Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,275)

Search Parameters:
Keywords = QDS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2365 KiB  
Article
Surface Charge Affects the Intracellular Fate and Clearance Dynamics of CdSe/ZnS Quantum Dots in Macrophages
by Yuan-Yuan Liu, Yong-Yue Sun, Yuan Guo, Lu-Lu Chen, Jun-Hao Guo and Haifang Wang
Nanomaterials 2025, 15(15), 1189; https://doi.org/10.3390/nano15151189 - 3 Aug 2025
Abstract
The biological effects of nanoparticles are closely related to their intracellular content and location, both of which are influenced by various factors. This study investigates the effects of surface charge on the uptake, intracellular distribution, and exocytosis of CdSe/ZnS quantum dots (QDs) in [...] Read more.
The biological effects of nanoparticles are closely related to their intracellular content and location, both of which are influenced by various factors. This study investigates the effects of surface charge on the uptake, intracellular distribution, and exocytosis of CdSe/ZnS quantum dots (QDs) in Raw264.7 macrophages. Negatively charged 3-mercaptopropanoic acid functionalized QDs (QDs-MPA) show higher cellular uptake than positively charged 2-mercaptoethylamine functionalized QDs (QDs-MEA), and serum enhances the uptake of both types of QDs via protein corona-mediated receptor endocytosis. QDs-MEA primarily enter the cells through clathrin/caveolae-mediated pathways and predominantly accumulate in lysosomes, while QDs-MPA are mainly internalized through clathrin-mediated endocytosis and localize to both lysosomes and mitochondria. Exocytosis of QDs-MPA is faster and more efficient than that of QDs-MEA, though both exhibit limited excretion. In addition to endocytosis and exocytosis, cell division influences intracellular QD content over time. These results reveal the charge-dependent interactions between QDs and macrophages, providing a basis for designing biocompatible nanomaterials. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Figure 1

19 pages, 6409 KiB  
Article
Recycling Quarry Dust as a Supplementary Cementitious Material for Cemented Paste Backfill
by Yingying Zhang, Kaifeng Wang, Zhengkun Shi and Shiyu Zhang
Minerals 2025, 15(8), 817; https://doi.org/10.3390/min15080817 (registering DOI) - 1 Aug 2025
Viewed by 200
Abstract
Quarry dust (QD) landfill causes environmental issues that cannot be ignored. In this study, we systematically explore its potential application as a supplementary cementitious material (SCM) in cemented paste backfill (CPB), revealing the activated mechanism of modified QD (MQD) and exploring the hydration [...] Read more.
Quarry dust (QD) landfill causes environmental issues that cannot be ignored. In this study, we systematically explore its potential application as a supplementary cementitious material (SCM) in cemented paste backfill (CPB), revealing the activated mechanism of modified QD (MQD) and exploring the hydration process and workability of CPB containing QD/MQD. The experimental results show that quartz, clinochlore and amphibole components react with CaO to form reactive dicalcium silicate (C2S) and amorphous glass phases, promoting pozzolanic reactivity in MQD. QD promotes early aluminocarbonate (Mc) formation through CaCO3-derived CO32− release but shifts to hemicarboaluminate (Hc) dominance at 28 d. MQD releases active Al3+/Si4+ due to calcination and deconstruction, significantly increasing the amount of ettringite (AFt) in the later stage. With the synergistic effect of coarse–fine particle gradation, MQD-type fresh backfill can achieve a 161 mm flow spread at 20% replacement. Even if this replacement rate reaches 50%, a strength of 19.87 MPa can still be maintained for 28 days. The good workability and low carbon footprint of MQD-type backfill provide theoretical support for—and technical paths toward—QD recycling and the development of low-carbon building materials. Full article
Show Figures

