Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (158)

Search Parameters:
Keywords = Quaternary climate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 4456 KiB  
Article
Assessing Climate Change Impacts on Groundwater Recharge and Storage Using MODFLOW in the Akhangaran River Alluvial Aquifer, Eastern Uzbekistan
by Azam Kadirkhodjaev, Dmitriy Andreev, Botir Akramov, Botirjon Abdullaev, Zilola Abdujalilova, Zulkhumar Umarova, Dilfuza Nazipova, Izzatullo Ruzimov, Shakhriyor Toshev, Erkin Anorboev, Nodirjon Rakhimov, Farrukh Mamirov, Inessa Gracheva and Samrit Luoma
Water 2025, 17(15), 2291; https://doi.org/10.3390/w17152291 (registering DOI) - 1 Aug 2025
Abstract
A shallow quaternary sedimentary aquifer within the river alluvial deposits of eastern Uzbekistan is increasingly vulnerable to the impacts of climate change and anthropogenic activities. Despite its essential role in supplying water for domestic, agricultural, and industrial purposes, the aquifer system remains poorly [...] Read more.
A shallow quaternary sedimentary aquifer within the river alluvial deposits of eastern Uzbekistan is increasingly vulnerable to the impacts of climate change and anthropogenic activities. Despite its essential role in supplying water for domestic, agricultural, and industrial purposes, the aquifer system remains poorly understood. This study employed a three-dimensional MODFLOW-based groundwater flow model to assess climate change impacts on water budget components under the SSP5-8.5 scenario for 2020–2099. Model calibration yielded RMSE values between 0.25 and 0.51 m, indicating satisfactory performance. Simulations revealed that lateral inflows from upstream and side-valley alluvial deposits contribute over 84% of total inflow, while direct recharge from precipitation (averaging 120 mm/year, 24.7% of annual rainfall) and riverbed leakage together account for only 11.4%. Recharge occurs predominantly from November to April, with no recharge from June to August. Under future scenarios, winter recharge may increase by up to 22.7%, while summer recharge could decline by up to 100%. Groundwater storage is projected to decrease by 7.3% to 58.3% compared to 2010–2020, indicating the aquifer’s vulnerability to prolonged dry periods. These findings emphasize the urgent need for adaptive water management strategies and long-term monitoring to ensure sustainable groundwater use under changing climate conditions. Full article
(This article belongs to the Special Issue Climate Change Uncertainties in Integrated Water Resources Management)
Show Figures

Figure 1

12 pages, 2703 KiB  
Article
Holocene Climate Shifts Driving Black Soil Formation in NE China: Palynology and AMS14C Dating Insights
by Hongwen Zhang, Haiwei Song, Xiangxi Lv, Wenlong Pang, Wenjun Pang, Xin Li, Yingxue Li and Jiliang Shao
Quaternary 2025, 8(3), 41; https://doi.org/10.3390/quat8030041 (registering DOI) - 31 Jul 2025
Abstract
In this study, 14 palynological samples and nine AMS 14C dating samples were collected from two representative black soil profiles in the Xingkai Lake Plain to examine climate changes and their impacts on environmental evolution since the Holocene. The systematic identification, analysis, [...] Read more.
In this study, 14 palynological samples and nine AMS 14C dating samples were collected from two representative black soil profiles in the Xingkai Lake Plain to examine climate changes and their impacts on environmental evolution since the Holocene. The systematic identification, analysis, and research of palynological data reveal that the black soil profiles in the Xingkai Lake Plain can be categorized into the following three distinct palynological assemblage zones: the lower zone (11.7–7.5 ka BP) is characterized by Pinus-Laevgatomonoleti-Amaranthaceae-Artemisia, having a cold, dry climate; the middle zone (7.5–2.5 ka BP) features Quercus-Juglans-Polygonum-Cyperaceae, with a warm and humid climate; and the upper zone (2.5 ka BP to present) consists of Pinus-Quercus-Betula, indicating a cold and dry climate. Furthermore, field lithostratigraphic observations of the two black soil profiles suggest that late Pleistocene loessial clay serves as the parent material in this region. Quaternary geology, section lithology, palynology, and AMS 14C dating results indicate that a significant portion of black soil in the Xingkai Lake Plain was primarily formed during the Great Warm Period following the middle Holocene. These insights not only enhance our understanding of Holocene climate dynamics in Northeast China but also provide a substantial scientific foundation for further studies on related topics. Full article
Show Figures

