Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,596)

Search Parameters:
Keywords = Prostaglandins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1732 KiB  
Article
Suppression of Cytosolic Phospholipase A2 in the Ventromedial Hypothalamus Induces Hyperphagia and Obesity in Male Mice
by Takashi Abe, Taiga Ishimoto, Yudai Araki, Ziwei Niu, Changwen Li, Jinxiao He, Samson Ngurari and Chitoku Toda
Int. J. Mol. Sci. 2025, 26(15), 7532; https://doi.org/10.3390/ijms26157532 (registering DOI) - 4 Aug 2025
Abstract
We recently reported that phospholipase A2 (PLA2)-mediated production of prostaglandins within the ventromedial hypothalamus (VMH) plays a critical role in systemic glucose homeostasis. However, the role of PLA2 in the VMH in regulating food intake is still unclear. Here, we attempted to investigate [...] Read more.
We recently reported that phospholipase A2 (PLA2)-mediated production of prostaglandins within the ventromedial hypothalamus (VMH) plays a critical role in systemic glucose homeostasis. However, the role of PLA2 in the VMH in regulating food intake is still unclear. Here, we attempted to investigate the role of PLA2 in regulating food intake and body weight in male mice. We injected an adeno-associated virus encoding short hairpin RNA (AAV-shRNA) targeting cytosolic phospholipase A2 (shPla2g4a) into the VMH. We assessed food intake, body weight, oxygen consumption, glucose tolerance, and insulin sensitivity. Three weeks after the AAV injection, the shPla2g4a group exhibited increased food intake and body weight gain compared to controls (shSCRM). Energy expenditure, oxygen consumption, and respiratory quotient (RQ) were comparable between groups. Our findings suggest that the cPLA2-mediated pathway in the VMH is critical for feeding behavior and maintaining energy homeostasis. Further investigation is needed to elucidate the underlying mechanisms. Full article
(This article belongs to the Special Issue Diabetes and Metabolic Dysfunction)
Show Figures

Figure 1

17 pages, 1812 KiB  
Article
Systemic Metabolic Alterations Induced by Etodolac in Healthy Individuals
by Rajaa Sebaa, Reem H. AlMalki, Hatouf Sukkarieh, Lina A. Dahabiyeh, Maha Al Mogren, Tawfiq Arafat, Ahmed H. Mujamammi, Essa M. Sabi and Anas M. Abdel Rahman
Pharmaceuticals 2025, 18(8), 1155; https://doi.org/10.3390/ph18081155 - 4 Aug 2025
Abstract
Background/Objective: Pharmacological interventions often exert systemic effects beyond their primary targets, underscoring the need for a comprehensive evaluation of their metabolic impact. Etodolac is a nonsteroidal anti-inflammatory drug (NSAID) that alleviates pain, fever, and inflammation by inhibiting cyclooxygenase-2 (COX-2), thereby reducing prostaglandin synthesis. [...] Read more.
Background/Objective: Pharmacological interventions often exert systemic effects beyond their primary targets, underscoring the need for a comprehensive evaluation of their metabolic impact. Etodolac is a nonsteroidal anti-inflammatory drug (NSAID) that alleviates pain, fever, and inflammation by inhibiting cyclooxygenase-2 (COX-2), thereby reducing prostaglandin synthesis. While its pharmacological effects are well known, the broader metabolic impact and potential mechanisms underlying improved clinical outcomes remain underexplored. Untargeted metabolomics, which profiles the metabolome without prior selection, is an emerging tool in clinical pharmacology for elucidating drug-induced metabolic changes. In this study, untargeted metabolomics was applied to investigate metabolic changes following a single oral dose of etodolac in healthy male volunteers. By analyzing serial blood samples over time, we identified endogenous metabolites whose concentrations were positively or inversely associated with the drug’s plasma levels. This approach provides a window into both therapeutic pathways and potential off-target effects, offering a promising strategy for early-stage drug evaluation and multi-target discovery using minimal human exposure. Methods: Thirty healthy participants received a 400 mg dose of Etodolac. Plasma samples were collected at five time points: pre-dose, before Cmax, at Cmax, after Cmax, and 36 h post-dose (n = 150). Samples underwent LC/MS-based untargeted metabolomics profiling and pharmacokinetic analysis. A total of 997 metabolites were significantly dysregulated between the pre-dose and Cmax time points, with 875 upregulated and 122 downregulated. Among these, 80 human endogenous metabolites were identified as being influenced by Etodolac. Results: A total of 17 metabolites exhibited time-dependent changes closely aligned with Etodolac’s pharmacokinetic profile, while 27 displayed inverse trends. Conclusions: Etodolac influences various metabolic pathways, including arachidonic acid metabolism, sphingolipid metabolism, and the biosynthesis of unsaturated fatty acids. These selective metabolic alterations complement its COX-2 inhibition and may contribute to its anti-inflammatory effects. This study provides new insights into Etodolac’s metabolic impact under healthy conditions and may inform future therapeutic strategies targeting inflammation. Full article
(This article belongs to the Special Issue Advances in Drug Analysis and Drug Development, 2nd Edition)
Show Figures