Figure 1

16 pages, 4770 KiB  
Article
Developing a CeS2/ZnS Quantum Dot Composite Nanomaterial as a High-Performance Cathode Material for Supercapacitor
by Shan-Diao Xu, Li-Cheng Wu, Muhammad Adil, Lin-Feng Sheng, Zi-Yue Zhao, Kui Xu and Xin Chen
Batteries 2025, 11(8), 289; https://doi.org/10.3390/batteries11080289 - 1 Aug 2025
Viewed by 162
Abstract
To develop high-performance electrode materials for supercapacitors, in this paper, a heterostructured composite material of cerium sulfide and zinc sulfide quantum dots (CeS2/ZnS QD) was successfully prepared by hydrothermal method. Characterization through scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission [...] Read more.
To develop high-performance electrode materials for supercapacitors, in this paper, a heterostructured composite material of cerium sulfide and zinc sulfide quantum dots (CeS2/ZnS QD) was successfully prepared by hydrothermal method. Characterization through scanning electron microscopy (SEM), X-ray diffraction (XRD), and transmission electron microscopy (TEM) showed that ZnS QD nanoparticles were uniformly composited with CeS2, effectively increasing the active sites surface area and shortening the ion diffusion path. Electrochemical tests show that the specific capacitance of this composite material reaches 2054 F/g at a current density of 1 A/g (specific capacity of about 256 mAh/g), significantly outperforming the specific capacitance of pure CeS2 787 F/g at 1 A/g (specific capacity 98 mAh/g). The asymmetric supercapacitor (ASC) assembled with CeS2/ZnS QD and activated carbon (AC) retained 84% capacitance after 10,000 charge–discharge cycles. Benefited from the synergistic effect between CeS2 and ZnS QDs, the significantly improved electrochemical performance of the composite material suggests a promising strategy for designing rare-earth and QD-based advanced energy storage materials. Full article
Show Figures

Graphical abstract

15 pages, 2272 KiB  
Article
Improving the Detection Accuracy of Subsurface Damage in Optical Materials by Exploiting the Fluorescence Polarization Properties of Quantum Dots
by Yana Cui, Xuelian Liu, Bo Xiao, Yajie Wu and Chunyang Wang
Nanomaterials 2025, 15(15), 1182; https://doi.org/10.3390/nano15151182 - 31 Jul 2025
Viewed by 89
Abstract
Optical materials are widely used in large optical systems such as lithography machines and astronomical telescopes. However, optical materials inevitably produce subsurface damage (SSD) during lapping and polishing processes, degrading the laser damage threshold and impacting the service life of the optical system. [...] Read more.
Optical materials are widely used in large optical systems such as lithography machines and astronomical telescopes. However, optical materials inevitably produce subsurface damage (SSD) during lapping and polishing processes, degrading the laser damage threshold and impacting the service life of the optical system. The large surface roughness of the lapped optical materials further increases the difficulty of the nondestructive detection of SSD. Quantum dots (QDs) show great development potential in the nondestructive detection of SSD in lapped materials. However, existing QD-based SSD detection methods ignore the polarization sensitivity of QDs to excitation light, which affects the detection accuracy of SSD. To address this problem, this paper explores the fluorescence polarization properties of QDs in the SSD of optical materials. First, the detection principle of SSD based on the fluorescence polarization of QDs is investigated. Subsequently, a fluorescence polarization detection system is developed to analyze the fluorescence polarization properties of QDs in SSD. Finally, the SSD is detected based on the studied polarization properties. The results show that the proposed method effectively improves the detection rate of SSD by 10.8% and thus provides guidance for evaluating the quality of optical material and optimizing optical material processing technologies. The research paradigm is equally applicable to biomedicine, energy, optoelectronics, and the environment, where QDs have a wide range of applications. Full article
Show Figures

Figure 1

37 pages, 3106 KiB  
Review
Quantum Dot-Enabled Biosensing for Prostate Cancer Diagnostics
by Hossein Omidian, Erma J. Gill and Luigi X. Cubeddu
Nanomaterials 2025, 15(15), 1162; https://doi.org/10.3390/nano15151162 - 28 Jul 2025
Viewed by 251
Abstract
Prostate cancer diagnostics are rapidly advancing through innovations in nanotechnology, biosensing strategies, and molecular recognition. This review analyzes studies focusing on quantum dot (QD)-based biosensors for detecting prostate cancer biomarkers with high sensitivity and specificity. It covers diverse sensing platforms and signal transduction [...] Read more.
Prostate cancer diagnostics are rapidly advancing through innovations in nanotechnology, biosensing strategies, and molecular recognition. This review analyzes studies focusing on quantum dot (QD)-based biosensors for detecting prostate cancer biomarkers with high sensitivity and specificity. It covers diverse sensing platforms and signal transduction mechanisms, emphasizing the influence of the QD composition, surface functionalization, and bio interface engineering on analytical performance. Key metrics such as detection limits, dynamic range, and compatibility with biological samples, including serum, urine, and tissue, are critically assessed. Recent advances in green-synthesized QDs and smartphone-integrated diagnostic platforms are highlighted, including lateral flow assays, paper-based devices, and pH-responsive hydrogels for real-time, low-cost, and decentralized cancer screening. These innovations enable multiplexed biomarker detection and tumor microenvironment monitoring in point-of-care settings. This review concludes by addressing the current limitations, scalability challenges, and future research directions for translating QD-enabled biosensors into clinically viable diagnostic tools. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