Figure 1

19 pages, 1606 KiB  
Review
Isotopic Studies in South American Mammals: Thirty Years of Paleoecological Discoveries
by Dánae Sanz-Pérez, Rodrigo L. Tomassini and Manuel Hernández Fernández
Geosciences 2025, 15(8), 284; https://doi.org/10.3390/geosciences15080284 - 27 Jul 2025
Viewed by 303
Abstract
Stable isotope analysis has become a key tool in paleontology, providing insights into ancient diets, ecosystems, climates, and environmental shifts. Despite the growing importance of isotopic studies in South America, no comprehensive bibliometric review has been conducted until now. This study addresses that [...] Read more.
Stable isotope analysis has become a key tool in paleontology, providing insights into ancient diets, ecosystems, climates, and environmental shifts. Despite the growing importance of isotopic studies in South America, no comprehensive bibliometric review has been conducted until now. This study addresses that gap, analyzing the development of the field over the past thirty years. Our results show a rapidly expanding discipline, especially in the last five years, with increasing publication rates and participation from South American researchers, particularly in Brazil and Argentina. However, the analysis also reveals persistent biases: notably, a strong focus on the Quaternary period, which limits broader evolutionary interpretations. Keyword co-occurrence points to dominant themes such as paleodiet, paleoecology, and megafaunal extinction, while highlighting new trends like ecological niche modeling and nitrogen isotope applications. The co-authorship network reflects high levels of collaboration, particularly with Spain and the United States. A marked gender imbalance in authorship is also evident, calling attention to the need for greater inclusivity. This review emphasizes the importance of addressing taxonomic and temporal gaps, strengthening interdisciplinary and international networks, and promoting equity in order to ensure the continued growth and global relevance of isotopic paleontology in South America. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

16 pages, 4736 KiB  
Review
Volcanic Islands as Reservoirs of Geoheritage: Current and Potential Initiatives of Geoconservation
by Esther Martín-González, Juana Vegas, Inés Galindo, Carmen Romero and Nieves Sánchez
J. Mar. Sci. Eng. 2025, 13(8), 1420; https://doi.org/10.3390/jmse13081420 - 25 Jul 2025
Viewed by 127
Abstract
Volcanic islands host exceptional geological features that illustrate complex endogenic processes and interactions with climatic and marine forces, while also being particularly vulnerable to the impacts of climate change. Despite their scientific, educational, touristic, and aesthetic values, such islands remain underrepresented within the [...] Read more.
Volcanic islands host exceptional geological features that illustrate complex endogenic processes and interactions with climatic and marine forces, while also being particularly vulnerable to the impacts of climate change. Despite their scientific, educational, touristic, and aesthetic values, such islands remain underrepresented within the UNESCO Global Geoparks (UGGp). This study reviews current volcanic island geoparks and evaluates territories with potential for future designation, based on documented geoheritage, geosite inventories, and geoconservation frameworks. Geoparks are categorized according to their dominant narratives—ranging from recent Quaternary volcanism to broader tectonic, sedimentary, and metamorphic histories. Through an analysis of their distribution, management strategies, and integration into territorial planning, this work highlights the challenges that insular territories face, including vulnerability to global environmental change, limited legal protection, and structural inequalities in access to international resources recognition. It concludes that volcanic island geoparks represent strategic platforms for implementing sustainable development models, especially in ecologically and socially fragile contexts. Enhancing their global representation will require targeted efforts in ecologically and socially fragile contexts. Enhancing their global representation will require targeted efforts in capacity building, funding access, and regional cooperation—particularly across the Global South. Full article
(This article belongs to the Special Issue Feature Review Papers in Geological Oceanography)
Show Figures