Figure 1

13 pages, 2596 KiB  
Article
Bark Extracts of Chamaecyparis obtusa (Siebold & Zucc.) Endl. Attenuate LPS-Induced Inflammatory Responses in RAW264.7 Macrophages
by Bo-Ae Kim, Ji-A Byeon, Young-Ah Jang and Yong-Jin Kwon
Plants 2025, 14(15), 2346; https://doi.org/10.3390/plants14152346 - 29 Jul 2025
Viewed by 284
Abstract
Chamaecyparis obtusa (Siebold & Zucc.) Endl. (C. obtusa) is an evergreen conifer native to temperate regions such as South Korea and Japan, traditionally used for its anti-inflammatory properties. However, the molecular mechanisms underlying the anti-inflammatory effects of C. obtusa bark extracts [...] Read more.
Chamaecyparis obtusa (Siebold & Zucc.) Endl. (C. obtusa) is an evergreen conifer native to temperate regions such as South Korea and Japan, traditionally used for its anti-inflammatory properties. However, the molecular mechanisms underlying the anti-inflammatory effects of C. obtusa bark extracts remain poorly understood. In this study, I compared the biological activities of C. obtusa bark extracts prepared using boiling water (COWB) and 70% ethanol (COEB), and investigated their anti-inflammatory mechanisms in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. COEB significantly suppressed both mRNA and protein expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2), along with decreased production of their respective inflammatory mediators, nitric oxide (NO) and prostaglandin E2 (PGE2). Additionally, COEB selectively downregulated interleukin (IL)-1β expression, without affecting tumor necrosis factor-α (TNF-α), and unexpectedly upregulated IL-6. Notably, COEB did not inhibit the LPS-induced activation of major inflammatory signaling pathways, including mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-κB), and Janus kinase/signal transducer and activator of transcription (JAK/STAT). These findings suggest that COEB exerts anti-inflammatory effects by modulating key inflammatory mediators independently of canonical signaling pathways and may offer a novel therapeutic strategy for controlling inflammation. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

16 pages, 916 KiB  
Review
Molecular Mechanisms and Pathways in Visceral Pain
by Qiqi Zhou and George Nicholas Verne
Cells 2025, 14(15), 1146; https://doi.org/10.3390/cells14151146 - 25 Jul 2025
Viewed by 357
Abstract
Chronic visceral pain, a significant contributor to morbidity in the United States, affects millions and results in substantial economic costs. Despite its impact, the mechanisms underlying disorders of gut–brain interaction (DGBIs), such as irritable bowel syndrome (IBS), remain poorly understood. Visceral hypersensitivity, a [...] Read more.
Chronic visceral pain, a significant contributor to morbidity in the United States, affects millions and results in substantial economic costs. Despite its impact, the mechanisms underlying disorders of gut–brain interaction (DGBIs), such as irritable bowel syndrome (IBS), remain poorly understood. Visceral hypersensitivity, a hallmark of chronic visceral pain, involves an enhanced pain response in internal organs to normal stimuli. Various factors like inflammation, intestinal hyperpermeability, and epigenetic modifications influence its presentation. Emerging evidence suggests that persistent colonic stimuli, disrupted gut barriers, and altered non-coding RNA (ncRNA) expression contribute to the pathophysiology of visceral pain. Additionally, cross-sensitization of afferent pathways shared by pelvic organs underpins the overlap of chronic pelvic pain disorders, such as interstitial cystitis and IBS. Central sensitization and viscerosomatic convergence further exacerbate pain, with evidence showing IBS patients exhibit hypersensitivity to both visceral and somatic stimuli. The molecular mechanisms of visceral pain involve critical mediators such as cytokines, prostaglandins, and neuropeptides, alongside ion channels like transient receptor potential vanilloid 1 (TRPV1) and acid-sensing ion channels (ASICs). These molecular insights indicate potential therapeutic targets and highlight the possible use of TRPV1 antagonists and ASIC inhibitors to mitigate visceral pain. This review explores the neurophysiological pathways of visceral pain, focusing on peripheral and central sensitization mechanisms, to advance the development of targeted treatments for chronic pain syndromes, particularly IBS and related disorders. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Neuropathic Pain)
Show Figures