8 pages, 325 KiB  
Article
Bismuth Quadruple Therapy with Doxycycline Is an Effective First-Line Therapy for Helicobacter pylori in an Irish Cohort
by Conor Costigan, Mark Comerford, Ronan Whitmarsh, Kevin Van Der Merwe, Gillian Madders, Jim O’Connell, Thomas Butler, Stephen Molloy, Fintan O’Hara, Barbara Ryan, Niall Breslin, Sarah O’Donnell, Anthony O’Connor, Sinead Smith, Syafiq Ismail, Vikrant Parihar and Deirdre McNamara
Antibiotics 2025, 14(8), 757; https://doi.org/10.3390/antibiotics14080757 - 28 Jul 2025
Viewed by 1593
Abstract
Background: There has been a reduction in successful H. pylori eradication rates recently, which is largely attributed to increasing antibiotic resistance. In areas of high dual clarithromycin and metronidazole resistance such as ours, Maastricht VI/Florence guidelines recommend bismuth quadruple therapy (BQT) as first [...] Read more.
Background: There has been a reduction in successful H. pylori eradication rates recently, which is largely attributed to increasing antibiotic resistance. In areas of high dual clarithromycin and metronidazole resistance such as ours, Maastricht VI/Florence guidelines recommend bismuth quadruple therapy (BQT) as first line of therapy; however, the availability of bismuth was poor in Ireland until recently. Similarly, tetracycline, a component of BQT, is restricted locally, with doxycycline (D) being approved and reimbursed for most indications. Aims: To assess the efficacy of BQT-D therapy for H. pylori eradication in an Irish cohort. Methods: All patients testing positive for H. pylori in three Irish referral centres by urea breath test, stool antigen, or histology were treated prospectively with BQT-D (bismuth subcitrate 120 mg QDS, metronidazole 400 mg TDS, doxycycline 100 mg BD and esomeprazole 40 mg BD) for 14 days. Eradication was evaluated with a urea breath test (UBT) >4 weeks after therapy cessation or by stool antigen testing, as available. Outcomes were recorded and analysed according to demographics and H. pylori treatment history of the patients. Results: 217 patients completed post-eradication testing. Of which, 124 (57%) were female, with a mean age 52 years. 180 patients (83%) were treatment-naïve. A total of 165/180 (92%) of the treatment-naïve patients had successful eradication. There was no association between eradication and gender or age in this cohort (p = 0.3091, p = 0.962 respectively). A total of 29 patients received this therapy as second-line therapy, of which 22 (76%) had successful eradication. Eight patients received the regimen as rescue therapy, with seven (88%) having successful eradication. No serious adverse events were reported. Eleven individuals (6.5%) commented on the complicated nature of the regimen, with 11 tablets being taken at five intervals daily. Conclusions: BQT-D as first-line therapy for H. pylori infection is highly effective in a high dual-resistance population, achieving >90% eradication. BQT-D as a second-line treatment performed less well. Our data support BQT-D as a first-line treatment. Full article
Show Figures

Figure 1

10 pages, 1762 KiB  
Article
Optical Characterization of the Interplay Between Carrier Localization and Carrier Injection in Self-Assembled GaSb/GaAs Quantum Dots
by Si-Yuan Ma, Ying Wang, Yuriy I. Mazur, Morgan E. Ware, Gregory J. Salamo and Bao Lai Liang
Optics 2025, 6(3), 33; https://doi.org/10.3390/opt6030033 - 23 Jul 2025
Viewed by 249
Abstract
The optical properties of a heterostructure containing GaSb/GaAs quantum dots (QDs) have been systematically investigated via photoluminescence (PL) measurements to gain insights into carrier dynamics. The QD and wetting layer (WL) emissions exhibit a complementary dependence on the excitation intensity and temperature, reflecting [...] Read more.
The optical properties of a heterostructure containing GaSb/GaAs quantum dots (QDs) have been systematically investigated via photoluminescence (PL) measurements to gain insights into carrier dynamics. The QD and wetting layer (WL) emissions exhibit a complementary dependence on the excitation intensity and temperature, reflecting the interplay between carrier localization in the WL and carrier relaxation from the WL to the QDs. Carrier dynamics related to localization, injection, and recombination are further validated by time-resolved photoluminescence (TRPL). These findings highlight the necessity of carefully optimizing GaSb/GaAs QD structures to mitigate the impact of carrier localization, thereby enhancing the ultimate performance of devices utilizing these QDs as active region materials. Full article
Show Figures