Figure 1

15 pages, 4372 KiB  
Article
Simulation and Prediction of the Potential Distribution of Two Varieties of Dominant Subtropical Forest Oaks in Different Climate Scenarios
by Xiao-Dan Chen, Yang Li, Hai-Yang Guo, Li-Qiang Jia, Jia Yang, Yue-Mei Zhao, Zuo-Fu Wei and Lin-Jing Zhang
Forests 2025, 16(7), 1191; https://doi.org/10.3390/f16071191 - 19 Jul 2025
Viewed by 187
Abstract
Climatic oscillations in the Quaternary are altering the performance of angiosperms, while the species’ distribution is regarded as a macroscopic view of these spatial and temporal changes. Oaks (Quercus L.) are important tree models for estimating the abiotic impacts on the distribution [...] Read more.
Climatic oscillations in the Quaternary are altering the performance of angiosperms, while the species’ distribution is regarded as a macroscopic view of these spatial and temporal changes. Oaks (Quercus L.) are important tree models for estimating the abiotic impacts on the distribution of forest tree species. In this study, we modeled the past, present, and future suitable habitat for two varieties of deciduous oaks (Quercus serrata and Quercus serrata var. brevipetiolata), which are widely distributed in China and play dominant roles in the local forest ecosystem. We evaluated the importance of environmental factors in shaping the species’ distribution and identified the “wealthy” habitats in harsh conditions for the two varieties. The ecological niche models showed that the suitable areas for these two varieties are mainly concentrated in mountain ranges in central China, while Q. serrata var. brevipetiolata is also widely distributed in the middle-east mountain range. The mean temperature of the coldest quarter was identified as the critical factor in shaping the habitat availability for these two varieties. From the last glacial maximum (LGM) to the present, the potential distribution range of these two sibling species has obviously shifted northward and expanded from the inferred refugia. Under the optimistic (RCP2.6), moderate (RCP 4.5)-, and higher (RCP 6.0)-concentration greenhouse gas emissions scenarios, our simulations suggested that the total area of suitable habitats in the 2050s and 2070s will be wider than it is now for these two varieties of deciduous oaks, as the distribution range is shifting to higher latitudes; thus, low latitudes are more likely to face the risk of habitat losses. This study provides a case study on the response of forest tree species to climate changes in the north temperate and subtropical zones of East Asia and offers a basis for tree species’ protection and management in China. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

23 pages, 26975 KiB  
Article
Peatland-Type Sediment Filling in Valley Bottoms at the Head of Basins in a Stream Capture Context: The Example of the Bar and Petit Morin Peatland (Grand-Est, France)
by Olivier Lejeune, Jérémy Beucher, Alain Devos, Julien Berthe, Thibaud Damien, Delphine Combaz, Nicolas Bollot and Théo Krauffel
Geographies 2025, 5(3), 34; https://doi.org/10.3390/geographies5030034 - 14 Jul 2025
Viewed by 272
Abstract
The Quaternary saw numerous reorganizations of the hydrographic network, greatly modifying the hydrological network of these rivers. Eastern France is well known for many stream captures, described as early as the late 19th century. The oldest of these have been dated to the [...] Read more.
The Quaternary saw numerous reorganizations of the hydrographic network, greatly modifying the hydrological network of these rivers. Eastern France is well known for many stream captures, described as early as the late 19th century. The oldest of these have been dated to the Middle Pleistocene. It is interesting to note, however, that these sites, located in the heart of vast limestone plateaus, have systematically become peatland zones, and understanding their functioning is fundamental to wetland restoration and renaturation programs. In addition to serving as biodiversity reservoirs, these peatlands also represent substantial carbon storage potential in the context of global climate change. Using two examples—the Marais de Saint-Gond and the Bar peatland—we propose to provide the key to understanding the origin of their sedimentary filling and the consequences of their current hydrogeological functioning. Full article
Show Figures