Figure 1

21 pages, 2670 KiB  
Article
Regulatory Effect of PGE2-EP2/EP4 Receptor Pathway on Staphylococcus aureus-Induced Inflammatory Factors in Dairy Cow Neutrophils
by Yi Zhao, Chao Wang, Bo Liu, Shuangyi Zhang, Yongfei Wang, Yinghong Qian, Zhiguo Gong, Jiamin Zhao, Xiaolin Yang, Yuting Bai and Wei Mao
Biomolecules 2025, 15(8), 1062; https://doi.org/10.3390/biom15081062 - 22 Jul 2025
Viewed by 246
Abstract
Naturally occurring prostaglandin E2 (PGE2) influences cytokine production regulation in bovine neutrophils exposed to Staphylococcus aureus Rosenbach. Here, we employed bovine neutrophils as the primary experimental system, and administered specific inhibitors targeting various receptors, which were subsequently exposed to S. [...] Read more.
Naturally occurring prostaglandin E2 (PGE2) influences cytokine production regulation in bovine neutrophils exposed to Staphylococcus aureus Rosenbach. Here, we employed bovine neutrophils as the primary experimental system, and administered specific inhibitors targeting various receptors, which were subsequently exposed to S. aureus. Cytokine expression levels in dairy cow neutrophils induced by S. aureus via the endogenous PGE2-EP2/4 receptor pathway were investigated, and its effects on P38, extracellular signal-regulated kinase (ERK), P65 activation, and phagocytic function in Staphylococcus aureus Rosenbach-induced dairy cow neutrophils, were examined. Blocking cyclooxygenase-2 (COX-2) and microsomal prostaglandin E synthase-1 (mPGES-1) enzymes substantially decreased PGE2 production and release in S. aureus-exposed bovine neutrophils. Cytokine output showed significant reduction compared to that in SA113-infected controls. Phosphorylation of P38, ERK, and P65 signaling molecules was depressed in the infected group. Pharmacological interference with EP2/EP4 receptors similarly diminished cytokine secretion and phosphorylation patterns of P38, ERK, and P65, with preserved cellular phagocytic function. During S. aureus infection of bovine neutrophils, COX-2 and mPGES-1 participated in controlling PGE2 biosynthesis, and internally produced PGE2 molecules triggered NF-κB and MAPK inflammatory pathways via EP2/EP4 receptor activation, later adjusting the equilibrium between cytokine types that promote or suppress inflammation. This signaling mechanism coordinated inflammatory phases through receptor-mediated processes. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

15 pages, 2272 KiB  
Article
Upregulation of 15-Hydroxyprostaglandin Dehydrogenase by Celecoxib to Reduce Pain After Laparoendoscopic Single-Site Surgery (POPCORN Trial): A Randomized Controlled Trial
by Kyung Hee Han, Sunwoo Park, Seungmee Lee, Jiyeon Ham, Whasun Lim, Gwonhwa Song and Hee Seung Kim
Biomedicines 2025, 13(7), 1784; https://doi.org/10.3390/biomedicines13071784 - 21 Jul 2025
Viewed by 333
Abstract
Background: Peritoneal stretching from CO2 insufflation is a primary mechanism of pain associated with laparoscopy. Cyclooxygenase-2 inhibitors are promising anti-inflammatory and analgesic agents. This study aimed to evaluate the effect of celecoxib on postoperative pain reduction and associated changes in peritoneal [...] Read more.
Background: Peritoneal stretching from CO2 insufflation is a primary mechanism of pain associated with laparoscopy. Cyclooxygenase-2 inhibitors are promising anti-inflammatory and analgesic agents. This study aimed to evaluate the effect of celecoxib on postoperative pain reduction and associated changes in peritoneal gene expression after laparoendoscopic single-site (LESS) surgery for benign gynecologic disease. Methods: In this randomized, double-blind, placebo-controlled pilot study, 70 patients were randomly assigned to receive either celecoxib or placebo (400 mg) 40 min before surgery. Peritoneal tissues were collected before and after CO2 insufflation. We analyzed changes in expressions of prostaglandin I2 synthase, prostaglandin E synthase (PTGES), PTGES3, aldo-keto reductase family 1 member C1, and 15-hydroxyprostaglandin dehydrogenase (HPGD). Numeric Rating Scale (NRS) pain scores were also compared between groups. Results: A total of 62 patients completed the study: 30 in the celecoxib group and 32 in the placebo group. The mean CO2 exposure time was 60.4 min. In a quantitative real-time polymerase chain reaction analysis, HPGD mRNA expression significantly increased after surgery in patients exposed to CO2 for more than 60 min. Patients treated with celecoxib showed a significantly higher rate of grade 3 expression (83.3% vs. 37.5%; p = 0.01) and a level 2 increase in HPGD expression on in situ hybridization (58.3% vs. 12.5%; p = 0.01), despite no significant difference on immunohistochemistry. Moreover, celecoxib effectively reduced NRS pain scores compared to placebo. Conclusions: In this pilot study, celecoxib appeared to reduce postoperative pain and was associated with increased HPGD mRNA expression in the peritoneal tissue of patients with prolonged CO2 exposure during LESS surgery. These exploratory findings warrant confirmation in larger trials with functional validation of HPGD expression (ClinicalTrials.gov, NCT03391570). Full article
(This article belongs to the Section Molecular and Translational Medicine)
Show Figures

