S.G.; Halawa, A.; Bailey, B.; Micklewright, M.; Roy, T.M.; Byrd, R.P. Reduction of amiodarone pulmonary toxicity in patients treated with angiotensin-converting enzyme inhibitors and angiotensin receptor blockers. Ther. Adv. Respir. Dis. 2009, 3, 289–294. [Google Scholar] [CrossRef] [PubMed]
- Bețiu, A.M.; Noveanu, L.; Hâncu, I.M.; Lascu, A.; Petrescu, L.; Maack, C.; Elmér, E.; Muntean, D.M. Mitochondrial Effects of Common Cardiovascular Medications: The Good, the Bad and the Mixed. Int. J. Mol. Sci. 2022, 23, 13653. [Google Scholar] [CrossRef]
- Yang, C.; Xiong, W.; Dong, J.; Zhao, X.; Liang, G.; Zheng, W. Artemisinin protected human bronchial epithelial cells from amiodarone-induced oxidative damage via 5′-AMP-activated protein kinase (AMPK) activation. Redox Rep. 2025, 30, 2447721. [Google Scholar] [CrossRef]
- Szychowski, K.A.; Skóra, B.; Piechowiak, T.; Szlachcikowska, D. Aryl Hydrocarbon Receptor (AhR)–Independent Amiodarone (AMD) Toxicity in HepG2 Cell Line. J. Appl. Toxicol. 2025, 1–16. [Google Scholar] [CrossRef]
- Ide, T.; Tsutsui, H.; Kinugawa, S.; Utsumi, H.; Takeshita, A. Amiodarone protects cardiac myocytes against oxidative injury by its free radical scavenging action. Circulation 1999, 100, 690–692. [Google Scholar] [CrossRef]
- Liao, R.; Yan, F.; Zeng, Z.; Farhan, M.; Little, P.; Quirion, R.; Srivastava, L.K.; Zheng, W. Amiodarone-Induced Retinal Neuronal Cell Apoptosis Attenuated by IGF-1 via Counter Regulation of the PI3k/Akt/FoxO3a Pathway. Mol. Neurobiol. 2017, 54, 6931–6943. [Google Scholar] [CrossRef]
- Liao, R.; Yan, F.; Zeng, Z.; Wang, H.; Qiu, K.; Xu, J.; Zheng, W. Insulin-like growth factor-1 activates PI3K/Akt signalling to protect human retinal pigment epithelial cells from amiodarone-induced oxidative injury. Br. J. Pharmacol. 2018, 175, 125–139. [Google Scholar] [CrossRef]
- Yang, C.; Zhao, X.; Zhou, W.; Li, Q.; Lazarovici, P.; Zheng, W. Artemisinin conferred cytoprotection to human retinal pigment epithelial cells exposed to amiodarone-induced oxidative insult by activating the CaMKK2/AMPK/Nrf2 pathway. J. Transl. Med. 2024, 22, 844. [Google Scholar] [CrossRef]
- El Golli-Bennour, E.; Bouslimi, A.; Zouaoui, O.; Nouira, S.; Achour, A.; Bacha, H. Cytotoxicity effects of amiodarone on cultured cells. Exp. Toxicol. Pathol. 2012, 64, 425–430. [Google Scholar] [CrossRef]
- Liang, H.; Li, H.; Li, F.; Xiong, X.; Gao, Y. Amiodarone Advances the Apoptosis of Cardiomyocytes by Repressing Sigmar1 Expression and Blocking KCNH2-related Potassium Channels. Curr. Mol. Med. 2025, 25, 69–78. [Google Scholar] [CrossRef]
- Chang, Y.-L.; Liu, S.-T.; Wang, Y.-W.; Lin, W.-S.; Huang, S.-M. Amiodarone promotes cancer cell death through elevated truncated SRSF3 and downregulation of miR-224. Oncotarget 2018, 9, 13390–13406. [Google Scholar] [CrossRef]
- Silva Santos, L.F.; Stolfo, A.; Calloni, C.; Salvador, M. Catechin and epicatechin reduce mitochondrial dysfunction and oxidative stress induced by amiodarone in human lung fibroblasts. J. Arrhythmia 2017, 33, 220–225. [Google Scholar] [CrossRef]
