Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,205)

Search Parameters:
Keywords = Pt-Co

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1527 KiB  
Article
The Effect of the Metal Impurities on the Stability, Chemical, and Sensing Properties of MoSe2 Surfaces
by Danil W. Boukhvalov, Murat K. Rakhimzhanov, Aigul Shongalova, Abay S. Serikkanov, Nikolay A. Chuchvaga and Vladimir Yu. Osipov
Surfaces 2025, 8(3), 56; https://doi.org/10.3390/surfaces8030056 - 5 Aug 2025
Abstract
In this study, we present a comprehensive theoretical analysis of modifications in the physical and chemical properties of MoSe2 upon the introduction of substitutional transition metal impurities, specifically, Ti, V, Cr, Fe, Co, Ni, Cu, W, Pd, and Pt. Wet systematically calculated [...] Read more.
In this study, we present a comprehensive theoretical analysis of modifications in the physical and chemical properties of MoSe2 upon the introduction of substitutional transition metal impurities, specifically, Ti, V, Cr, Fe, Co, Ni, Cu, W, Pd, and Pt. Wet systematically calculated the adsorption enthalpies for various representative analytes, including O2, H2, CO, CO2, H2O, NO2, formaldehyde, and ethanol, and further evaluated their free energies across a range of temperatures. By employing the formula for probabilities, we accounted for the competition among molecules for active adsorption sites during simultaneous adsorption events. Our findings underscore the importance of integrating temperature effects and competitive adsorption dynamics to predict the performance of highly selective sensors accurately. Additionally, we investigated the influence of temperature and analyte concentration on sensor performance by analyzing the saturation of active sites for specific scenarios using Langmuir sorption theory. Building on our calculated adsorption energies, we screened the catalytic potential of doped MoSe2 for CO2-to-methanol conversion reactions. This paper also examines the correlations between the electronic structure of active sites and their associated sensing and catalytic capabilities, offering insights that can inform the design of advanced materials for sensors and catalytic applications. Full article
Show Figures

Graphical abstract

12 pages, 671 KiB  
Proceeding Paper
The Role of Industrial Catalysts in Accelerating the Renewable Energy Transition
by Partha Protim Borthakur and Barbie Borthakur
Chem. Proc. 2025, 17(1), 6; https://doi.org/10.3390/chemproc2025017006 - 4 Aug 2025
Abstract
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting [...] Read more.
Industrial catalysts are accelerating the global transition toward renewable energy, serving as enablers for innovative technologies that enhance efficiency, lower costs, and improve environmental sustainability. This review explores the pivotal roles of industrial catalysts in hydrogen production, biofuel generation, and biomass conversion, highlighting their transformative impact on renewable energy systems. Precious-metal-based electrocatalysts such as ruthenium (Ru), iridium (Ir), and platinum (Pt) demonstrate high efficiency but face challenges due to their cost and stability. Alternatives like nickel-cobalt oxide (NiCo2O4) and Ti3C2 MXene materials show promise in addressing these limitations, enabling cost-effective and scalable hydrogen production. Additionally, nickel-based catalysts supported on alumina optimize SMR, reducing coke formation and improving efficiency. In biofuel production, heterogeneous catalysts play a crucial role in converting biomass into valuable fuels. Co-based bimetallic catalysts enhance hydrodeoxygenation (HDO) processes, improving the yield of biofuels like dimethylfuran (DMF) and γ-valerolactone (GVL). Innovative materials such as biochar, red mud, and metal–organic frameworks (MOFs) facilitate sustainable waste-to-fuel conversion and biodiesel production, offering environmental and economic benefits. Power-to-X technologies, which convert renewable electricity into chemical energy carriers like hydrogen and synthetic fuels, rely on advanced catalysts to improve reaction rates, selectivity, and energy efficiency. Innovations in non-precious metal catalysts, nanostructured materials, and defect-engineered catalysts provide solutions for sustainable energy systems. These advancements promise to enhance efficiency, reduce environmental footprints, and ensure the viability of renewable energy technologies. Full article
Show Figures