Figure 1

19 pages, 2565 KiB  
Article
Anti-Thrombotic Effects of Coprinus comatus Fibrinolytic Enzyme in Zebrafish
by Yan Jing, Jinyu Wang, Yating He, Zedan Liu and Xiaolan Liu
Nutrients 2025, 17(14), 2358; https://doi.org/10.3390/nu17142358 - 18 Jul 2025
Viewed by 296
Abstract
Objectives: This study investigated the antithrombotic properties of a fibrinolytic enzyme (CFE) purified from the culture supernatant of Coprinus comatus using a zebrafish thrombosis model. Methods: A phenylhydrazine-induced thrombosis model was employed to evaluate the in vivo thrombolytic efficacy and mechanisms of CFE. [...] Read more.
Objectives: This study investigated the antithrombotic properties of a fibrinolytic enzyme (CFE) purified from the culture supernatant of Coprinus comatus using a zebrafish thrombosis model. Methods: A phenylhydrazine-induced thrombosis model was employed to evaluate the in vivo thrombolytic efficacy and mechanisms of CFE. Results: CFE significantly attenuated thrombogenesis by inhibiting erythrocyte aggregation in the caudal vessels, reducing staining intensity (3.61-fold decrease) and staining area (3.89-fold decrease). Concurrently, CFE enhanced cardiac hemodynamics, increasing erythrocyte staining intensity (9.29-fold) and staining area (5.55-fold) while achieving an 85.19% thrombosis inhibition rate. Behavioral analysis confirmed improved motility, with CFE-treated zebrafish exhibiting 2.23-fold increases in total movement distance and average speed, alongside a 3.59-fold extension in active movement duration. Mechanistically, ELISA revealed the multi-pathway activity of CFE, promoting fibrinolysis through reductions in plasminogen, fibrinogen, and D-dimer; inhibiting platelet activation via downregulation of prostaglandin-endoperoxide synthase (PTGS), thromboxane A2 (TXA2), P-selectin, and von Willebrand factor (vWF); and modulating coagulation cascades through elevated protein C and tissue factor pathway inhibitor (TFPI) with concurrent suppression of coagulation factor VII (FVII). Conclusions: These results indicate that the fibrinolytic enzyme CFE, derived from Coprinus comatus, exerts potent antithrombotic effects, supporting its potential as a basis for fungal-derived natural antithrombotic functional food ingredients. Full article
(This article belongs to the Section Clinical Nutrition)
Show Figures

Figure 1

12 pages, 1345 KiB  
Article
Do NGF and LPS Interact Synergistically to Modulate Inflammation in Sheep Endometrial Epithelial Cells?
by Gabriella Guelfi, Camilla Capaccia, Vicente Francisco Ratto, Cecilia Dall’Aglio, Francesca Mercati and Margherita Maranesi
Int. J. Mol. Sci. 2025, 26(14), 6862; https://doi.org/10.3390/ijms26146862 - 17 Jul 2025
Viewed by 190
Abstract
Neurotrophins and inflammatory mediators are known to influence endometrial function, but their interplay in luminal epithelial cells remains poorly characterized. In this study, sheep endometrial luminal epithelial cells (SELECs) were treated with nerve growth factor (NGF), lipopolysaccharide (LPS), or both, and the effects [...] Read more.
Neurotrophins and inflammatory mediators are known to influence endometrial function, but their interplay in luminal epithelial cells remains poorly characterized. In this study, sheep endometrial luminal epithelial cells (SELECs) were treated with nerve growth factor (NGF), lipopolysaccharide (LPS), or both, and the effects on gene expression and prostaglandin secretion were evaluated. NGF stimulation alone induced a clear transcriptional activation of NGF, neurotrophic receptor tyrosine kinase 1 (NTRK1), p75 neurotrophin receptor (p75NTR), cyclooxygenase 2 (COX2), and steroidogenic acute regulatory protein (STAR). LPS treatment selectively increased Toll-like receptor 4 (TLR4), COX2, and insulin-like growth factor binding protein 6 (IGFBP6). Combined NGF and LPS treatment did not enhance the transcriptional response beyond that induced by NGF alone, except for STAR. However, co-treatment resulted in a modest increase in prostaglandin production, particularly prostaglandin F2α (PGF2α), but not prostaglandin E2 (PGE2), compared to single treatments, suggesting a possible post-transcriptional modulation rather than a transcriptional synergy. These findings indicate that NGF acts as the primary transcriptional driver in SELECs, while LPS contributes selectively and may enhance prostaglandin output. The observed increase in prostaglandin production may involve post-transcriptional mechanisms, although this remains to be confirmed. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

