Expandable Gastroretentive Films Based on Anthocyanin-Rich Rice Starch for Improved Ferulic Acid Delivery
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Ferulic Acid-Solid Dispersions
2.3. Solubility of FA-SDs
2.4. Powder X-Ray Diffraction (PXRD) Studies
2.5. Preparation of Expandable Films Loaded with FA-SD
2.6. Characterization of Expandable Films
2.6.1. Measurement of Weight and Thickness
2.6.2. Drug Content
2.6.3. Tensile Strength
2.6.4. Film Swelling Behavior
2.6.5. Unfolding Behavior
2.6.6. Film Expansion
2.6.7. In Vitro Release of FA from the Expandable Film
2.7. Determination of Antioxidant Activity
2.8. Cytotoxicity Assay
2.9. Anti-Inflammatory Assay
2.10. Statistical Analysis
3. Results and Discussion
3.1. Solubility of FA-SDs and FA-PMs
3.2. Powder X-Ray Diffraction (PXRD Analysis)
3.3. Physicochemical Properties of FA-SD Loaded Expandable Films
3.3.1. Weight and Thickness
3.3.2. Tensile Strength of Films
3.3.3. Expansion of Films
3.3.4. Swelling Behavior of Films
3.3.5. Unfolding Behavior of Expandable Films
3.3.6. Release of FA from Films
3.3.7. Antioxidant Activity
3.3.8. Cytotoxicity
3.3.9. Anti-Inflammatory Activity
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, D.; Rui, Y.; Guo, S.; Luan, F.; Liu, R.; Zeng, N. Ferulic Acid: A Review of Its Pharmacology, Pharmacokinetics and Derivatives. Life Sci. 2021, 284, 119921. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Guan, Y.; Yang, L.; Fang, H.; Sun, H.; Sun, Y.; Yan, G.; Kong, L.; Wang, X. Ferulic Acid as an Anti-Inflammatory Agent: Insights into Molecular Mechanisms, Pharmacokinetics and Applications. Pharmaceuticals 2025, 18, 912. [Google Scholar] [CrossRef] [PubMed]
- Zheng, M.; Liu, Y.; Zhang, G.; Yang, Z.; Xu, W.; Chen, Q. The Antioxidant Properties, Metabolism, Application and Mechanism of Ferulic Acid in Medicine, Food, Cosmetics, Livestock and Poultry. Antioxidants 2024, 13, 853. [Google Scholar] [CrossRef] [PubMed]
- Doss, H.M.; Dey, C.; Sudandiradoss, C.; Rasool, M.K. Targeting Inflammatory Mediators with Ferulic Acid, a Dietary Polyphenol, for the Suppression of Monosodium Urate Crystal-Induced Inflammation in Rats. Life Sci. 2016, 148, 201–210. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, L.; Qiu, W.; Shi, Y. Ferulic Acid Exhibits Anti-Inflammatory Effects by Inducing Autophagy and Blocking NLRP3 Inflammasome Activation. Mol. Cell. Toxicol. 2022, 18, 509–519. [Google Scholar] [CrossRef]
- Park, J.-E.; Han, J.-S. Improving the Effect of Ferulic Acid on Inflammation and Insulin Resistance by Regulating the JNK/ERK and NF-κB Pathways in TNF-α-Treated 3T3-L1 Adipocytes. Nutrients 2024, 16, 294. [Google Scholar] [CrossRef]
- Pyrzynska, K. Ferulic Acid—A Brief Review of Its Extraction, Bioavailability and Biological Activity. Separations 2024, 11, 204. [Google Scholar] [CrossRef]
- Ermis, A.; Aritici Colak, G.; Acikel-Elmas, M.; Arbak, S.; Kolgazi, M. Ferulic Acid Treats Gastric Ulcer via Suppressing Oxidative Stress and Inflammation. Life 2023, 13, 388. [Google Scholar] [CrossRef]