- Card, J.W.; Racz, W.J.; Brien, J.F.; Margolin, S.B.; Massey, T.E. Differential effects of pirfenidone on acute pulmonary injury and ensuing fibrosis in the hamster model of amiodarone-induced pulmonary toxicity. Toxicol. Sci. 2003, 75, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Gawad, F.A.E.R.; Rizk, A.A.E.E.; Jouakim, M.F.; Halem, M.Z.A. El Amiodarone-induced lung toxicity and the protective role of Vitamin E in adult male albino rat. Eur. J. Anat. 2018, 22, 323–333. [Google Scholar]
- Sndos, Z.A.F.; Al-Amin, S.M. Impact of Ginkgo biloba leaves Extract on Renal Toxicity Induced by Amiodarone in Male Rats. Int. J. Pharm. Phytopharm. Res. 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Takai, S.; Oda, S.; Tsuneyama, K.; Fukami, T.; Nakajima, M.; Yokoi, T. Establishment of a mouse model for amiodarone-induced liver injury and analyses of its hepatotoxic mechanism. J. Appl. Toxicol. 2016, 36, 35–47. [Google Scholar] [CrossRef]
- Balkrishna, A.; Gohel, V.; Pathak, N.; Bhattacharya, K.; Dev, R.; Varshney, A. Livogrit prevents Amiodarone-induced toxicity in experimental model of human liver (HepG2) cells and Caenorhabditis elegans by regulating redox homeostasis. Drug Chem. Toxicol. 2024, 47, 987–1003. [Google Scholar] [CrossRef]
- Prasad, K.N.; Hovland, A.R.; Nahreini, P.; Cole, W.C.; Hovland, P.; Kumar, B.; Prasad, K.C. Differentiation Genes: Are They Primary Targets for Human Carcinogenesis? Exp. Biol. Med. 2001, 226, 805–813. [Google Scholar] [CrossRef] [PubMed]
- Șorodoc, V.; Indrei, L.; Dobroghii, C.; Asaftei, A.; Ceasovschih, A.; Constantin, M.; Lionte, C.; Morărașu, B.C.; Diaconu, A.-D.; Șorodoc, L. Amiodarone Therapy: Updated Practical Insights. J. Clin. Med. 2024, 13, 6094. [Google Scholar] [CrossRef] [PubMed]
- Saugstad, O.D. Oxidative Stress in the Newborn—A 30-Year Perspective. Neonatology 2005, 88, 228–236. [Google Scholar] [CrossRef]
- Kaya, S.B.; Deger, S.; Hacievliyagil, S.S.; Aytemur, Z.A. Acute amiodarone toxicity causing respiratory failure. Rev. Assoc. Med. Bras. 2017, 63, 210–212. [Google Scholar] [CrossRef] [PubMed]
- Al Heyasat, A.; Chaudhry, M.S.; Qasim, A.; Shaikh, Z. Amiodarone-Induced Pulmonary Toxicity Presenting as Hypoxemic Respiratory Failure in a Patient With Ventricular Tachycardia: A Case Report. Cureus 2025, 17, e83564. [Google Scholar] [CrossRef]
- Barnes, P.J. How corticosteroids control inflammation: Quintiles Prize Lecture 2005. Br. J. Pharmacol. 2006, 148, 245–254. [Google Scholar] [CrossRef]
- Papiris, S.A.; Triantafillidou, C.; Kolilekas, L.; Markoulaki, D.; Manali, E.D. Amiodarone: Review of pulmonary effects and toxicity. Drug Saf. 2010, 33, 539–558. [Google Scholar] [CrossRef]
- Vereckei, A.; Blázovics, A.; Szénási, G.; Kónya, L.; Láng, I.; Zsinka, A.; Fehér, J. [The role of oxidative stress, caused by amiodarone, in the side effects of the drug]. Orv. Hetil. 1991, 132, 483–484, 487–488. [Google Scholar]
- Wang, A.-G.; Cheng, H.-C. Amiodarone-Associated Optic Neuropathy: Clinical Review. Neuro-Ophthalmology 2017, 41, 55–58. [Google Scholar] [CrossRef]
- Uçakhan, O.O.; Kanpolat, A.; Ylmaz, N.; Ozkan, M. Amiodarone keratopathy: An in vivo confocal microscopy study. Eye Contact Lens 2005, 31, 148–157. [Google Scholar] [CrossRef]