Graphical abstract

22 pages, 7942 KiB  
Article
Research on the Influence of Impeller Oblique Cutting Angles on the Performance of Double-Suction Pumps
by Zhongsheng Wang, Xinxin Li, Jun Liu, Ji Pei, Wenjie Wang, Kuilin Wang and Hongyu Wang
Energies 2025, 18(15), 3907; https://doi.org/10.3390/en18153907 - 22 Jul 2025
Viewed by 169
Abstract
Double-suction centrifugal pumps are extensively employed in industrial applications owing to their high efficiency, low vibration, superior cavitation resistance, and operational durability. This study analyzes how impeller oblique cutting angles (0°, 6°, 9°, 12°) affect a double-suction pump at a fixed 4% trimming [...] Read more.
Double-suction centrifugal pumps are extensively employed in industrial applications owing to their high efficiency, low vibration, superior cavitation resistance, and operational durability. This study analyzes how impeller oblique cutting angles (0°, 6°, 9°, 12°) affect a double-suction pump at a fixed 4% trimming ratio and constant average post-trim diameter. Numerical simulations and tests reveal that under low-flow (0.7Qd) and design-flow conditions, the flat-cut (0°) minimizes reflux ratio and maximizes efficiency by aligning blade outlet flow with the mainstream. Increasing oblique cutting angles disrupts this alignment, elevating reflux and reducing efficiency. Conversely, at high flow (1.3Qd), the 12° bevel optimizes outlet flow, achieving peak efficiency. Pressure pulsation at the volute tongue (P11) peaks at the blade-passing frequency, with amplitudes significantly higher for 9°/12° bevels than for 0°/6°. The flat-cut suppresses wake vortices and static–rotor interaction, but oblique cutting angle choice critically influences shaft-frequency pulsation. Entropy analysis identifies the volute as the primary loss source. Larger oblique cutting angles intensify wall effects, increasing total entropy; pump chamber losses rise most sharply due to worsened outlet velocity non-uniformity and turbulent dissipation. The flat-cut yields minimal entropy at Qd. These findings provide a basis for tailoring impeller trimming to specific operational requirements. Furthermore, the systematic analysis provides critical guidance for impeller trimming strategies in other double-suction pumps and pumps as turbines in micro hydropower plants. Full article
(This article belongs to the Special Issue Optimization Design and Simulation Analysis of Hydraulic Turbine)
Show Figures

Figure 1

10 pages, 2398 KiB  
Article
APTES-Modified Interface Optimization in PbS Quantum Dot SWIR Photodetectors and Its Influence on Optoelectronic Properties
by Qian Lei, Lei Rao, Wencan Deng, Xiuqin Ao, Fan Fang, Wei Chen, Jiaji Cheng, Haodong Tang and Junjie Hao
Colloids Interfaces 2025, 9(4), 49; https://doi.org/10.3390/colloids9040049 - 22 Jul 2025
Viewed by 269
Abstract
Lead sulfide colloidal quantum dots (PbS QDs) have demonstrated great potential in short-wave infrared (SWIR) photodetectors due to their tunable bandgap, low cost, and broad spectral response. While significant progress has been made in surface ligand modification and defect state passivation, studies focusing [...] Read more.
Lead sulfide colloidal quantum dots (PbS QDs) have demonstrated great potential in short-wave infrared (SWIR) photodetectors due to their tunable bandgap, low cost, and broad spectral response. While significant progress has been made in surface ligand modification and defect state passivation, studies focusing on the interface between QDs and electrodes remain limited, which hinders further improvement in device performance. In this work, we propose an interface engineering strategy based on 3-aminopropyltriethoxysilane (APTES) to enhance the interfacial contact between PbS QD films and ITO interdigitated electrodes, thereby significantly boosting the overall performance of SWIR photodetectors. Experimental results demonstrate that the optimal 0.5 h APTES treatment duration significantly enhances responsivity by achieving balanced interface passivation and charge carrier transport. Moreover, The APTES-modified device exhibits a controllable dark current and faster photo-response under 1310 nm illumination. This interface engineering approach provides an effective pathway for the development of high-performance PbS QD-based SWIR photodetectors, with promising applications in infrared imaging, spectroscopy, and optical communication. Full article
(This article belongs to the Special Issue State of the Art of Colloid and Interface Science in Asia)
Show Figures