Figure 1

17 pages, 5839 KiB  
Article
Salvianolic Acid A Activates Nrf2-Related Signaling Pathways to Inhibit Ferroptosis to Improve Ischemic Stroke
by Yu-Fu Shang, Wan-Di Feng, Dong-Ni Liu, Wen-Fang Zhang, Shuang Xu, Dan-Hong Feng, Guan-Hua Du and Yue-Hua Wang
Molecules 2025, 30(15), 3266; https://doi.org/10.3390/molecules30153266 - 4 Aug 2025
Abstract
Ischemic stroke is a serious disease that frequently occurs in the elderly and is characterized by a complex pathophysiology and a limited number of effective therapeutic agents. Salvianolic acid A (SAL-A) is a natural product derived from the rhizome of Salvia miltiorrhiza, [...] Read more.
Ischemic stroke is a serious disease that frequently occurs in the elderly and is characterized by a complex pathophysiology and a limited number of effective therapeutic agents. Salvianolic acid A (SAL-A) is a natural product derived from the rhizome of Salvia miltiorrhiza, which possesses diverse pharmacological activities. This study aims to investigate the effect and mechanisms of SAL-A in inhibiting ferroptosis to improve ischemic stroke. Brain injury, oxidative stress and ferroptosis-related analysis were performed to evaluate the effect of SAL-A on ischemic stroke in photochemical induction of stroke (PTS) in mice. Lipid peroxidation levels, antioxidant protein levels, tissue iron content, nuclear factor erythroid 2-related factor 2 (Nrf2), and mitochondrial morphology changes were detected to explore its mechanism. SAL-A significantly attenuated brain injury, reduced malondialdehyde (MDA) and long-chain acyl-CoA synthase 4 (ACSL4) levels. In addition, SAL-A also amplified the antioxidative properties of glutathione (GSH) when under glutathione peroxidase 4 (GPX4), and the reduction in ferrous ion levels. In vitro, brain microvascular endothelial cells (b.End.3) exposed to oxygen-glucose deprivation/reoxygenation (OGD/R) were used to investigate whether the anti-stroke mechanism of SAL-A is related to Nrf2. Following OGD/R, ML385 (Nrf2 inhibitor) prevents SAL-A from inhibiting oxidative stress, ferroptosis, and mitochondrial dysfunction in b.End.3 cells. In conclusion, SAL-A inhibits ferroptosis to ameliorate ischemic brain injury, and this effect is mediated through Nrf2. Full article
Show Figures

Graphical abstract

16 pages, 1313 KiB  
Article
Mycorrhizas Promote Total Flavonoid Levels in Trifoliate Orange by Accelerating the Flavonoid Biosynthetic Pathway to Reduce Oxidative Damage Under Drought
by Lei Liu and Hong-Na Mu
Horticulturae 2025, 11(8), 910; https://doi.org/10.3390/horticulturae11080910 (registering DOI) - 4 Aug 2025
Abstract
Flavonoids serve as crucial plant antioxidants in drought tolerance, yet their antioxidant regulatory mechanisms within mycorrhizal plants remain unclear. In this study, using a two-factor design, trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings in the four-to-five-leaf stage were either inoculated with Funneliformis [...] Read more.
Flavonoids serve as crucial plant antioxidants in drought tolerance, yet their antioxidant regulatory mechanisms within mycorrhizal plants remain unclear. In this study, using a two-factor design, trifoliate orange (Poncirus trifoliata (L.) Raf.) seedlings in the four-to-five-leaf stage were either inoculated with Funneliformis mosseae or not, and subjected to well-watered (70–75% of field maximum water-holding capacity) or drought stress (50–55% field maximum water-holding capacity) conditions for 10 weeks. Plant growth performance, photosynthetic physiology, leaf flavonoid content and their antioxidant capacity, reactive oxygen species levels, and activities and gene expression of key flavonoid biosynthesis enzymes were analyzed. Although drought stress significantly reduced root colonization and soil hyphal length, inoculation with F. mosseae consistently enhanced the biomass of leaves, stems, and roots, as well as root surface area and diameter, irrespective of soil moisture. Despite drought suppressing photosynthesis in mycorrhizal plants, F. mosseae substantially improved photosynthetic capacity (measured via gas exchange) and optimized photochemical efficiency (assessed by chlorophyll fluorescence) while reducing non-photochemical quenching (heat dissipation). Inoculation with F. mosseae elevated the total flavonoid content in leaves by 46.67% (well-watered) and 14.04% (drought), accompanied by significantly enhanced activities of key synthases such as phenylalanine ammonia-lyase (PAL), chalcone synthase (CHS), chalcone isomerase (CHI), 4-coumarate:coA ligase (4CL), and cinnamate 4-hydroxylase (C4H), with increases ranging from 16.90 to 117.42% under drought. Quantitative real-time PCR revealed that both mycorrhization and drought upregulated the expression of PtPAL1, PtCHI, and Pt4CL genes, with soil moisture critically modulating mycorrhizal regulatory effects. In vitro assays showed that flavonoid extracts scavenged radicals at rates of 30.07–41.60% in hydroxyl radical (•OH), 71.89–78.06% in superoxide radical anion (O2•−), and 49.97–74.75% in 2,2-diphenyl-1-picrylhydrazyl (DPPH). Mycorrhizal symbiosis enhanced the antioxidant capacity of flavonoids, resulting in higher scavenging rates of •OH (19.07%), O2•− (5.00%), and DPPH (31.81%) under drought. Inoculated plants displayed reduced hydrogen peroxide (19.77%), O2•− (23.90%), and malondialdehyde (17.36%) levels. This study concludes that mycorrhizae promote the level of total flavonoids in trifoliate orange by accelerating the flavonoid biosynthesis pathway, hence reducing oxidative damage under drought. Full article
Show Figures