- Mansour, A.M.; Puklin, J.E.; O’Grady, R. Optic nerve ultrastructure following amiodarone therapy. J. Clin. Neuroophthalmol. 1988, 8, 231–237. [Google Scholar]
- Eid, R.A.; Zaki, M.S.A.; Al-Shraim, M.; Eldeen, M.A.; Haidara, M.A. Grape seed extract protects against amiodarone—Induced nephrotoxicity and ultrastructural alterations associated with the inhibition of biomarkers of inflammation and oxidative stress in rats. Ultrastruct. Pathol. 2021, 45, 49–58. [Google Scholar] [CrossRef]
- Hazineci, H.; Türkyılmaz, İ.B.; Üstündağ, Ü.V.; Emekli-Alturfan, E.; Tüzüner, B.A.; İpekçi, H.; Tunalı-Akbay, T.; Yanardağ, R.; Yarat, A. White Cabbage Extract Reduces the Harmful Effects of Amiodarone on Heart Tissue in Rats. Experimed 2020, 10, 1–6. [Google Scholar] [CrossRef]
- Sharaf El-Din, A.A.I.; Abd Allah, O.M. Impact of Olmesartan Medoxomil on Amiodarone-Induced Pulmonary Toxicity in Rats: Focus on Transforming Growth Factor-ß1. Basic Clin. Pharmacol. Toxicol. 2016, 119, 58–67. [Google Scholar] [CrossRef]
- Alzahrani, F.M.; Bibi, A.; Yasin, I.; Mehreen, A.; Alzahrani, K.J.; Alsharif, K.F. Pharmacotherapeutic potential of artemetin against amiodarone instigated sub-chronic hepatotoxicity via modulating TLR4/HMGB1/RAGE and NF-κB signaling pathways: An in-vivo and in-silico approach. Toxicon 2025, 265, 108471. [Google Scholar] [CrossRef] [PubMed]
- Gado, A.M.; Aldahmash, B.A. Protective Effect of L-Carnitine Against Amiodarone-Induced Lung Toxicity in Rats. Internet J. Toxicol. 2013, 10, 1–9. [Google Scholar]
- Chakraborty, A.; Mondal, C.; Sinha, S.; Mandal, J.; Chandra, A.K. Amiodarone induced oxidative stress in stress—Vulnerable organs of adult male rats. Asian J. Pharm. Clin. Res. 2014, 7, 177–183. [Google Scholar]
- Ibrahim Fouad, G.; Mousa, M.R. The protective potential of alpha lipoic acid on amiodarone-induced pulmonary fibrosis and hepatic injury in rats. Mol. Cell. Biochem. 2021, 476, 3433–3448. [Google Scholar] [CrossRef]
- El Tabaa, M.M.; El Tabaa, M.M.; Elgharabawy, R.M.; Abdelhamid, W.G. Suppressing NLRP3 activation and PI3K/AKT/mTOR signaling ameliorates amiodarone-induced pulmonary fibrosis in rats: A possible protective role of nobiletin. Inflammopharmacology 2023, 31, 1373–1386. [Google Scholar] [CrossRef]
- Bayrakçeken, K.; Ucgul, R.K.; Coban, T.; Yazıcı, G.; Suleyman, H. Effect of adenosine triphosphate on amiodarone-induced optic neuropathy in rats: Biochemical and histopathological evaluation. Cutan. Ocul. Toxicol. 2023, 42, 162–167. [Google Scholar] [CrossRef] [PubMed]
- Pollak, P.T.; Sharma, A.D.; Carruthers, S.G. Relation of amiodarone hepatic and pulmonary toxicity to serum drug concentrations and superoxide dismutase activity. Am. J. Cardiol. 1990, 65, 1185–1191. [Google Scholar] [CrossRef] [PubMed]
- Lapenna, D.; Ciofani, G.; Bruno, C.; Pierdomenico, S.D.; Cuccurullo, F. Antioxidant activity of amiodarone on human lipoprotein oxidation. Br. J. Pharmacol. 2001, 133, 739–745. [Google Scholar] [CrossRef]
- Uysal, A.; Azak, S.; Colak, M.C.; Burma, O.; Ozguler, I.M.; Ustundag, B.; Bayar, M.K. Perioperative high-dose amiodarone elevates nitric oxide levels in patients undergoing coronary artery bypass surgery. Biomed. Res. 2013, 24, 486–492. [Google Scholar]