Figure 1

15 pages, 1943 KiB  
Article
Multimodal Latent Representation Learning for Video Moment Retrieval
by Jinkwon Hwang, Mingyu Jeon and Junyeong Kim
Sensors 2025, 25(14), 4528; https://doi.org/10.3390/s25144528 - 21 Jul 2025
Viewed by 431
Abstract
The rise of artificial intelligence (AI) has revolutionized the processing and analysis of video sensor data, driving advancements in areas such as surveillance, autonomous driving, and personalized content recommendations. However, leveraging video data presents unique challenges, particularly in the time-intensive feature extraction process [...] Read more.
The rise of artificial intelligence (AI) has revolutionized the processing and analysis of video sensor data, driving advancements in areas such as surveillance, autonomous driving, and personalized content recommendations. However, leveraging video data presents unique challenges, particularly in the time-intensive feature extraction process required for model training. This challenge is intensified in research environments lacking advanced hardware resources like GPUs. We propose a new method called the multimodal latent representation learning framework (MLRL) to address these limitations. MLRL enhances the performance of downstream tasks by conducting additional representation learning on pre-extracted features. By integrating and augmenting multimodal data, our method effectively predicts latent representations, leveraging pre-extracted features to reduce model training time and improve task performance. We validate the efficacy of MLRL on the video moment retrieval task using the QVHighlight dataset, benchmarking against the QD-DETR model. Our results demonstrate significant improvements, highlighting the potential of MLRL to streamline video data processing by leveraging pre-extracted features to bypass the time-consuming extraction process of raw sensor data and enhance model accuracy in various sensor-based applications. Full article
Show Figures

Figure 1

14 pages, 1928 KiB  
Article
Ultraviolet Photocatalytic Performance of ZnO Nanorods Selectively Deposited with Bi2O3 Quantum Dots
by Baohui Lou, Chi Zhang, Xianhao Wu, Ying Liu, Xiangdong Feng, Feipeng Huang, Bowen Zhao and Zhengwang Zhu
Catalysts 2025, 15(7), 695; https://doi.org/10.3390/catal15070695 - 21 Jul 2025
Viewed by 329
Abstract
A strong interaction between Bi3+ and ZnO was used to successfully sensitize ZnO nanorods with quantum dots (QDs) of Bi2O3 through three different strategies. Although the Bi2O3 QDs had similar particle size distributions, their photocatalytic performance [...] Read more.
A strong interaction between Bi3+ and ZnO was used to successfully sensitize ZnO nanorods with quantum dots (QDs) of Bi2O3 through three different strategies. Although the Bi2O3 QDs had similar particle size distributions, their photocatalytic performance varied significantly, prompting the investigation of factors beyond particle size. The study revealed that the photochemical method selectively deposited Bi2O3 QDs onto electron-rich ZnO sites, providing a favorable pathway for efficient electron–hole separation and transfer. Consequently, abundant h+ and ·OH radicals were generated, which effectively degraded Rhodamine B (RhB). As demonstrated in the RhB degradation experiments, the Bi2O3/ZnO nanorod catalyst achieved an 89.3% degradation rate within 120 min, significantly outperforming catalysts with other morphologies. The photoluminescence (PL) and time-resolved photoluminescence (TRPL) results indicated that the Bi2O3/ZnO heterostructure constructed an effective interface to facilitate the spatial separation of photogenerated charge carriers, which effectively prolonged their lifetime. The electron paramagnetic resonance (EPR) results confirmed that the ·OH radicals played a key role in the degradation process. Full article
(This article belongs to the Special Issue Advanced Catalytic Processes for Wastewater Treatment)
Show Figures