Figure 1

16 pages, 3282 KiB  
Article
First-Principles Study on Periodic Pt2Fe Alloy Surface Models for Highly Efficient CO Poisoning Resistance
by Junmei Wang, Qingkun Tian, Harry E. Ruda, Li Chen, Maoyou Yang and Yujun Song
Nanomaterials 2025, 15(15), 1185; https://doi.org/10.3390/nano15151185 - 1 Aug 2025
Viewed by 192
Abstract
Surface and sub-surface atomic configurations are critical for catalysis as they host the active sites governing electrochemical processes. This study employs density functional theory (DFT) calculations and Monte Carlo simulations combined with the cluster-expansion approach to investigate atom distribution and Pt segregation in [...] Read more.
Surface and sub-surface atomic configurations are critical for catalysis as they host the active sites governing electrochemical processes. This study employs density functional theory (DFT) calculations and Monte Carlo simulations combined with the cluster-expansion approach to investigate atom distribution and Pt segregation in Pt-Fe alloys across varying Pt/Fe ratios. Our simulations reveal a strong tendency for Pt atoms to segregate to the surface layer while Fe atoms enrich the sub-surface region. Crucially, the calculations predict the stability of a periodic Pt2Fe alloy surface model, characterized by specific defect structures, at low platinum content and low annealing temperatures. Electronic structure analysis indicates that forming this Pt2Fe surface alloy lowers the d-band center of Pt atoms, weakening CO adsorption and thereby enhancing resistance to CO poisoning. Although defect-induced strains can modulate the d-band center, crystal orbital Hamilton population (COHP) analysis confirms that such strains generally strengthen Pt-CO interactions. Therefore, the theoretical design of Pt2Fe alloy surfaces and controlling defect density are predicted to be effective strategies for enhancing catalyst resistance to CO poisoning. This work highlights the advantages of periodic Pt2Fe surface models for anti-CO poisoning and provides computational guidance for designing efficient Pt-based electrocatalysts. Full article
(This article belongs to the Section Theory and Simulation of Nanostructures)
Show Figures