Figure 1

24 pages, 18493 KiB  
Article
Aeolian Landscapes and Paleoclimatic Legacy in the Southern Chacopampean Plain, Argentina
by Enrique Fucks, Yamile Rico, Luciano Galone, Malena Lorente, Sebastiano D’Amico and María Florencia Pisano
Geographies 2025, 5(3), 33; https://doi.org/10.3390/geographies5030033 - 14 Jul 2025
Viewed by 416
Abstract
The Chacopampean Plain is a major physiographic unit in Argentina, bounded by the Colorado River to the south, the Sierras Pampeanas and Subandinas to the west, and the Paraná River, Río de la Plata Estuary, and the Argentine Sea to the east. Its [...] Read more.
The Chacopampean Plain is a major physiographic unit in Argentina, bounded by the Colorado River to the south, the Sierras Pampeanas and Subandinas to the west, and the Paraná River, Río de la Plata Estuary, and the Argentine Sea to the east. Its subsurface preserves sediments from the Miocene marine transgression, while the surface hosts some of the country’s most productive soils. Two main geomorphological domains are recognized: fluvial systems dominated by alluvial megafans in the north, and aeolian systems characterized by loess accumulation and wind erosion in the south. The southern sector exhibits diverse landforms such as deflation basins, ridges, dune corridors, lunettes, and mantiform loess deposits. Despite their regional extent, the origin and chronology of many aeolian features remain poorly constrained, as previous studies have primarily focused on depositional units rather than wind-sculpted erosional features. This study integrates remote sensing data, field observations, and a synthesis of published chronometric and sedimentological information to characterize these aeolian landforms and elucidate their genesis. Our findings confirm wind as the dominant morphogenetic agent during Late Quaternary glacial stadials. These aeolian morphologies significantly influence the region’s hydrology, as many permanent and ephemeral water bodies occupy deflation basins or intermediate low-lying sectors prone to flooding under modern climatic conditions, which are considerably wetter than during their original formation. Full article
Show Figures

Figure 1

22 pages, 13795 KiB  
Article
The Nucleation and Degradation of Pothole Wetlands by Human-Driven Activities and Climate During the Quaternary in a Semi-Arid Region (Southern Iberian Peninsula)
by A. Jiménez-Bonilla, I. Expósito, F. Gázquez, J. L. Yanes and M. Rodríguez-Rodríguez
Geographies 2025, 5(3), 27; https://doi.org/10.3390/geographies5030027 - 24 Jun 2025
Viewed by 300
Abstract
In this study, we selected a series of pothole wetlands to investigate their nucleation, evolution, and recent anthropogenic degradation in the Alcores Depression (AD), southern Iberian Peninsula, where over 100 closed watersheds containing shallow, ephemeral water bodies up to 2 hm2 have [...] Read more.
In this study, we selected a series of pothole wetlands to investigate their nucleation, evolution, and recent anthropogenic degradation in the Alcores Depression (AD), southern Iberian Peninsula, where over 100 closed watersheds containing shallow, ephemeral water bodies up to 2 hm2 have been identified. We surveyed the regional geological framework, utilized digital elevation models (DEMs), orthophotos, and aerial images since 1956. Moreover, we analyzed precipitation and temperature data in Seville from 1900 to 2024, collected hydrometeorological data since 1990 and modelled the water level evolution from 2002 to 2025 in a representative pothole in the area. Our observations indicate a flooded surface reduction by more than 90% from the 1950s to 2025. Climatic data reveal an increase in annual mean temperatures since 1960 and a sharp decline in annual precipitation since 2000. The AD’s inception due to tectonic isolation during the Quaternary favoured the formation of pothole wetlands in the floodplain. The reduction in the hydroperiod and wetland degradation was primarily due to agricultural expansion since 1950, which followed an increase in groundwater extraction and altered the original topography. Recently, decreased precipitation has exponentially accelerated the degradation and even the complete disappearance of many potholes. This study underscores the fragility of small wetlands in the Mediterranean basin and the critical role of human management in their preservation. Restoring these ecosystems could be a highly effective nature-based solution, especially in semi-arid climates like southern Spain. These prairie potholes are crucial for enhancing groundwater recharge, which is vital for maintaining water availability in regions with limited precipitation. By facilitating rainwater infiltration into the aquifer, recharge potholes increase groundwater levels. Additionally, they capture and store run-off during heavy rainfall, reducing the risk of flooding and soil erosion. Beyond their hydrological functions, these wetlands provide habitats that support biodiversity and promote ecological resilience, reinforcing the need for their protection and recovery. Full article
Show Figures