- Ruggeri, R.M.; Campennì, A.; Giuffrida, G.; Casciaro, M.; Barbalace, M.C.; Hrelia, S.; Trimarchi, F.; Cannavò, S.; Gangemi, S. Oxidative stress as a key feature of autoimmune thyroiditis: An update. Minerva Endocrinol. 2021, 45, 326–344. [Google Scholar] [CrossRef]
- Krupa, W.; Rozwodowska, M.; Sielski, S.; Czarnecka-Żaba, E.; Fabiszak, T.; Drewa, G.; Kasprzak, M.; Kubica, J. Influence of cardiac resynchronization therapy on oxidative stress markers in patients with chronic heart failure. Cardiol. J. 2014, 21, 576–582. [Google Scholar] [CrossRef] [PubMed]
- Van der Mark, V.A.; Adam, A.A.A.; Chang, J.-C.; Oude Elferink, R.P.; Chamuleau, R.A.F.M.; Hoekstra, R. Overexpression of the constitutive androstane receptor and shaken 3D-culturing increase biotransformation and oxidative phosphorylation and sensitivity to mitochondrial amiodarone toxicity of HepaRG cells. Toxicol. Appl. Pharmacol. 2020, 399, 115055. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, H. Activation of xenobiotic receptors: Driving into the nucleus. Expert Opin. Drug Metab. Toxicol. 2010, 6, 409–426. [Google Scholar] [CrossRef]
- Grishanova, A.Y.; Perepechaeva, M.L. Aryl Hydrocarbon Receptor in Oxidative Stress as a Double Agent and Its Biological and Therapeutic Significance. Int. J. Mol. Sci. 2022, 23, 6719. [Google Scholar] [CrossRef]
- Banerjee, M.; Robbins, D.; Chen, T. Targeting xenobiotic receptors PXR and CAR in human diseases. Drug Discov. Today 2015, 20, 618–628. [Google Scholar] [CrossRef]
- Hernandez, J.P.; Mota, L.C.; Baldwin, W.S. Activation of CAR and PXR by Dietary, Environmental and Occupational Chemicals Alters Drug Metabolism, Intermediary Metabolism, and Cell Proliferation. Curr. Pharmacogenom. Person. Med. 2009, 7, 81–105. [Google Scholar] [CrossRef]
- Lim, Y.-P.; Cheng, C.-H.; Chen, W.-C.; Chang, S.-Y.; Hung, D.-Z.; Chen, J.-J.; Wan, L.; Ma, W.-C.; Lin, Y.-H.; Chen, C.-Y.; et al. Allyl isothiocyanate (AITC) inhibits pregnane X receptor (PXR) and constitutive androstane receptor (CAR) activation and protects against acetaminophen- and amiodarone-induced cytotoxicity. Arch. Toxicol. 2015, 89, 57–72. [Google Scholar] [CrossRef]
- Singh, A.; Chaudhary, R. Potentials of peroxisome proliferator-activated receptor (PPAR) α, β/δ, and γ: An in-depth and comprehensive review of their molecular mechanisms, cellular Signalling, immune responses and therapeutic implications in multiple diseases. Int. Immunopharmacol. 2025, 155, 114616. [Google Scholar] [CrossRef]
- Cantin, A.M.; Hubbard, R.C.; Crystal, R.G. Glutathione deficiency in the epithelial lining fluid of the lower respiratory tract in idiopathic pulmonary fibrosis. Am. Rev. Respir. Dis. 1989, 139, 370–372. [Google Scholar] [CrossRef]
- Buonfiglio, F.; Böhm, E.W.; Pfeiffer, N.; Gericke, A. Oxidative Stress: A Suitable Therapeutic Target for Optic Nerve Diseases? Antioxidants 2023, 12, 1465. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Zhang, M.; Tatar, M.; Gong, R. Keap1-independent Nrf2 regulation: A novel therapeutic target for treating kidney disease. Redox Biol. 2025, 82, 103593. [Google Scholar] [CrossRef] [PubMed]
- Ngo, V.; Duennwald, M.L. Nrf2 and Oxidative Stress: A General Overview of Mechanisms and Implications in Human Disease. Antioxidants 2022, 11, 2345. [Google Scholar] [CrossRef]