18 pages, 755 KiB  
Article
Oxidative Stress and Psychiatric Symptoms in Wilson’s Disease
by Grażyna Gromadzka, Agata Karpińska, Tomasz Krzysztof Szafrański and Tomasz Litwin
Int. J. Mol. Sci. 2025, 26(14), 6774; https://doi.org/10.3390/ijms26146774 - 15 Jul 2025
Viewed by 292
Abstract
Wilson’s disease (WD) is an autosomal recessive disorder of copper metabolism caused by mutations in the ATP7B gene. While hepatic manifestations are frequent, psychiatric symptoms occur in up to 30% of patients and may precede neurological signs. This study was the first to [...] Read more.
Wilson’s disease (WD) is an autosomal recessive disorder of copper metabolism caused by mutations in the ATP7B gene. While hepatic manifestations are frequent, psychiatric symptoms occur in up to 30% of patients and may precede neurological signs. This study was the first to assess the relationship between oxidative stress, selected genetic polymorphisms, and psychiatric symptoms in WD. A total of 464 patients under the care of the Institute of Psychiatry and Neurology in Warsaw were studied. Genotyping for GPX1 (rs1050450), SOD2 (rs4880), and CAT (rs1001179) was performed, along with biochemical analyses of copper metabolism, oxidative DNA, lipid and protein damage, and systemic antioxidant capacity. Among the most important observations are the following: the homozygous GPX1 rs1050450 TT and SOD2 rs4880 CC genotypes were associated with the lowest prevalence of psychiatric symptoms. The CAT rs1001179 TT genotype was linked to a delayed onset of psychiatric symptoms by 6.0–8.5 years. Patients with or without psychiatric symptoms did not differ significantly in saliva 8-OHdG, total antioxidant capacity, serum glutathione (GSH), catalase, and MnSOD; however, patients reporting psychiatric symptoms had significantly higher prostaglandin F2α 8-epimer (8-iso-PGF2α) concentrations and tended to have lower serum glutathione peroxidase (Gpx) concentrations compared to those without such symptoms. Our data firstly provide consistent evidence that oxidative stress balance associated with copper overload in the CNS may be associated with CNS damage and the development of psychiatric symptoms of WD. In particular, our findings of increased oxidative lipid damage together with decreased Gpx activity indirectly suggest that damage to neuronal membrane lipids, which may be potentially related to abnormalities in GSH metabolism, may have an etiological role in CNS damage and related symptoms. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

22 pages, 5511 KiB  
Article
Phytocompounds in Precision Dermatology: COX-2 Inhibitors as a Therapeutic Target in Atopic-Prone Skin
by Muhammad Suleman, Abrar Mohammad Sayaf, Chiara Moltrasio, Paola Maura Tricarico, Francesco Giambuzzi, Erika Rimondi, Elisabetta Melloni, Paola Secchiero, Annalisa Marcuzzi, Angelo Valerio Marzano and Sergio Crovella
Biomolecules 2025, 15(7), 998; https://doi.org/10.3390/biom15070998 - 11 Jul 2025
Viewed by 277
Abstract
Atopic dermatitis (AD) is a chronic, multifactorial inflammatory skin disease characterized by persistent pruritus, immune system dysregulation, and an increased expression of cyclooxygenase-2 (COX-2), an enzyme that plays a central role in the production of prostaglandins and the promotion of inflammatory responses. In [...] Read more.
Atopic dermatitis (AD) is a chronic, multifactorial inflammatory skin disease characterized by persistent pruritus, immune system dysregulation, and an increased expression of cyclooxygenase-2 (COX-2), an enzyme that plays a central role in the production of prostaglandins and the promotion of inflammatory responses. In this study, we employed a comprehensive computational pipeline to identify phytocompounds capable of inhibiting COX-2 activity, offering an alternative to traditional non-steroidal anti-inflammatory drugs. The African and Traditional Chinese Medicine natural product databases were subjected to molecular screening, which identified six top compounds, namely, Tophit1 (−16.528 kcal/mol), Tophit2 (−10.879 kcal/mol), Tophit3 (−9.760 kcal/mol), Tophit4 (−9.752 kcal/mol), Tophit5 (−8.742 kcal/mol), and Tophit6 (−8.098 kcal/mol), with stronger binding affinities to COX-2 than the control drug rofecoxib (−7.305 kcal/mol). Molecular dynamics simulations over 200 ns, combined with MM/GBSA binding free energy calculations, consistently identified Tophit1 and Tophit2 as the most stable complexes, exhibiting exceptional structural integrity and a strong binding affinity to the target protein. ADMET profiling via SwissADME and pkCSM validated the drug-likeness, oral bioavailability, and safety of the lead compounds, with no Lipinski rule violations and favorable pharmacokinetic and toxicity profiles. These findings underscore the therapeutic potential of the selected phytocompounds as novel COX-2 inhibitors for the management of atopic-prone skin and warrant further experimental validation. Full article
(This article belongs to the Special Issue Novel Insights into Autoimmune/Autoinflammatory Skin Diseases)
Show Figures