Figure 1

25 pages, 3076 KiB  
Article
The Milankovitch Theory Revisited to Explain the Mid-Pleistocene and Early Quaternary Transitions
by Jean-Louis Pinault
Atmosphere 2025, 16(6), 702; https://doi.org/10.3390/atmos16060702 - 10 Jun 2025
Viewed by 1372
Abstract
The theory of orbital forcing as formulated by Milankovitch involves the mediation by the advance (retreat) of ice sheets and the resulting variations in terrestrial albedo. This approach poses a major problem: that of the period of glacial cycles, which varies over time, [...] Read more.
The theory of orbital forcing as formulated by Milankovitch involves the mediation by the advance (retreat) of ice sheets and the resulting variations in terrestrial albedo. This approach poses a major problem: that of the period of glacial cycles, which varies over time, as happened during the Mid-Pleistocene Transition (MPT). Here, we show that various hypotheses are called into question because of the finding of a second transition, the Early Quaternary Transition (EQT), resulting from the million-year period eccentricity parameter. We propose to complement the orbital forcing theory to explain both the MPT and the EQT by invoking the mediation of western boundary currents (WBCs) and the resulting variations in heat transfer from the low to the high latitudes. From observational and theoretical considerations, it appears that very long-period Rossby waves winding around subtropical gyres, the so-called “gyral” Rossby waves (GRWs), are resonantly forced in subharmonic modes from variations in solar irradiance resulting from the solar and orbital cycles. Two mutually reinforcing positive feedbacks of the climate response to orbital forcing have been evidenced: namely the change in the albedo resulting from the cyclic growth and retreat of ice sheets in accordance with the standard Milankovitch theory, and the modulation of the velocity of the WBCs of subtropical gyres. Due to the inherited resonance properties of GRWs, the response of the climate system to orbital forcing is sensitive to small changes in the forcing periods. For both the MPT and the EQT, the transition occurred when the forcing period merged with one of the natural periods of the climate system. The MPT occurred 1.25 Ma ago, when the dominant period shifted from 41 ka to 98 ka, with both periods corresponding to changes in the Earth’s obliquity and eccentricity. The EQT occurred 2.38 Ma ago, when the dominant period shifted from 408 ka to 786 ka, with both periods corresponding to changes in the Earth’s eccentricity. Through this paradigm shift, the objective of this self-consistent approach is essentially to spark new debates around a problem that has been pending since the discovery of glacial–interglacial cycles, where many hypotheses have been put forward without, however, fully answering all our questions. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