- Wei, Z.; Xue, Y.; Xue, Y.; Cheng, J.; Lv, G.; Chu, L.; Ma, Z.; Guan, S. Ferulic Acid Attenuates Non-Alcoholic Steatohepatitis by Reducing Oxidative Stress and Inflammation Through Inhibition of the ROCK/NF-κB Signaling Pathways. J. Pharmacol. Sci. 2021, 147, 72–80. [Google Scholar] [CrossRef]
- Purushothaman, J.R.; Rizwanullah, M. Ferulic Acid: A Comprehensive Review. Cureus 2024, 16, e68063. [Google Scholar] [CrossRef]
- Hiew, T.N.; Solomos, M.A.; Kafle, P.; Polyzois, H.; Zemlyanov, D.Y.; Punia, A.; Smith, D.; Schenck, L.; Taylor, L.S. The Importance of Surface Composition and Wettability on the Dissolution Performance of High Drug Loading Amorphous Dispersion Formulations. J. Pharm. Sci. 2025, 114, 289–303. [Google Scholar] [CrossRef] [PubMed]
- Wannasarit, S.; Puttarak, P.; Kaewkroek, K.; Wiwattanapatapee, R. Strategies for Improving Healing of the Gastric Epithelium Using Oral Solid Dispersions Loaded with Pentacyclic Triterpene–Rich Centella Extract. AAPS PharmSciTech 2019, 20, 277. [Google Scholar] [CrossRef] [PubMed]
- Nyamba, I.; Jennotte, O.; Sombié, C.B.; Lechanteur, A.; Sacre, P.-Y.; Djandé, A.; Semdé, R.; Evrard, B. Preformulation Study for the Selection of a Suitable Polymer for the Development of Ellagic Acid-Based Solid Dispersion Using Hot-Melt Extrusion. Int. J. Pharm. 2023, 641, 123088. [Google Scholar] [CrossRef]
- Kerdsakundee, N.; Mahattanadul, S.; Wiwattanapatapee, R. Development and Evaluation of Gastroretentive Raft Forming Systems Incorporating Curcumin-Eudragit® EPO Solid Dispersions for Gastric Ulcer Treatment. Eur. J. Pharm. Biopharm. 2015, 94, 513–520. [Google Scholar] [CrossRef]
- Siripruekpong, W.; Issarachot, O.; Kaewkroek, K.; Wiwattanapatapee, R. Development of Gastroretentive Carriers for Curcumin-Loaded Solid Dispersion Based on Expandable Starch/Chitosan Films. Molecules 2023, 28, 361. [Google Scholar] [CrossRef]
- Inam, S.; Irfan, M.; Lali, N.U.A.; Syed, H.K.; Asghar, S.; Khan, I.U.; Khan, S.-U.; Iqbal, M.S.; Zaheer, I.; Khames, A.; et al. Development and Characterization of Eudragit® EPO-Based Solid Dispersion of Rosuvastatin Calcium to Foresee the Impact on Solubility, Dissolution and Antihyperlipidemic Activity. Pharmaceuticals 2022, 15, 492. [Google Scholar] [CrossRef]
- Das, S.; Kaur, S.; Rai, V.K. Gastro-Retentive Drug Delivery Systems: A Recent Update on Clinical Pertinence and Drug Delivery. Drug Deliv. Transl. Res. 2021, 11, 1849–1877. [Google Scholar] [CrossRef]
- Vrettos, N.-N.; Roberts, C.J.; Zhu, Z. Gastroretentive Technologies in Tandem with Controlled-Release Strategies: A Potent Answer to Oral Drug Bioavailability and Patient Compliance Implications. Pharmaceutics 2021, 13, 1591. [Google Scholar] [CrossRef]
- Yang, Y.; Fu, J.; Duan, Q.; Xie, H.; Dong, X.; Yu, L. Strategies and Methodologies for Improving Toughness of Starch Films. Foods 2024, 13, 4036. [Google Scholar] [CrossRef]