- Villanueva-Paz, M.; Morán, L.; López-Alcántara, N.; Freixo, C.; Andrade, R.J.; Lucena, M.I.; Cubero, F.J. Oxidative Stress in Drug-Induced Liver Injury (DILI): From Mechanisms to Biomarkers for Use in Clinical Practice. Antioxidants 2021, 10, 390. [Google Scholar] [CrossRef]
- Estornut, C.; Milara, J.; Bayarri, M.A.; Belhadj, N.; Cortijo, J. Targeting Oxidative Stress as a Therapeutic Approach for Idiopathic Pulmonary Fibrosis. Front. Pharmacol. 2022, 12, 794997. [Google Scholar] [CrossRef] [PubMed]
- Morgan, M.J.; Liu, Z. Crosstalk of reactive oxygen species and NF-κB signaling. Cell Res. 2011, 21, 103–115. [Google Scholar] [CrossRef] [PubMed]
- Alazragi, R. Protective Role of Ferulic acid and/or Gallic acid Against Pulmonary Toxicity Induced by Amiodarone in Rats. Arch. Pharm. Pract. 2020, 11, 83–90. [Google Scholar] [CrossRef]
- Harb, I.; Ashour, H.; Rashed, L.A.; Mostafa, A.; Samir, M.; Aboulhoda, B.E.; El-hanbuli, H.; Rashwan, E.; Mahmoud, H. Nicorandil mitigates amiodarone-induced pulmonary toxicity and fibrosis in association with the inhibition of lung TGF-β1/PI3K/Akt1-p/mTOR axis in rats. Clin. Exp. Pharmacol. Physiol. 2023, 50, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.-M.; Lin, W.-H.; Lin, C.-S.; Ho, L.-J.; Tsai, T.-N.; Wu, C.-H.; Lai, J.-H.; Yang, S.-P. Modulation of both activator protein-1 and nuclear factor-kappa B signal transduction of human T cells by amiodarone. Exp. Biol. Med. 2015, 240, 99–108. [Google Scholar] [CrossRef] [PubMed]
- Mancini, A.; Di Segni, C.; Raimondo, S.; Olivieri, G.; Silvestrini, A.; Meucci, E.; Currò, D. Thyroid Hormones, Oxidative Stress, and Inflammation. Mediators Inflamm. 2016, 2016, 6757154. [Google Scholar] [CrossRef]
- Medić, F.; Bakula, M.; Alfirević, M.; Bakula, M.; Mucić, K.; Marić, N. Amiodarone and thyroid dysfunction. Acta Clin. Croat. 2022, 61, 327–341. [Google Scholar] [CrossRef]
- Bhushan, B.; Erdmann, A.; Zhang, Y.; Belle, R.; Johannson, C.; Oppermann, U.; Hopkinson, R.J.; Schofield, C.J.; Kawamura, A. Investigations on small molecule inhibitors targeting the histone H3K4 tri-methyllysine binding PHD-finger of JmjC histone demethylases. Bioorg. Med. Chem. 2018, 26, 2984–2991. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szychowski, K.A. Current State of Knowledge on Amiodarone (AMD)-Induced Reactive Oxygen Species (ROS) Production in In Vitro and In Vivo Models. Oxygen 2025, 5, 16. https://doi.org/10.3390/oxygen5030016
Szychowski KA. Current State of Knowledge on Amiodarone (AMD)-Induced Reactive Oxygen Species (ROS) Production in In Vitro and In Vivo Models. Oxygen. 2025; 5(3):16. https://doi.org/10.3390/oxygen5030016
Chicago/Turabian StyleSzychowski, Konrad A. 2025. "Current State of Knowledge on Amiodarone (AMD)-Induced Reactive Oxygen Species (ROS) Production in In Vitro and In Vivo Models" Oxygen 5, no. 3: 16. https://doi.org/10.3390/oxygen5030016
APA StyleSzychowski, K. A. (2025). Current State of Knowledge on Amiodarone (AMD)-Induced Reactive Oxygen Species (ROS) Production in In Vitro and In Vivo Models. Oxygen, 5(3), 16. https://doi.org/10.3390/oxygen5030016