Figure 1

25 pages, 1696 KiB  
Review
Illustrating the Pathogenesis and Therapeutic Approaches of Epilepsy by Targeting Angiogenesis, Inflammation, and Oxidative Stress
by Lucy Mohapatra, Deepak Mishra, Alok Shiomurti Tripathi, Sambit Kumar Parida and Narahari N. Palei
Neuroglia 2025, 6(3), 26; https://doi.org/10.3390/neuroglia6030026 - 11 Jul 2025
Viewed by 439
Abstract
Epilepsy is one of the most prevalent chronic medical conditions that really can affect individuals at any age. A broader study of the pathogenesis of the epileptic condition will probably serve as the cornerstone for the development of new antiepileptic remedies that aim [...] Read more.
Epilepsy is one of the most prevalent chronic medical conditions that really can affect individuals at any age. A broader study of the pathogenesis of the epileptic condition will probably serve as the cornerstone for the development of new antiepileptic remedies that aim to treat epilepsy symptomatically as well as prevent the epileptogenesis process or regulate its progression. Cellular changes in the brain include oxidative stress, neuroinflammation, inflammatory cell invasion, angiogenesis, and extracellular matrix associated changes. The extensive molecular profiling of epileptogenic tissue has revealed details on the molecular pathways that might start and sustain cellular changes. In healthy brains, epilepsy develops because of vascular disruptions, such as blood–brain barrier permeability and pathologic angiogenesis. Key inflammatory mediators are elevated during epileptic seizures, increasing the risk of recurrent seizures and resulting in secondary brain injury. Prostaglandins and cytokines are well-known inflammatory mediators in the brain and, after seizures, their production is increased. These inflammatory mediators may serve as therapeutic targets in the clinical research of novel antiepileptic medications. The functions of inflammatory mediators in epileptogenesis are covered in this review. Oxidative stress also plays a significant role in the pathogenesis of various neurological disorders, specifically epilepsy. Antioxidant therapy seems to be crucial for treating epileptic patients, as it prevents neuronal death by scavenging excess free radicals formed during the epileptic condition. The significance of antioxidants in mitochondrial dysfunction prevention and the relationship between oxidative stress and inflammation in epileptic patients are the major sections covered in this review. Full article
Show Figures

Figure 1

11 pages, 437 KiB  
Article
Timing of Prostin E2 Administration After Poor Response to Propess: Impact on Induction-to-Birth Interval and Maternal/Neonatal Outcomes
by Ning-Shiuan Ting, Yu-Chi Wei and Dah-Ching Ding
Medicina 2025, 61(7), 1255; https://doi.org/10.3390/medicina61071255 - 10 Jul 2025
Viewed by 232
Abstract
Background and Objectives: For many patients, the induction-to-delivery interval is shorter with Propess than with Prostin E2. However, some patients also require Prostin E2 to sufficiently boost their dinoprostone levels to achieve cervical change and vaginal delivery. In this study, we compared the [...] Read more.
Background and Objectives: For many patients, the induction-to-delivery interval is shorter with Propess than with Prostin E2. However, some patients also require Prostin E2 to sufficiently boost their dinoprostone levels to achieve cervical change and vaginal delivery. In this study, we compared the efficacy of different timings of Prostin E2 administration after Propess use. Materials and Methods: This single-institution retrospective cohort study was conducted between January 2020 and August 2023. The inclusion criterion was an unfavorable cervix (Bishop score ≤ 6) after Propess use for 8 h. We divided the patients into three groups based on the addition of Prostin E2 at the 8th (group 1), 12th (group 2), and 24th (group 3) hour after Propess insertion. The primary outcome was the cesarean section rate. The secondary outcomes were the induction-to-birth interval, Bishop score at 24 h, neonatal outcomes, and the predictors of labor induction duration. Results: A total of 63 patients were analyzed across three groups based on the timing of Prostin E2 administration (8, 12, and 24 h). The gestational age differed significantly between groups (p < 0.001), with the highest age being observed in the 24 h group. The 8 h group had the shortest induction-to-birth interval (p < 0.001) and the highest Bishop scores after 24 h of Propess use (p < 0.001). Blood loss was lowest in the 12 h group (p = 0.027). No significant differences were found in relation to the mode of birth, tachysystole, neonatal birth weight, or Apgar scores. A multivariable analysis identified gestational age (β = 3.33; p = 0.015) and Bishop score after 24 h of PGE2 (β = −1.99; p < 0.001) as being independent predictors of labor duration. Conclusions: administering Prostin E2 to patients who had a poor response after Propess use was safe; additionally, adding it at the 8th hour after Propess initiation could result in a shorter induction-to-birth interval. Full article
(This article belongs to the Section Obstetrics and Gynecology)
Show Figures