Graphical abstract

16 pages, 1420 KiB  
Article
Light-Driven Quantum Dot Dialogues: Oscillatory Photoluminescence in Langmuir–Blodgett Films
by Tefera Entele Tesema
Nanomaterials 2025, 15(14), 1113; https://doi.org/10.3390/nano15141113 - 18 Jul 2025
Viewed by 301
Abstract
This study explores the optical properties of a close-packed monolayer composed of core/shell-alloyed CdSeS/ZnS quantum dots (QDs) of two different sizes and compositions. The monolayers were self-assembled in a stacked configuration at the water/air interface using Langmuir–Blodgett (LB) techniques. Under continuous 532 nm [...] Read more.
This study explores the optical properties of a close-packed monolayer composed of core/shell-alloyed CdSeS/ZnS quantum dots (QDs) of two different sizes and compositions. The monolayers were self-assembled in a stacked configuration at the water/air interface using Langmuir–Blodgett (LB) techniques. Under continuous 532 nm laser illumination on the red absorption edge of the blue-emitting smaller QDs (QD450), the red-emitting larger QDs (QD645) exhibited oscillatory temporal dynamics in their photoluminescence (PL), characterized by a pronounced blueshift in the emission peak wavelength and an abrupt decrease in peak intensity. Conversely, excitation by a 405 nm laser on the blue absorption edge induced a drastic redshift in the emission wavelength over time. These significant shifts in emission spectra are attributed to photon- and anisotropic-strain-assisted interlayer atom transfer. The findings provide new insights into strain-driven atomic rearrangements and their impact on the photophysical behavior of QD systems. Full article
Show Figures

Graphical abstract

21 pages, 9529 KiB  
Article
Development of a Highly Reliable PbS QDs-Based SWIR Photodetector Based on Metal Oxide Electron/Hole Extraction Layer Formation Conditions
by JinBeom Kwon, Yuntae Ha, Suji Choi and Donggeon Jung
Nanomaterials 2025, 15(14), 1107; https://doi.org/10.3390/nano15141107 - 16 Jul 2025
Viewed by 293
Abstract
Recently, with the development of automation technology in various fields, much research has been conducted on infrared photodetectors, which are the core technology of LiDAR sensors. However, most infrared photodetectors are expensive because they use compound semiconductors based on epitaxial processes, and they [...] Read more.
Recently, with the development of automation technology in various fields, much research has been conducted on infrared photodetectors, which are the core technology of LiDAR sensors. However, most infrared photodetectors are expensive because they use compound semiconductors based on epitaxial processes, and they have low safety because they use the near-infrared (NIR) region that can damage the retina. Therefore, they are difficult to apply to automation technologies such as automobiles and factories where humans can be constantly exposed. In contrast, short-wavelength infrared photodetectors based on PbS QDs are actively being developed because they can absorb infrared rays in the eye-safe region by controlling the particle size of QDs and can be easily and inexpensively manufactured through a solution process. However, PbS QDs-based SWIR photodetectors have low chemical stability due to the electron/hole extraction layer processed by the solution process, making it difficult to manufacture them in the form of patterning and arrays. In this study, bulk NiO and ZnO were deposited by sputtering to achieve uniformity and patterning of thin films, and the performance of PbS QDs-based photodetectors was improved by optimizing the thickness and annealing conditions of the thin films. The fabricated photodetector achieved a high response characteristic of 114.3% through optimized band gap and improved transmittance characteristics. Full article
(This article belongs to the Special Issue Quantum Dot Materials and Their Optoelectronic Applications)
Show Figures