- Boontawee, R.; Issarachot, O.; Kaewkroek, K.; Wiwattanapatapee, R. Foldable/Expandable Gastro-Retentive Films Based on Starch and Chitosan as a Carrier for Prolonged Release of Resveratrol. Curr. Pharm. Biotechnol. 2022, 23, 1009–1018. [Google Scholar] [CrossRef]
- Kaewkroek, K.; Petchsomrit, A.; Wira Septama, A.; Wiwattanapatapee, R. Development of Starch/Chitosan Expandable Films as a Gastroretentive Carrier for Ginger Extract-Loaded Solid Dispersion. Saudi Pharm. J. 2022, 30, 120–131. [Google Scholar] [CrossRef]
- Wiwattanapatapee, R.; Yaoduang, T.; Bairaham, M.; Pumjan, S.; Leelakanok, N.; Petchsomrit, A. The Development of Expandable Films Based on Starch and Chitosan for Stomach-Specific Delivery of Quercetin Solid Dispersions. J. Drug Deliv. Sci. Technol. 2024, 95, 105631. [Google Scholar] [CrossRef]
- Sompong, R.; Siebenhandl-Ehn, S.; Linsberger-Martin, G.; Berghofer, E. Physicochemical and Antioxidative Properties of Red and Black Rice Varieties from Thailand, China and Sri Lanka. Food Chem. 2011, 124, 132–140. [Google Scholar] [CrossRef]
- Burgos, G.; Amoros, W.; Muñoa, L.; Sosa, P.; Cayhualla, E.; Sanchez, C.; Díaz, C.; Bonierbale, M. Total Phenolic, Total Anthocyanin and Phenolic Acid Concentrations and Antioxidant Activity of Purple-Fleshed Potatoes as Affected by Boiling. J. Food Compos. Anal. 2013, 30, 6–12. [Google Scholar] [CrossRef]
- Janson, B.; Prasomthong, J.; Malakul, W.; Boonsong, T.; Tunsophon, S. Hibiscus Sabdariffa L. Calyx Extract Prevents the Adipogenesis of 3T3-L1 Adipocytes, and Obesity-Related Insulin Resistance in High-Fat Diet-Induced Obese Rats. Biomed. Pharmacother. 2021, 138, 111438. [Google Scholar] [CrossRef] [PubMed]
- Matchimabura, N.; Praparatana, R.; Issarachot, O.; Oungbho, K.; Wiwattanapatapee, R. Development of Raft-Forming Liquid Formulations Loaded with Ginger Extract-Solid Dispersion for Treatment of Gastric Ulceration. Heliyon 2024, 10, e31803. [Google Scholar] [CrossRef]
- Saal, W.; Ross, A.; Wyttenbach, N.; Alsenz, J.; Kuentz, M. A Systematic Study of Molecular Interactions of Anionic Drugs with a Dimethylaminoethyl Methacrylate Copolymer Regarding Solubility Enhancement. Mol. Pharm. 2017, 14, 1243–1250. [Google Scholar] [CrossRef]
- Yoshida, T.; Kurimoto, I.; Yoshihara, K.; Umejima, H.; Ito, N.; Watanabe, S.; Sako, K.; Kikuchi, A. Aminoalkyl Methacrylate Copolymers for Improving the Solubility of Tacrolimus. I: Evaluation of Solid Dispersion Formulations. Int. J. Pharm. 2012, 428, 18–24. [Google Scholar] [CrossRef]
- Grzejdziak, A.; Brniak, W.; Lengier, O.; Żarek, J.A.; Hliabovich, D.; Mendyk, A. Application of Hydrophilic Polymers to the Preparation of Prolonged-Release Minitablets with Bromhexine Hydrochloride and Bisoprolol Fumarate. Pharmaceutics 2024, 16, 1153. [Google Scholar] [CrossRef]