Figure 1

12 pages, 697 KiB  
Article
Dietary Gluten-Free Regimen Does Not Affect the Suppression of the Inflammatory Response in the Arachidonic Acid Cascade in Hashimoto’s Disease
by Małgorzata Szczuko, Lidia Kwiatkowska, Urszula Szczuko, Leon Rudak, Karina Ryterska, Anhelli Syrenicz, Jakub Pobłocki and Arleta Drozd
Int. J. Mol. Sci. 2025, 26(13), 6507; https://doi.org/10.3390/ijms26136507 - 6 Jul 2025
Viewed by 509
Abstract
The incidence of Hashimoto’s disease (HD) increases with age and in people who have other autoimmune diseases. It is characterized by lymphocytic infiltration, fibrosis, and atrophy of the thyroid parenchyma with the simultaneous presence of thyroid peroxidase antibodies (ATPO) and/or thyroglobulin antibodies (ATG). [...] Read more.
The incidence of Hashimoto’s disease (HD) increases with age and in people who have other autoimmune diseases. It is characterized by lymphocytic infiltration, fibrosis, and atrophy of the thyroid parenchyma with the simultaneous presence of thyroid peroxidase antibodies (ATPO) and/or thyroglobulin antibodies (ATG). Eicosanoids are formed via the cyclooxygenase (COX), lipoxygenase (LOX), and monooxygenase (CYP450) pathways with arachidonic acid (ARA), resulting in the production of epoxyeicosatrienoic acids (EETs) or hydroxyeicosatetraenoic acids (HETEs). These eicosanoids can act in an autocrine or paracrine manner on target cells. This study aimed to examine whether a gluten-free diet (GFD) can modulate the enzymatic pathways of the pro-inflammatory ARA cascade. The study material consisted of serum samples from Caucasian female patients with HD aged 18–55 years. Participants were enrolled in the study based on the presence of an ultrasound characteristic of HD, and elevated serum levels of anti-thyroid peroxidase antibodies and anti-thyroglobulin antibodies. Patients with confirmed celiac disease did not participate in the study. A total of 78 samples were analyzed, with 39 collected after 3 months of following a GFD. Eicosanoids (thromboxane B2, prostaglandin E2, leukotriene B4, and 16R-hydroxy-5Z,8Z,11Z,14Z-eicosatetraenoic acid (16-RS HETE)) were extracted using high-performance liquid chromatography. The contribution of leukotriene (LTB) was analyzed in the LOX pathway, prostaglandins (PGE2) and thromboxane (TXB2) were selected for the involvement of the COX pathway, and 16RS HETE was used for the CYP450 pathway. All parameters were analyzed before and after a 3-month dietary intervention that included a gluten-free diet. In the obtained results, only one mediator, leukotriene B4, was significant (p < 0.05). The mean level on the initial visit was 0.202 ± 0.11 (SD), while it was 0.421 ± 0.27 (SD) on the subsequent visit, indicating a significant increase in its level after implementing a GFD. Although there was a trend in the CYP 450 pathway of decreased 16-RS HETE, the presented correlations show that thromboxane B4 and 16RS-HETE were positively correlated with the body mass and body fat mass of the examined patients. There was a trend in the CYP 450 pathway of decreased 16-RS HETE after GFD. Thromboxane B4 and 16RS-HETE levels before GFD were positively correlated with the body mass and body fat mass of the examined patients. A gluten-free diet in HD does not suppress the synthetic pathways of LOX, COX, or cytochrome P450 (CYP450). The level of adipose tissue has a greater impact on the inflammatory processes in HD than a gluten-free diet. This study does not confirm the suppressive effect of a gluten-free diet on the pro-inflammatory arachidonic acid cascade in any of the three analyzed mediator synthesis LOX, COX, CYP450 pathways. Full article
Show Figures