Figure 1

20 pages, 3979 KiB  
Article
Theoretical Study of CO Oxidation on Pt Single-Atom Catalyst Decorated C3N Monolayers with Nitrogen Vacancies
by Suparada Kamchompoo, Yuwanda Injongkol, Nuttapon Yodsin, Rui-Qin Zhang, Manaschai Kunaseth and Siriporn Jungsuttiwong
Sci 2025, 7(3), 101; https://doi.org/10.3390/sci7030101 - 1 Aug 2025
Viewed by 226
Abstract
Carbon monoxide (CO) is a major toxic gas emitted from vehicle exhaust, industrial processes, and incomplete fuel combustion, posing serious environmental and health risks. Catalytic oxidation of CO into less harmful CO2 is an effective strategy to reduce these emissions. In this [...] Read more.
Carbon monoxide (CO) is a major toxic gas emitted from vehicle exhaust, industrial processes, and incomplete fuel combustion, posing serious environmental and health risks. Catalytic oxidation of CO into less harmful CO2 is an effective strategy to reduce these emissions. In this study, we investigated the catalytic performance of platinum (Pt) single atoms doped on C3N monolayers with various vacancy defects, including single carbon (CV) and nitrogen (NV) vacancies, using density functional theory (DFT) calculations. Our results demonstrate that Pt@NV-C3N exhibited the most favorable catalytic properties, with the highest O2 adsorption energy (−3.07 eV). This performance significantly outperforms Pt atoms doped at other vacancies. It can be attributed to the strong binding between Pt and nitrogen vacancies, which contributes to its excellent resistance to Pt aggregation. CO oxidation on Pt@NV-C3N proceeds via the Eley–Rideal (ER2) mechanism with a low activation barrier of 0.41 eV for the rate-determining step, indicating high catalytic efficiency at low temperatures. These findings suggest that Pt@NV-C3N is a promising candidate for CO oxidation, contributing to developing cost-effective and environmentally sustainable catalysts. The strong binding of Pt atoms to the nitrogen vacancies prevents aggregation, ensuring the stability and durability of the catalyst. The kinetic modeling further revealed that the ER2 mechanism offers the highest reaction rate constants over a wide temperature range (273–700 K). The low activation energy barrier also facilitates CO oxidation at lower temperatures, addressing critical challenges in automotive and industrial pollution control. This study provides valuable theoretical insights for designing advanced single-atom catalysts for environmental remediation applications. Full article
Show Figures

Graphical abstract

23 pages, 854 KiB  
Article
Adopting Generative AI in Future Classrooms: A Study of Preservice Teachers’ Intentions and Influencing Factors
by Yang Liu, Qiu Wang and Jing Lei
Behav. Sci. 2025, 15(8), 1040; https://doi.org/10.3390/bs15081040 - 31 Jul 2025
Viewed by 390
Abstract
This study investigated pre-service teachers’ (PTs) intentions to adopt generative AI (GenAI) tools in future classrooms by applying an extended Technology Acceptance Model (TAM). Participants were enrolled in multiple teacher-preparation programs within a single U.S. higher education institution. Through a structured GenAI-integrated activity [...] Read more.
This study investigated pre-service teachers’ (PTs) intentions to adopt generative AI (GenAI) tools in future classrooms by applying an extended Technology Acceptance Model (TAM). Participants were enrolled in multiple teacher-preparation programs within a single U.S. higher education institution. Through a structured GenAI-integrated activity using Khanmigo, a domain-specific AI platform for K-12 education, PTs explored AI-supported instructional tasks. Post-activity data were analyzed using PLS-SEM. The results showed that perceived usefulness (PU), perceived ease-of-use (PEU), and self-efficacy (SE) significantly predicted behavioral intention (BI) to adopt GenAI, with SE also influencing both PU and PEU. Conversely, personal innovativeness in IT and perceived cyber risk showed insignificant effects on BI or PU. The findings underscored the evolving dynamics of TAM constructs in GenAI contexts and highlighted the need to reconceptualize ease-of-use and risk within AI-mediated environments. Practically, the study emphasized the importance of preparing PTs not only to operate AI tools but also to critically interpret and co-design them. These insights inform both theoretical models and teacher education strategies, supporting the ethical and pedagogically meaningful integration of GenAI in K-12 education. Theoretical and practical implications are discussed. Full article
(This article belongs to the Special Issue Artificial Intelligence and Educational Psychology)
Show Figures