- Lapuk, S.E.; Zubaidullina, L.S.; Ziganshin, M.A.; Mukhametzyanov, T.A.; Schick, C.; Gerasimov, A.V. Kinetic Stability of Amorphous Solid Dispersions with High Content of the Drug: A Fast Scanning Calorimetry Investigation. Int. J. Pharm. 2019, 562, 113–123. [Google Scholar] [CrossRef]
- Bunlung, S.; Nualnoi, T.; Issarachot, O.; Wiwattanapatapee, R. Development of Raft-Forming Liquid and Chewable Tablet Formulations Incorporating Quercetin Solid Dispersions for Treatment of Gastric Ulcers. Saudi Pharm. J. 2021, 29, 1143–1154. [Google Scholar] [CrossRef]
- Borbolla-Jiménez, F.V.; Peña-Corona, S.I.; Farah, S.J.; Jiménez-Valdés, M.T.; Pineda-Pérez, E.; Romero-Montero, A.; Del Prado-Audelo, M.L.; Bernal-Chávez, S.A.; Magaña, J.J.; Leyva-Gómez, G. Films for Wound Healing Fabricated Using a Solvent Casting Technique. Pharmaceutics 2023, 15, 1914. [Google Scholar] [CrossRef]
- Atangana, E.; Chiweshe, T.T.; Roberts, H. Modification of Novel Chitosan-Starch Cross-Linked Derivatives Polymers: Synthesis and Characterization. J. Polym. Environ. 2019, 27, 979–995. [Google Scholar] [CrossRef]
- Yu, X.; Yang, Y.; Liu, Q.; Jin, Z.; Jiao, A. A Hydroxypropyl Methylcellulose/Hydroxypropyl Starch Nanocomposite Film Reinforced with Chitosan Nanoparticles Encapsulating Cinnamon Essential Oil: Preparation and Characterization. Int. J. Biol. Macromol. 2023, 242, 124605. [Google Scholar] [CrossRef] [PubMed]
- Tosif, M.M.; Najda, A.; Bains, A.; Zawiślak, G.; Maj, G.; Chawla, P. Starch–Mucilage Composite Films: An Inclusive on Physicochemical and Biological Perspective. Polymers 2021, 13, 2588. [Google Scholar] [CrossRef] [PubMed]
- Thiranusornkij, L.; Thamnarathip, P.; Chandrachai, A.; Kuakpetoon, D.; Adisakwattana, S. Physicochemical Properties of Hom Nil (Oryza Sativa) Rice Flour as Gluten Free Ingredient in Bread. Foods 2018, 7, 159. [Google Scholar] [CrossRef]
- Mustofa, A.; Anam, C.; Praseptiangga, D.; Sutarno. A Comparative Study on Physicochemical Properties of Rice and Starch of Whiterice, Black Rice and Black Glutinous Rice. Food Res. 2024, 8, 55–65. [Google Scholar] [CrossRef]
- Ge, P.; Tian, Y.; Yan, H.; Li, Q.; Yao, T.; Yao, J.; Xiao, L.; Zhu, M.; Han, Y. Functional Modification and Applications of Rice Starch Emulsion Systems Based on Interfacial Engineering. Foods 2025, 14, 2228. [Google Scholar] [CrossRef]
- Soe, M.T.; Pongjanyakul, T.; Limpongsa, E.; Jaipakdee, N. Modified Glutinous Rice Starch-Chitosan Composite Films for Buccal Delivery of Hydrophilic Drug. Carbohydr. Polym. 2020, 245, 116556. [Google Scholar] [CrossRef]
- Cano, A.; Jiménez, A.; Cháfer, M.; Gónzalez, C.; Chiralt, A. Effect of Amylose: Amylopectin Ratio and Rice Bran Addition on Starch Films Properties. Carbohydr. Polym. 2014, 111, 543–555. [Google Scholar] [CrossRef]
- Chiaregato, C.G.; Bernardinelli, O.D.; Shavandi, A.; Sabadini, E.; Petri, D.F.S. The Effect of the Molecular Structure of Hydroxypropyl Methylcellulose on the States of Water, Wettability, and Swelling Properties of Cryogels Prepared with and Without CaO2. Carbohydr. Polym. 2023, 316, 121029. [Google Scholar] [CrossRef]