Figure 1

24 pages, 4677 KiB  
Article
Dysregulation of Arachidonic Acid Metabolism Drives Inflammatory Lipid Production in Localized Provoked Vulvodynia
by Sarah A. Fischer, Oluwademilade Oladele, Zahra Mahamed, Emanuelle Chrysilla, Anna Baumer, Tamari Bekauri, Krishna Rao Maddipati, Tanzy Love, Mitchell Linder and Megan Falsetta
Nutrients 2025, 17(13), 2233; https://doi.org/10.3390/nu17132233 - 5 Jul 2025
Cited by 1 | Viewed by 461
Abstract
Background/Objectives: Localized provoked vulvodynia (LPV) is characterized by chronic vulvar pain upon light touch to the vestibule, a specialized ring of tissue immediately surrounding the vaginal opening. LPV affects about 14 million people in the US, yet the etiopathology of the disease [...] Read more.
Background/Objectives: Localized provoked vulvodynia (LPV) is characterized by chronic vulvar pain upon light touch to the vestibule, a specialized ring of tissue immediately surrounding the vaginal opening. LPV affects about 14 million people in the US, yet the etiopathology of the disease is unknown. In LPV, the vestibule expresses elevated levels of the pro-nociceptive pro-inflammatory mediators prostaglandin E2 (PGE2) and interleukin-6 (IL-6), which corresponds to lower pain thresholds. Previous studies have shown reduced amounts of arachidonic acid (AA)-derived pro-resolving lipid mediators in tissue biopsies from LPV patients that might impede the resolution of inflammation. AA is obtained from dietary linoleic acid, pointing to a defect in the metabolism of dietary polyunsaturated fatty acids in LPV. We aimed to further explore the involvement of AA metabolism in LPV, which appears dysregulated in the vestibule of LPV patients and culminates in chronic inflammation and chronic pain. Methods: Vestibular and vulvar tissue biopsies obtained from LPV and non-LPV patients were used to generate fibroblast strains and assessed for COX/LOX expression using qRT-PCR. Fibroblast strains were treated with inflammatory stimuli, and then COX-1 and COX-2 expression was assessed using Western blot analysis. Pro-inflammatory mediator production was assessed using enzyme-linked immunosorbent assays (ELISAs). ALOX5 and ALOX12 expression was assessed using qRT-PCR. Finally, lipidomic analysis was carried out to screen for 143 lipid metabolites following inflammatory challenge. Results: Tissue and fibroblasts from LPV patients exhibited altered expression of COX/LOX enzymes and production of AA-derived lipid mediators compared to non-LPV patients. Conclusions: Lipid profiles of tissue and vestibular fibroblasts from LPV patients differed from non-LPV patients, and this difference was attributed to differential COX/LOX expression and activity, which metabolizes AA derived from dietary linoleic acid. This dysregulation fosters chronic inflammation and reduced resolution capacity in LPV patients, causing chronic pain. While further work is needed, these findings suggest that dietary modifications could impact the LPV mechanism. Full article
Show Figures

Figure 1

19 pages, 14082 KiB  
Article
Macrophage EP4 Deficiency Drives Atherosclerosis Progression via CD36-Mediated Lipid Uptake and M1 Polarization
by Xinyu Tang, Qian Chen, Manli Guo, Ying Wen, Cuiping Jia, Yun Bu, Ting Wang, Yuan Zhang and Waiho Tang
Cells 2025, 14(13), 1021; https://doi.org/10.3390/cells14131021 - 4 Jul 2025
Viewed by 507
Abstract
Atherosclerosis is a chronic inflammatory disease and a major pathological basis of numerous cardiovascular conditions, with a high global mortality rate. Macrophages play a pivotal role in its pathogenesis through phenotypic switching and foam cell formation. Prostaglandin E2 receptor subtype 4 (EP4) highly [...] Read more.
Atherosclerosis is a chronic inflammatory disease and a major pathological basis of numerous cardiovascular conditions, with a high global mortality rate. Macrophages play a pivotal role in its pathogenesis through phenotypic switching and foam cell formation. Prostaglandin E2 receptor subtype 4 (EP4) highly expressed on the macrophage surface, is involved in various pathophysiological processes, such as inflammation and lipid metabolism. However, the role of macrophage EP4 in the progression of atherosclerosis remains unclear. To determine whether macrophage EP4 affects the progression of atherosclerosis by regulating foam cell formation and macrophage polarization. Myeloid-specific EP4 knockout mice with an ApoE-deficient background were fed a Western diet for 16 weeks. Our results showed that EP4 expression was significantly downregulated during atherosclerosis. EP4 deficiency was found to exacerbate atherosclerotic plaque formation and destabilizes plaques. In vitro studies further demonstrated that loss of EP4 in myeloid cells promoted foam cell formation and M1 macrophage polarization. Both transcriptomic and proteomic analysis showed that EP4 may regulate these processes by regulating CD36 expression in macrophage, which was further confirmed by Western blot and qPCR. In summary, deficiency of EP4 receptor in macrophages enhance foam cell formation and M1 polarization by upregulating CD36 expression, thereby accelerating the progression of atherosclerosis. Full article
Show Figures

Graphical abstract

Back to TopTop