Figure 1

22 pages, 5009 KiB  
Review
Single-Atom Catalysts for Hydrogen Evolution Reaction: The Role of Supports, Coordination Environments, and Synergistic Effects
by Zhuoying Liang, Yu Zhang, Linli Liu, Miaolun Jiao and Chenliang Ye
Nanomaterials 2025, 15(15), 1175; https://doi.org/10.3390/nano15151175 - 30 Jul 2025
Viewed by 361
Abstract
Single-atom catalysts (SACs) have emerged as highly promising catalytic materials for the hydrogen evolution reaction (HER), attributed to their maximal atomic utilization efficiency and unique electronic configurations. Many structure parameters can influence the catalytic performance of SACs for HER, and the intrinsic advantages [...] Read more.
Single-atom catalysts (SACs) have emerged as highly promising catalytic materials for the hydrogen evolution reaction (HER), attributed to their maximal atomic utilization efficiency and unique electronic configurations. Many structure parameters can influence the catalytic performance of SACs for HER, and the intrinsic advantages of SACs for HER still need to be summarized. This review systematically summarizes recent advances in SACs for HER. It discusses various types of SACs (including those based on Pt, Co, Ru, Ni, Cu, and other metals) applied in HER, and elaborates the critical factors influencing catalytic performance—specifically, the supports, coordination environments, and synergistic effects of these SACs. Furthermore, current research challenges and future perspectives in this rapidly developing field are also outlined. Full article
Show Figures

Figure 1

19 pages, 4784 KiB  
Article
Investigation of the Adsorption and Reactions of Methyl Radicals on Transition Metal (M = Co, Ni, Pd, Pt) (111) Surfaces in Aqueous Suspensions
by Pankaj Kumar, Dan Meyerstein, Amir Mizrahi and Haya Kornweitz
Molecules 2025, 30(15), 3065; https://doi.org/10.3390/molecules30153065 - 22 Jul 2025
Viewed by 314
Abstract
The DFT method was used to evaluate the adsorption of methyl radicals and the evolution of ethane on the M(111) (M = Co, Ni, Pd, Pt) surfaces, eight metal atoms, in aqueous medium. A maximum of five and four radicals can be adsorbed [...] Read more.
The DFT method was used to evaluate the adsorption of methyl radicals and the evolution of ethane on the M(111) (M = Co, Ni, Pd, Pt) surfaces, eight metal atoms, in aqueous medium. A maximum of five and four radicals can be adsorbed on Co(111) and Ni(111), respectively, and six on Pd(111) and Pt(111) (top site). The ethane evolution occurs via the Langmuir–Hinshelwood (LH) or Eley–Rideal (ER) mechanisms. The production of ethane through the interaction of two adsorbed radicals is thermodynamically feasible for high coverage ratios on the four surfaces; however, kinetically, it is feasible at room temperature only on Co(111) at a coverage of (5/5) and on Pd(111) at a coverage ratio of 4/6, 5/6, and 6/6. Ethane production occurs via the ER mechanism: a collision with solvated methyl radical produces either C2H6 or CH2+CH4(aq). On Pd(111) the product is only C2H6, on Pt(111), both products (C2H6 or CH2) are plausible, and on Co(111) and Ni(111), only CH2+CH4(aq) is produced. Further reactions of CH2 with CH2 or CH3 to give C2H4 or C2H5 are thermodynamically plausible only on Pt(111); however, they are very slow due to high energy barriers, 1.48 and 1.36 eV, respectively. Full article
(This article belongs to the Special Issue Inorganic Chemistry in Asia, 2nd Edition)
Show Figures