18 pages, 3587 KiB  
Article
Phylogeography and Population Demography of Parrotia subaequalis, a Hamamelidaceous Tertiary Relict ‘Living Fossil’ Tree Endemic to East Asia Refugia: Implications from Molecular Data and Ecological Niche Modeling
by Yunyan Zhang, Zhiyuan Li, Qixun Chen, Yahong Wang, Shuang Wang, Guozheng Wang, Pan Li, Hong Liu, Pengfu Li, Chi Xu and Zhongsheng Wang
Plants 2025, 14(12), 1754; https://doi.org/10.3390/plants14121754 - 7 Jun 2025
Viewed by 744
Abstract
The diverse topography and mild monsoon climate in East Asia are considered to be important drivers for the long-term ecological success of the Tertiary relict ‘living fossil’ plants during the glacial/interglacial cycles. Here we investigated the phylogeographic pattern and demographic history of a [...] Read more.
The diverse topography and mild monsoon climate in East Asia are considered to be important drivers for the long-term ecological success of the Tertiary relict ‘living fossil’ plants during the glacial/interglacial cycles. Here we investigated the phylogeographic pattern and demographic history of a hamamelidaceous Tertiary relict ‘living fossil’ tree (Parrotia subaequalis) endemic to the subtropical forests of eastern China, employing molecular data and ecological niche modeling. In the long evolutionary history, P. subaequalis has accumulated a high haplotype diversity. Weak gene flow by seeds, geographical isolation, and heterogeneous habitats have led to a relatively high level of genetic differentiation in this species. The divergence time of two cpDNA lineages of P. subaequalis was dated to the late Miocene of the Tertiary period, and the diversification of haplotypes occurred in the Quaternary period. Paleo-distribution modeling suggested that P. subaequalis followed the pattern of ‘glacial expansion-interglacial compression’. The Dabie Mountain and Yellow Mountain in Anhui Province and the Tianmu Mountain and Simin Mountain in Zhejiang Province were inferred to be multiple glacial refugia of P. subaequalis in East Asia and have been proposed to be protected as ‘Management Units’. Collectively, our study offers insights into the plant evolution and adaptation of P. subaequalis and other Tertiary relict ‘living fossil’ trees endemic to East Asia refugia. Full article
(This article belongs to the Special Issue Origin and Evolution of the East Asian Flora (EAF)—2nd Edition)
Show Figures

Figure 1

16 pages, 2138 KiB  
Article
The Divergence History of Two Japanese Torreya Taxa (Taxaceae): Implications for Species Diversification in the Japanese Archipelago
by Qian Ou, Xin Huang, Dingguo Pan, Shulan Wang, Yuting Huang, Sisi Lu, Yujin Wang and Yixuan Kou
Plants 2025, 14(10), 1537; https://doi.org/10.3390/plants14101537 - 20 May 2025
Viewed by 494
Abstract
The Japanese archipelago as a continental island of the Eurasia continent and harboring high levels of plant species diversity provides an ideal geographical setting for investigating vicariant allopatric speciation due to the sea-level fluctuations associated with climatic oscillations during the Quaternary. In this [...] Read more.
The Japanese archipelago as a continental island of the Eurasia continent and harboring high levels of plant species diversity provides an ideal geographical setting for investigating vicariant allopatric speciation due to the sea-level fluctuations associated with climatic oscillations during the Quaternary. In this study, three chloroplast DNA regions and 14 nuclear loci were sequenced for 31 individuals from three populations of Torreya nucifera var. nucifera and 52 individuals from three populations of T. nucifera var. radicans. Population genetic analyses (Network, STRUCTURE and phylogeny) revealed that the genetic boundaries of the two varieties are distinct, with high genetic differentiation (FST) of 0.9619 in chloroplast DNA and 0.6543 in nuclear loci. The relatively ancient divergence times between the two varieties were estimated to 3.03 Ma by DIYABC and 1.77 Ma by IMa2 when dated back to the late Pliocene and the early Pleistocene, respectively. The extremely weak gene flow (2Nm = 0.1) between the two varieties was detected by IMa2, which might be caused by their population expansion since the early Pleistocene (~2.0 Ma) inferred in the Bayesian skyline plots and DIYABC. Niche modeling showed that the two varieties had significant ecological differentiation (p < 0.001) since the Last Interglacial even earlier. These results demonstrate that vicariant allopatric speciation due to sea-level fluctuations may be a common mode of speciation in the Japanese archipelago. This finding provides insights into the understanding of species diversification in the Japanese Archipelago and even East Asian flora under climatic oscillations during the Quaternary. Full article
(This article belongs to the Special Issue Plant Taxonomy, Phylogeny, and Evolution)
Show Figures