- Jaipal, A.; Pandey, M.M.; Charde, S.Y.; Raut, P.P.; Prasanth, K.V.; Prasad, R.G. Effect of HPMC and Mannitol on Drug Release and Bioadhesion Behavior of Buccal Discs of Buspirone Hydrochloride: In-Vitro and In-Vivo Pharmacokinetic Studies. Saudi Pharm. J. 2015, 23, 315–326. [Google Scholar] [CrossRef]
- Pumjan, S.; Praparatana, R.; Issarachot, O.; Wiwattanapatapee, R. Rutin-Loaded Raft-Forming Systems Developed from Alginate and Whey Protein Isolate for the Treatment of Gastric Ulcers. J. Drug Deliv. Sci. Technol. 2025, 107, 106842. [Google Scholar] [CrossRef]
- Gulcin, İ.; Alwasel, S.H. DPPH Radical Scavenging Assay. Processes 2023, 11, 2248. [Google Scholar] [CrossRef]
- Silva, F.; Veiga, F.; Cardoso, C.; Dias, F.; Cerqueira, F.; Medeiros, R.; Cláudia Paiva-Santos, A. A Rapid and Simplified DPPH Assay for Analysis of Antioxidant Interactions in Binary Combinations. Microchem. J. 2024, 202, 110801. [Google Scholar] [CrossRef]
- Yamuangmorn, S.; Prom-U-Thai, C. The Potential of High-Anthocyanin Purple Rice as a Functional Ingredient in Human Health. Antioxidants 2021, 10, 833. [Google Scholar] [CrossRef] [PubMed]
- Adeyi, O.E.; Somade, O.T.; Ajayi, B.O.; James, A.S.; Adeboye, T.R.; Olufemi, D.A.; Oyinlola, E.V.; Sanyaolu, E.T.; Mufutau, I.O. The Anti-Inflammatory Effect of Ferulic Acid Is via the Modulation of NFκB-TNF-α-IL-6 and STAT1-PIAS1 Signaling Pathways in 2-Methoxyethanol-Induced Testicular Inflammation in Rats. Phytomed. Plus 2023, 3, 100464. [Google Scholar] [CrossRef]
- Sadowska-Bartosz, I.; Bartosz, G. Antioxidant Activity of Anthocyanins and Anthocyanidins: A Critical Review. Int. J. Mol. Sci. 2024, 25, 12001. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.G.; Brownmiller, C.R.; Lee, S.-O.; Kang, H.W. Anti-Inflammatory and Antioxidant Effects of Anthocyanins of Trifolium Pratense (Red) Clover in Lipopolysaccharide-Stimulated RAW-267.4 Macrophages. Nutrients 2020, 12, 1089. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Virgous, C.; Si, H. Synergistic Anti-Inflammatory Effects and Mechanisms of Combined Phytochemicals. J. Nutr. Biochem. 2019, 69, 19–30. [Google Scholar] [CrossRef] [PubMed]
Formulation | Composition (% w/w) | ||||
---|---|---|---|---|---|
Rice Starch | Glutinous Rice Starch | Hom-Nil Rice Starch | Chitosan | HPMC K100 LV | |
R1 | 3.0 | - | - | 1.0 | - |
R2 | 1.5 | - | |||
R3 | 2.0 | - | |||
R4 | 3.0 | - | - | 2.0 | 0.5 |
R5 | 2.0 | 1.0 | |||
R6 | 2.0 | 2.0 | |||
G1 | - | 3.0 | - | 1.0 | - |
G2 | 1.5 | - | |||
G3 | 2.0 | - | |||
G4 | - | 3.0 | - | 2.0 | 0.5 |
G5 | 2.0 | 1.0 | |||
G6 | 2.0 | 2.0 | |||
H1 | - | - | 3.0 | 1.0 | - |
H2 | 1.5 | - | |||
H3 | 2.0 | - | |||
H4 | - | - | 3.0 | 2.0 | 0.5 |
H5 | 2.0 | 1.0 | |||
H6 | 2.0 | 2.0 |
Formulation | Weight (g) | Thickness (mm) | Film Expansion (fold) | Tensile Strength (g/cm2) |
---|---|---|---|---|
R1 | 0.58 ± 0.01 | 0.49 ± 0.05 | 2.80 ± 0.09 | 5.00 ± 0.19 |
R2 | 0.64 ± 0.01 | 0.52 ± 0.06 | 2.53 ± 0.23 | 9.67 ± 0.51 |