Figure 1

14 pages, 3849 KiB  
Article
Alkaline Earth Carbonate Engineered Pt Electronic States for High-Efficiency Propylene Oxidation at Low Temperatures
by Xuequan Sun, Yishu Lv, Yuan Shu, Yanglong Guo and Pengfei Zhang
Catalysts 2025, 15(8), 696; https://doi.org/10.3390/catal15080696 - 22 Jul 2025
Viewed by 374
Abstract
Alkaline earth elements have emerged as crucial electronic modifiers for regulating active sites in catalytic systems, yet the influence of metal–support interactions (MSIs) between alkaline earth compounds and active metals remains insufficiently understood. This study systematically investigated Pt nanoparticles supported on alkaline earth [...] Read more.
Alkaline earth elements have emerged as crucial electronic modifiers for regulating active sites in catalytic systems, yet the influence of metal–support interactions (MSIs) between alkaline earth compounds and active metals remains insufficiently understood. This study systematically investigated Pt nanoparticles supported on alkaline earth carbonates (Pt/MCO3, M = Mg, Ca, Ba) for low-temperature propylene combustion. The Pt/BaCO3 catalyst exhibited outstanding performance, achieving complete propylene conversion at 192 °C, significantly lower than Pt/MgCO3 (247 °C) and Pt/CaCO3 (282 °C). The enhanced activity stemmed from distinct MSI effects among the supports, with Pt/BaCO3 showing the poorest electron enrichment and lowest propylene adsorption energy. Through kinetic analyses, 18O2 isotope labeling, and comprehensive characterization, the reaction was confirmed to follow the Mars–van Krevelen (MvK) mechanism. Pt/BaCO3 achieves an optimal balance between propylene and oxygen adsorption, a critical factor underlying its superior activity. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

20 pages, 1471 KiB  
Article
A New Approach for Interferent-Free Amperometric Biosensor Production Based on All-Electrochemically Assisted Procedures
by Rosanna Ciriello, Maria Assunta Acquavia, Giuliana Bianco, Angela Di Capua and Antonio Guerrieri
Biosensors 2025, 15(8), 470; https://doi.org/10.3390/bios15080470 - 22 Jul 2025
Viewed by 299
Abstract
A new approach in amperometric enzyme electrodes production based on all-electrochemically assisted procedures will be described. Enzyme (glucose oxidase) immobilization was performed by in situ co-crosslinking of enzyme molecules through electrophoretic protein deposition, assuring enzyme immobilization exclusively onto the transducer surface (Pt electrode). [...] Read more.
A new approach in amperometric enzyme electrodes production based on all-electrochemically assisted procedures will be described. Enzyme (glucose oxidase) immobilization was performed by in situ co-crosslinking of enzyme molecules through electrophoretic protein deposition, assuring enzyme immobilization exclusively onto the transducer surface (Pt electrode). Analogously, the poor selectivity of the transducer was dramatically improved by the electrosynthesis of non-conducting polymers with built-in permselectivity, permitting the formation of a thin permselective film onto the transducer surface, able to reject common interferents usually found in real samples. Since both approaches required a proper and distinct electrochemical perturbation (a pulsed current sequence for electrophoretic protein deposition and cyclic voltammetry for the electrosynthesis of non-conducting polymers), an appropriate coupling of the two all-electrochemical approaches was assured by a thorough study of the likely combinations of the electrosynthesis of permselective polymers with enzyme immobilization by electrophoretic protein deposition and by the use of several electrosynthesized polymers. For each investigated combination and for each polymer, the analytical performances and the rejection capabilities of the resulting biosensor were acquired so to gain information about their sensing abilities eventually in real sample analysis. This study shows that the proper coupling of the two all-electrochemical approaches and the appropriate choice of the electrosynthesized, permselective polymer permits the easy fabrication of novel glucose oxidase biosensors with good analytical performance and low bias in glucose measurement from typical interferent in serum. This novel approach, resembling classical electroplating procedures, is expected to allow all the advantages expected from such procedures like an easy preparation biosensor, a bi-dimensional control of enzyme immobilization and thickness, interferent- and fouling-free transduction of the electrodic sensor and, last but not the least, possibility of miniaturization of the biosensing device. Full article
(This article belongs to the Special Issue Novel Designs and Applications for Electrochemical Biosensors)
Show Figures