Figure 1

19 pages, 4116 KiB  
Article
Climatic Conditions in the Central Part of the Kashmir Valley During the Pleistocene–Holocene Transition: Insights from Lithostratigraphy, Geochemical Analyses, and Radiocarbon Chronology of Palaeosol Sequences
by Rayees Ahmad Shah, Shakil Ahmad Romshoo, Imran Khan and Pankaj Kumar
Atmosphere 2025, 16(5), 564; https://doi.org/10.3390/atmos16050564 - 8 May 2025
Viewed by 533
Abstract
The Kashmir Valley, characterized by its rich loess–palaeosol sequences (LPSs), provides a unique geo-archive for reconstructing Late Quaternary climate dynamics. This study presents an extensive multi-proxy study, integrating high-resolution lithostratigraphy, geochemical analyses, stable isotope analysis of soil organic matter (δ13C-VPDB), and [...] Read more.
The Kashmir Valley, characterized by its rich loess–palaeosol sequences (LPSs), provides a unique geo-archive for reconstructing Late Quaternary climate dynamics. This study presents an extensive multi-proxy study, integrating high-resolution lithostratigraphy, geochemical analyses, stable isotope analysis of soil organic matter (δ13C-VPDB), and radiocarbon (14C) chronology of a sediment sequence approximately 200 cm thick, to unravel the complex interplay of climatic, pedogenic and environmental processes shaping the region spanning the Pleistocene–Holocene transition. The results establish a precise chronology of the sediment sequence between 13.4 ka and 7.2 ka, covering the transition from the Pleistocene to the Holocene Epoch. The results reveal distinct climatic and environmental conditions during this Epoch. The study reveals substantial loess deposition during the cold and dry glacial climate towards the end of the Pleistocene, followed by a shift to a warmer and wetter interglacial climate at the onset of the Holocene Epoch. This climatic shift led to the development of soil units with pronounced fluvial characteristics around 10 ka, eventually transitioning to fluvial deposition. Geochemical indices such as Ca/Ti, Al/Ti, Si/Ti, and K/Ti indicate low weathering intensity prior to 11 ka, followed by a noticeable increase around 11 ka, possibly driven by enhanced precipitation. δ13C values, ranging from −26.2‰ to −22.5‰, suggest C3-dominated vegetation during the Late Pleistocene, indicating wetter climatic conditions. This study provides valuable insights into the intricate interactions between climate, soil development, and vegetation dynamics during the critical Late Pleistocene–Holocene transition in the Kashmir Valley. Full article
(This article belongs to the Special Issue Paleoclimate Changes and Dust Cycle Recorded by Eolian Sediments)
Show Figures

Figure 1

4 pages, 161 KiB  
Editorial
Vegetation Response to the Hydro-Climatic Changes During the Late Quaternary
by Mohammad Firoze Quamar and Upasana Swaroop Banerji
Quaternary 2025, 8(2), 23; https://doi.org/10.3390/quat8020023 - 6 May 2025
Viewed by 410
Abstract
Climate change is most clearly reflected in vegetation, as it forms an integral and fundamental component of ecosystems that is sensitive to and governed by climatic changes [...] Full article
20 pages, 10754 KiB  
Article
Late Pleistocene Climate–Weathering Dynamics in Bohai Bay: High-Resolution Sedimentary Proxies and Their Global Paleoclimatic Synchronicity
by Yanxiang Lei, Xinyi Liu, Yanhui Zhang, Lei He, Zengcai Zhao, Liujuan Xie and Siyuan Ye
J. Mar. Sci. Eng. 2025, 13(5), 881; https://doi.org/10.3390/jmse13050881 - 29 Apr 2025
Viewed by 446
Abstract
Understanding the climate–weathering coupling mechanisms remains pivotal for interpreting global glacial–interglacial cycles, yet advancements have been constrained by the limited high-resolution sedimentary archives. The newly acquired BXZK2017-2 borehole (30.5 m core) from Bohai Bay provides an exceptional sedimentary sequence to investigate the Late [...] Read more.
Understanding the climate–weathering coupling mechanisms remains pivotal for interpreting global glacial–interglacial cycles, yet advancements have been constrained by the limited high-resolution sedimentary archives. The newly acquired BXZK2017-2 borehole (30.5 m core) from Bohai Bay provides an exceptional sedimentary sequence to investigate the Late Quaternary climate–weathering interactions. Through an integrated high-resolution chronostratigraphic framework (AMS 14C and OSL dating) coupled with multi-proxy sedimentological analyses (major element geochemistry and granulometric parameters), we reconstructed the chemical–weathering dynamics in the Bohai coastal region since the Late Pleistocene. Our findings revealed four distinct climate-weathering phases that correlate with the regional paleoenvironmental evolution and global climate perturbations: (1) enhanced weathering during mid-MIS3 to ~37.5 cal kyr BP (Chemical Index of Alteration (CIA): 55.9–62.2), corresponding to regional warming and strengthened summer monsoon circulation; (2) weathering minimum in late MIS3 through early–mid-MIS2 (37.5–14.8 cal kyr BP, CIA < 55), marking the peak aridity before the Last Glacial Maximum; (3) maximum weathering intensity from mid-MIS2 to early MIS1 (14.8–3.34 cal kyr BP, CIA: 65–68), documenting the postglacial humidification driven by the intensified East Asian Summer Monsoon; (4) renewed weathering decline during the Neoglacial (3.34 cal kyr BP-present, CIA: 59–63), coinciding with the late Holocene cooling events. Remarkably, this study identifies a striking synchronicity between the CIA in marine drill cores and δ18O records derived from Greenland ice cores. Our results indicate that chemical weathering proxies from marginal sea sediments can serve as robust recorders of post-Late Pleistocene climate variability, establishing a new proxy framework for global paleoclimate comparative research. Full article
(This article belongs to the Topic Human Impact on Groundwater Environment, 2nd Edition)
Show Figures