R3 | 0.68 ± 0.03 | 0.62 ± 0.03 | breakage | 15.33 ± 2.36 *R1 |
R4 | 0.72 ± 0.03 | 0.72 ± 0.04 | 1.98 ± 0.06 | 17.53 ± 0.57 |
R5 | 0.73 ± 0.02 | 0.80 ± 0.05 | 2.40 ± 0.11 | 20.12 ± 0.77 |
R6 | 0.73 ± 0.01 | 0.83 ± 0.03 | 2.45 ± 0.07 *** | 26.57 ± 1.50 **R4,R5 |
G1 | 0.67 ± 0.01 | 0.41 ± 0.01 | 4.32± 0.57 | 3.70 ± 0.05 |
G2 | 0.70 ± 0.01 | 0.50 ± 0.09 | 3.91 ± 0.43 | 5.29 ± 0.39 |
G3 | 0.74 ± 0.06 | 0.63 ± 0.02 | 3.32 ± 0.65 | 12.95 ± 0.08 *G1,G2 |
G4 | 0.76 ± 0.06 | 0.73 ± 0.06 | 3.06 ± 0.02 | 13.52 ± 1.20 |
G5 | 0.78 ± 0.01 | 0.88 ± 0.08 | 3.52 ± 0.01 | 17.69 ± 0.61 |
G6 | 0.91 ± 0.02 | 0.94 ± 0.02 | 4.55 ± 0.16 | 24.22 ± 0.99 **G4,G5 |
H1 | 0.63 ± 0.06 | 0.62 ± 0.05 | breakage | 4.60 ± 0.08 |
H2 | 0.67 ± 0.06 | 0.63 ± 0.09 | breakage | 6.36 ± 0.68 |
H3 | 0.80 ± 0.08 | 0.66 ± 0.01 | 2.59 ± 0.12 | 8.38 ± 0.68 *H1 |
H4 | 0.82 ± 0.03 | 0.69 ± 0.03 | 2.72 ± 0.09 | 14.95 ± 0.24 |
H5 | 0.84 ± 0.03 | 0.73 ± 0.02 | 2.82 ± 1.34 | 18.60 ± 1.53 |
H6 | 0.86 ± 0.01 | 0.75 ± 0.02 | 2.89 ± 0.93 *** | 23.78 ± 1.47 **H4,H5 |
Test Sample | Antioxidant Activity IC50 (µg/mL) | Anti-Inflammatory Activity IC50 (µg/mL) |
---|---|---|
Ferulic acid (FA) | 8.78 ± 0.19 | 28.90 ± 0.29 |
Ferulic acid-solid dispersion (FA-SD) | 14.01 ± 0.52 | 10.02 ± 0.05 |
Hom-Nil rice starch-based film (H6) | 10.38 ± 0.23 | 9.26 ± 0.14 |
Blank Hom-Nil starch film (HB) | >100 | >50 |
Glutinous rice starch-based film (G6) | 23.91 ± 1.90 | 14.05 ± 0.88 |
Blank glutinous rice starch film (GB) | >100 | >50 |
Rice starch-based film (R6) | 25.77 ± 1.15 | 12.86 ± 0.04 |
Blank rice starch film (RB) | >100 | >50 |
BHT | 11.77 ± 0.50 | - |
Ascorbic acid | 1.28 ± 0.34 | - |
Indomethacin | - | 31.86 ± 0.42 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matchimabura, N.; Poolsiri, J.; Phadungvitvatthana, N.; Praparatana, R.; Issarachot, O.; Wiwattanapatapee, R. Expandable Gastroretentive Films Based on Anthocyanin-Rich Rice Starch for Improved Ferulic Acid Delivery. Polymers 2025, 17, 2301. https://doi.org/10.3390/polym17172301
Matchimabura N, Poolsiri J, Phadungvitvatthana N, Praparatana R, Issarachot O, Wiwattanapatapee R. Expandable Gastroretentive Films Based on Anthocyanin-Rich Rice Starch for Improved Ferulic Acid Delivery. Polymers. 2025; 17(17):2301. https://doi.org/10.3390/polym17172301
Chicago/Turabian StyleMatchimabura, Nattawipa, Jiramate Poolsiri, Nataporn Phadungvitvatthana, Rachanida Praparatana, Ousanee Issarachot, and Ruedeekorn Wiwattanapatapee. 2025. "Expandable Gastroretentive Films Based on Anthocyanin-Rich Rice Starch for Improved Ferulic Acid Delivery" Polymers 17, no. 17: 2301. https://doi.org/10.3390/polym17172301
APA StyleMatchimabura, N., Poolsiri, J., Phadungvitvatthana, N., Praparatana, R., Issarachot, O., & Wiwattanapatapee, R. (2025). Expandable Gastroretentive Films Based on Anthocyanin-Rich Rice Starch for Improved Ferulic Acid Delivery. Polymers, 17(17), 2301. https://doi.org/10.3390/polym17172301