Figure 1

30 pages, 3084 KiB  
Review
Antioxidants Acteoside and Orientin as Emerging Agents in Synergistic Cancer Therapy: A Focus on Innovative Applications
by Jagoda Szkudlarek, Ludwika Piwowarczyk and Anna Jelińska
Antioxidants 2025, 14(7), 855; https://doi.org/10.3390/antiox14070855 - 12 Jul 2025
Viewed by 395
Abstract
Cancers, particularly those resistant to treatment, stand as one of the most significant challenges in medicine. Frequently, available therapies need to be improved, underscoring the necessity for innovative treatment modalities. Over the years, there has been a resurgence of interest in natural plant [...] Read more.
Cancers, particularly those resistant to treatment, stand as one of the most significant challenges in medicine. Frequently, available therapies need to be improved, underscoring the necessity for innovative treatment modalities. Over the years, there has been a resurgence of interest in natural plant substances, which have been traditionally overlooked as anticancer agents. A prime example of this is natural antioxidants, such as acteoside (ACT) and orientin (ORI), which offer novel approaches to cancer treatment, emphasizing liver cancer compared to other cancer types. They reduce oxidative stress by activating the Nrf2/ARE pathway and exhibit anticancer activity, e.g., decreasing Bcl-2 and Bcl-XL expression and increasing Bax levels. This review explores the individual effects of ACT and ORI and their synergistic interactions with sorafenib, temozolomide, 5-fluorouracil (for ACT), celecoxib, and curcumin (for ORI), highlighting their enhanced anticancer efficacy. In addition, ACT and ORI successfully integrate into various drug delivery systems (DDSs), including metal-containing carriers such as nanoparticles (NPs), nanoshells (NSs), quantum dots (QDs), and liposomes as representative examples of lipid-based drug delivery systems (LBDDSs). Advanced methods, including nanotechnology, offer potential solutions to low bioavailability, paving the way for the use of these substances in anticancer therapy. Full article
(This article belongs to the Special Issue Oxidative Stress in Hepatic Diseases)
Show Figures

Figure 1

46 pages, 3177 KiB  
Review
Recent Advancements in Lateral Flow Assays for Food Mycotoxin Detection: A Review of Nanoparticle-Based Methods and Innovations
by Gayathree Thenuwara, Perveen Akhtar, Bilal Javed, Baljit Singh, Hugh J. Byrne and Furong Tian
Toxins 2025, 17(7), 348; https://doi.org/10.3390/toxins17070348 - 11 Jul 2025
Viewed by 615
Abstract
Mycotoxins are responsible for a multitude of diseases in both humans and animals, resulting in significant medical and economic burdens worldwide. Conventional detection methods, such as enzyme-linked immunosorbent assay (ELISA), high-performance liquid chromatography (HPLC), and liquid chromatography-tandem mass spectrometry (LC-MS/MS), are highly effective, [...] Read more.
Mycotoxins are responsible for a multitude of diseases in both humans and animals, resulting in significant medical and economic burdens worldwide. Conventional detection methods, such as enzyme-linked immunosorbent assay (ELISA), high-performance liquid chromatography (HPLC), and liquid chromatography-tandem mass spectrometry (LC-MS/MS), are highly effective, but they are generally confined to laboratory settings. Consequently, there is a growing demand for point-of-care testing (POCT) solutions that are rapid, sensitive, portable, and cost-effective. Lateral flow assays (LFAs) are a pivotal technology in POCT due to their simplicity, rapidity, and ease of use. This review synthesizes data from 78 peer-reviewed studies published between 2015 and 2024, evaluating advances in nanoparticle-based LFAs for detection of singular or multiplex mycotoxin types. Gold nanoparticles (AuNPs) remain the most widely used, due to their favorable optical and surface chemistry; however, significant progress has also been made with silver nanoparticles (AgNPs), magnetic nanoparticles, quantum dots (QDs), nanozymes, and hybrid nanostructures. The integration of multifunctional nanomaterials has enhanced assay sensitivity, specificity, and operational usability, with innovations including smartphone-based readers, signal amplification strategies, and supplementary technologies such as surface-enhanced Raman spectroscopy (SERS). While most singular LFAs achieved moderate sensitivity (0.001–1 ng/mL), only 6% reached ultra-sensitive detection (<0.001 ng/mL), and no significant improvement was evident over time (ρ = −0.162, p = 0.261). In contrast, multiplex assays demonstrated clear performance gains post-2022 (ρ = −0.357, p = 0.0008), largely driven by system-level optimization and advanced nanomaterials. Importantly, the type of sample matrix (e.g., cereals, dairy, feed) did not significantly influence the analytical sensitivity of singular or multiplex lateral LFAs (Kruskal–Wallis p > 0.05), confirming the matrix-independence of these optimized platforms. While analytical challenges remain for complex targets like fumonisins and deoxynivalenol (DON), ongoing innovations in signal amplification, biorecognition chemistry, and assay standardization are driving LFAs toward becoming reliable, ultra-sensitive, and field-deployable platforms for high-throughput mycotoxin screening in global food safety surveillance. Full article
Show Figures

Graphical abstract

Back to TopTop