Figure 1

18 pages, 13190 KiB  
Article
Evolution of Stratigraphic Sequence and Sedimentary Environment in Northern Yellow River Delta Since MIS5
by Haonan Li, Guangxue Li, Jian Zhang, Jiejun Yang, Lvyang Xing, Wenyu Ji and Siyu Liu
J. Mar. Sci. Eng. 2025, 13(5), 832; https://doi.org/10.3390/jmse13050832 - 23 Apr 2025
Viewed by 361
Abstract
Quaternary climate has been characterized by pronounced glacial–interglacial cycles, with eustatic sea-level fluctuations directly controlling coastal sedimentary environments. The Yellow River Delta, situated on the southwestern coast of Bohai Bay, bears a distinct stratigraphic imprint of marine–terrestrial environmental transitions. However, critical knowledge gaps [...] Read more.
Quaternary climate has been characterized by pronounced glacial–interglacial cycles, with eustatic sea-level fluctuations directly controlling coastal sedimentary environments. The Yellow River Delta, situated on the southwestern coast of Bohai Bay, bears a distinct stratigraphic imprint of marine–terrestrial environmental transitions. However, critical knowledge gaps persist in reconstructing an integrated continental–marine stratigraphic framework. This study focuses on the nearshore core CB2302, integrating sediment lithology, grain size, foraminiferal assemblages, and geochemical proxies to establish a regional stratigraphic chronology since MIS5. Three depositional units (DU1–DU3) and 12 sedimentary subunits (C1–C12) were identified based on grain-size distributions, geochemical signatures, hydrodynamic, and microfossil assemblages. Integration of AMS 14C dating and sequence stratigraphic analysis establishes a post-MIS 5 stratigraphic framework for the northern Yellow River Delta, revealing sedimentary responses to three transgressive–regressive cycles (MIS 5e, 5c, and 5a) and confirming widespread terrestrial deposition during MIS 4–2, with no detectable marine influence in MIS 3 strata. Furthermore, correlation with representative cores across the Yellow–Bohai Sea coastal system elucidates a unified model of shoreline migration patterns driven by post-MIS5 sea-level oscillations. These findings advance the understanding of Quaternary sediment–landscape interactions in deltaic systems and provide critical stratigraphic benchmarks for petroleum exploration and coastal engineering in active depositional basins. Full article
(This article belongs to the Section Geological Oceanography)
Show Figures

Figure 1

Back to TopTop