Figure 1

11 pages, 272 KiB  
Article
Analytical and Clinical Validation of the ConfiSign HIV Self-Test for Blood-Based HIV Screening
by Hyeyoung Lee, Ae-Ran Choi, Hye-Sun Park, JoungOk Kim, Seo-A Park, Seungok Lee, Jaeeun Yoo, Ji Sang Yoon, Sang Il Kim, Yoon Hee Jun, Younjeong Kim, Yeon Jeong Jeong and Eun-Jee Oh
Diagnostics 2025, 15(14), 1833; https://doi.org/10.3390/diagnostics15141833 - 21 Jul 2025
Viewed by 370
Abstract
Background/Objectives: Since the World Health Organization (WHO) recommended HIV self-testing as an alternative to traditional facility-based testing in 2016, it has been increasingly adopted worldwide. This study aimed to evaluate the performance of the ConfiSign HIV Self-Test (GenBody Inc., Republic of Korea), [...] Read more.
Background/Objectives: Since the World Health Organization (WHO) recommended HIV self-testing as an alternative to traditional facility-based testing in 2016, it has been increasingly adopted worldwide. This study aimed to evaluate the performance of the ConfiSign HIV Self-Test (GenBody Inc., Republic of Korea), a newly developed blood-based immunochromatographic assay for the qualitative detection of total antibodies (IgG and IgM) against HIV-1/HIV-2. Methods: The evaluation included four components: (1) retrospective analysis of 1400 archived serum samples (400 HIV-positive and 1000 HIV-negative samples), (2) prospective self-testing by 335 participants (112 HIV-positive participants and 223 individuals with an unknown HIV status, including healthy volunteers), (3) assessment using seroconversion panels and diverse HIV subtypes, and (4) analytical specificity testing for cross-reactivity and interference. The Elecsys HIV combi PT and Alinity I HIV Ag/Ab Combo assays were used as reference assays. Results: In retrospective testing, the ConfiSign HIV Self-Test achieved a positive percent agreement (PPA) of 100%, a negative percent agreement (NPA) of 99.2%, and a Cohen’s kappa value of 0.986, showing excellent agreement with the reference assays. In the prospective study, the test showed 100% sensitivity and specificity, with a low invalid result rate of 1.8%. All HIV-positive samples, including those with low signal-to-cutoff (S/Co) values in the Alinity I assay, were correctly identified. The test also reliably detected early seroconversion samples and accurately identified a broad range of HIV-1 subtypes (A, B, C, D, F, G, CRF01_AE, CRF02_AG, and group O) as well as HIV-2. No cross-reactivity or interference was observed with samples that were positive for hepatitis viruses, cytomegalovirus, Epstein–Barr virus, varicella zoster virus, influenza, HTLV-1, HTLV-2, or malaria. Conclusions: The ConfiSign HIV Self-Test demonstrated excellent sensitivity, specificity, and robustness across diverse clinical samples, supporting its reliability and practicality as a self-testing option for HIV-1/2 antibody detection. Full article
(This article belongs to the Section Diagnostic Microbiology and Infectious Disease)
Show Figures

Figure 1

16 pages, 2200 KiB  
Article
Effect of Partial Noble Metal (M = Pd, Rh, Ru, Pt) Substitution in La1−xSrxCo1−yMyO3 Perovskite-Derived Catalysts for Dry Reforming of Methane
by Pradeep Kumar Yadav, Ganesh Jabotra and Sudhanshu Sharma
Hydrogen 2025, 6(3), 49; https://doi.org/10.3390/hydrogen6030049 - 16 Jul 2025
Viewed by 538
Abstract
This study examines the surface chemistry of platinum, palladium, rhodium, and ruthenium-substituted lanthanum strontium cobaltate perovskite catalysts in the context of the dry reforming of methane (DRM). The catalysts were synthesized by the solution combustion method and characterized by using a series of [...] Read more.
This study examines the surface chemistry of platinum, palladium, rhodium, and ruthenium-substituted lanthanum strontium cobaltate perovskite catalysts in the context of the dry reforming of methane (DRM). The catalysts were synthesized by the solution combustion method and characterized by using a series of techniques. To explore the effect of noble metal ion substitution on the DRM, surface reaction was probed by CH4/CO2 TPSR using mass spectroscopy. It was recognized that La1−xSrxCo1−yPdyO3 show the best activities for the reaction in terms of the temperature but became deactivated over time. CH4/CO2 temperature-programmed surface reactions (TPSRs) were set up to unravel the details of the surface phenomena responsible for the deactivation of the DRM activity on the LSPdCO. The CH4/CO2 TPSR analysis conclusively demonstrated the importance of lattice oxygen in the removal of carbon, which is responsible for the stability of the catalysts on the synthesized perovskites upon noble metal ion substitution. Full article
Show Figures

Figure 1

12 pages, 3782 KiB  
Article
Structural, Magnetic and THz Emission Properties of Ultrathin Fe/L10-FePt/Pt Heterostructures
by Claudiu Locovei, Garik Torosyan, Evangelos Th. Papaioannou, Alina D. Crisan, Rene Beigang and Ovidiu Crisan
Nanomaterials 2025, 15(14), 1099; https://doi.org/10.3390/nano15141099 - 16 Jul 2025
Viewed by 289
Abstract
Recent achievements in ultrafast spin physics have enabled the use of heterostructures composed of ferromagnetic (FM)/non-magnetic (NM) thin layers for terahertz (THz) generation. The mechanism of THz emission from FM/NM multilayers has been typically ascribed to the inverse spin Hall effect (ISHE). In [...] Read more.
Recent achievements in ultrafast spin physics have enabled the use of heterostructures composed of ferromagnetic (FM)/non-magnetic (NM) thin layers for terahertz (THz) generation. The mechanism of THz emission from FM/NM multilayers has been typically ascribed to the inverse spin Hall effect (ISHE). In this work, we probe the mechanism of the ISHE by inserting a second ferromagnetic layer in the form of an alloy between the FM/NM system. In particular, by utilizing the co-sputtering technique, we fabricate Fe/L10-FePt/Pt ultra-thin heterostructures. We successfully grow the tetragonal phase of FePt (L10-phase) as revealed by X-ray diffraction and reflection techniques. We show the strong magnetic coupling between Fe and L10-FePt using magneto-optical and Superconducting Quantum Interference Device (SQUID) magnetometry. Subsequently, by utilizing THz time domain spectroscopy technique, we record the THz emission and thus we the reveal the efficiency of spin-to-charge conversion in Fe/L10-FePt/Pt. We establish that Fe/L10-FePt/Pt configuration is significantly superior to the Fe/Pt bilayer structure, regarding THz emission amplitude. The unique trilayer structure opens new perspectives in terms of material choices for the future spintronic THz sources. Full article
Show Figures

Figure 1

12 pages, 2721 KiB  
Article
Conjugated Polyaniline–Phytic Acid Polymer Derived 3D N, P-Doped Porous Carbon as a Metal-Free Electrocatalyst for Zn–Air Batteries
by Wanting Xiong, Yifan Kong, Jiangrong Xiao, Tingting Wang and Xiaoli Chen
Catalysts 2025, 15(7), 683; https://doi.org/10.3390/catal15070683 - 14 Jul 2025
Viewed by 398
Abstract
The development of cost-effective and scalable air/oxygen electrode materials is crucial for the advancement of Zn–air batteries (ZABs). Porous carbon materials doped with heteroatoms have attracted considerable attention in energy and environmental fields because of their tunable nanoporosity and high electrical conductivity. In [...] Read more.
The development of cost-effective and scalable air/oxygen electrode materials is crucial for the advancement of Zn–air batteries (ZABs). Porous carbon materials doped with heteroatoms have attracted considerable attention in energy and environmental fields because of their tunable nanoporosity and high electrical conductivity. In this work, we report the synthesis of a three-dimensional (3D) N and P co-doped porous carbon (PA@pDC-1000), derived from a conjugated polyaniline–phytic acid polymer. The cross-linked, rigid conjugated polymeric framework plays a crucial role in maintaining the integrity of micro- and mesoporous structures and promoting graphitization during carbonization. As a result, the material exhibits a hierarchical pore structure, a high specific surface area (1045 m2 g−1), and a large pore volume (1.02 cm3 g−1). The 3D N, P co-doped PA@pDC-1000 catalyst delivers a half-wave potential of 0.80 V (vs. RHE) and demonstrates a higher current density compared to commercial Pt/C. A primary ZAB utilizing this material achieves an open-circuit voltage of 1.51 V and a peak power density of 217 mW cm−2. This metal-free, self-templating presents a scalable route for the generating and producing of high-performance oxygen reduction reaction catalysts for ZABs. Full article
(This article belongs to the Special Issue Electrocatalysis and Photocatalysis in Redox Flow Batteries)
Show Figures

Figure 1

Back to TopTop