Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = Plantago lanceolata L.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 605 KiB  
Review
Plantain (Plantago lanceolata L.) as an Alternative Forage to Build Resilience and Reduce the Environmental Footprint of Grazing Dairy Systems in Temperate Northern Climates: A Review
by Lauren E. Chesney, Francesca Carnovale, Kathryn M. Huson, Naomi Rutherford and David Patterson
Sustainability 2025, 17(7), 3131; https://doi.org/10.3390/su17073131 - 1 Apr 2025
Cited by 1 | Viewed by 853
Abstract
The agriculture sector is responsible for the largest proportion of greenhouse gas emissions in Northern Ireland and mitigation strategies must be introduced if the industry is to achieve the ‘Net Zero’ targets set for 2050 by the United Kingdom government. Dairy farming is [...] Read more.
The agriculture sector is responsible for the largest proportion of greenhouse gas emissions in Northern Ireland and mitigation strategies must be introduced if the industry is to achieve the ‘Net Zero’ targets set for 2050 by the United Kingdom government. Dairy farming is a source of nitrous oxide emissions, a potent greenhouse gas with 256 times the warming potential of carbon dioxide. One potential mitigation measure is the use of alternative forage species such as Ribwort Plantain (Plantago lanceolata). Evidence would suggest that plantain has the ability to improve nitrogen use efficiency (NUE), leading to reductions in overall nitrogenous emissions from grazing dairy systems via three pathways: reducing urinary nitrogen concentration leading to lower rates of nitrogen leaching from urine patches; improving nitrogen utilisation efficiency within the dairy cow so that a lesser proportion of dietary nitrogen is excreted via the urine; and through the action of root exudates producing biological nitrification inhibition in the soil and improving soil nitrogen retention. This review summarises the current evidence supporting plantain as an alternative forage to support animal performance and forage production whilst lowering the environmental footprint of grazing dairy systems in temperate climates. This review also highlights outstanding research questions which must be addressed for farmers to confidently introduce these alternative species into their grazing platforms. Full article
(This article belongs to the Section Sustainable Agriculture)
Show Figures

Figure 1

17 pages, 4864 KiB  
Article
Selected Plant Extracts Regulating the Inflammatory Immune Response and Oxidative Stress: Focus on Quercus robur
by Rawan Nehme, Arthur Chervet, Caroline Decombat, Ola Habanjar, Lucie Longechamp, Amandine Rousset, Pierre Chalard, Mael Gainche, Francois Senejoux, Didier Fraisse, Edith Filaire, Jean-Yves Berthon, Mona Diab-Assaf, Laetitia Delort and Florence Caldefie-Chezet
Nutrients 2025, 17(3), 510; https://doi.org/10.3390/nu17030510 - 30 Jan 2025
Cited by 1 | Viewed by 1631
Abstract
Background/Objectives: Inflammation is a vital response of the immune system, frequently linked to the development and progression of numerous chronic and autoimmune diseases. Targeting inflammation represents an attractive strategy to prevent and treat these pathologies. In this context, many pathways, including pro-inflammatory cytokines [...] Read more.
Background/Objectives: Inflammation is a vital response of the immune system, frequently linked to the development and progression of numerous chronic and autoimmune diseases. Targeting inflammation represents an attractive strategy to prevent and treat these pathologies. In this context, many pathways, including pro-inflammatory cytokines secretion, NFκB activation, reactive oxygen species (ROS) production, inflammasome activation and arachidonic acid metabolism could be highlighted and addressed. Several plant materials have traditionally been used as effective and non-harmful anti-inflammatory agents. However, well-established scientific evidence is lacking, and their mechanisms of action remain unclear. The current article compares the effects of seven plant extracts, including Quercus robur L. (Oak), Plantago lanceolata L. (narrowleaf plantain), Plantago major L. (broadleaf plantain), Helichrysum stoechas L. (immortelle or helichrysum), Leontopodium nivale alpinum Cass. (edelweiss), Medicago sativa L. (alfafa) and Capsella bursa-pastoris Moench (shepherd’s purse) on different inflammatory pathways. Results: All of the plant extracts significantly affected ROS production, but their action on cytokine production was more variable. As the Quercus robur extract showed the highest efficacy in our models, it was subsequently assessed on several inflammatory signaling pathways. Quercus robur significantly decreased the secretion of IFNγ, IL-17a, IL-12, IL-2, IL-1β and IL-23 in stimulated human leucocytes, and the expression of TNFα, IL-6, IL-8, IL-1β and CXCL10 in M1-like macrophages. Additionally, a significant reduction in PGE2 secretion, COX2, NLRP3, caspase1 and STAT3 expression and NFκB p65 phosphorylation was observed. Conclusions: Our results clearly indicate that Quercus robur has a potent anti-inflammatory effect, making it a promising candidate for both the treatment and prevention of inflammation and related diseases, thereby promoting overall well-being. Full article
(This article belongs to the Section Phytochemicals and Human Health)
Show Figures

Figure 1

23 pages, 4030 KiB  
Article
Weed Incursion of Irrigated Forage–Forb Mixtures Under Mob Grazing or Mowing in the Mountain West USA
by Jennifer MacAdam, Jared Gibbons and Xin Dai
Agronomy 2025, 15(1), 25; https://doi.org/10.3390/agronomy15010025 - 26 Dec 2024
Cited by 1 | Viewed by 932
Abstract
Improving the quality of irrigated pastures can increase the profitability of ruminant production systems. Increasing pasture plant biodiversity is beneficial for ruminants, pollinators, and soil health, but it is challenging to manage weed incursion in seeded mixed-species pastures. This study assessed the weed [...] Read more.
Improving the quality of irrigated pastures can increase the profitability of ruminant production systems. Increasing pasture plant biodiversity is beneficial for ruminants, pollinators, and soil health, but it is challenging to manage weed incursion in seeded mixed-species pastures. This study assessed the weed incursion that resulted when forage legumes or grasses were seeded as binary mixtures with one of four non-legume forbs. Defoliation occurred at 6-week intervals as either mowing or mob grazing. Forbs were chicory, plantain, Lewis flax, or small burnet and forages were alfalfa, birdsfoot trefoil, creeping foxtail, intermediate wheatgrass, kura clover, meadow bromegrass, orchardgrass, perennial ryegrass, reed canarygrass, sainfoin, smooth bromegrass, tall fescue, and white clover. Four defoliations per year occurred between May and September for two years. Eight replications were grouped into four blocks and each pair in a block was randomly assigned to the two defoliation treatments, mob grazing or mowing. Plots were 1.5 m2 and were assessed visually before each defoliation for the percentage of forage, forb, and weed. Chicory was the most dominant of the four forbs, and relative to legumes, most grasses suppressed both forb establishment and weed incursion under both grazing and mowing. There were no statistically significant effects of defoliation treatment on weed incursion. Full article
Show Figures

Figure 1

18 pages, 3589 KiB  
Article
Addressing the Evolution of Cardenolide Formation in Iridoid-Synthesizing Plants: Site-Directed Mutagenesis of PRISEs (Progesterone-5β-Reductase/Iridoid Synthase-like Enzymes) of Plantago Species
by Maja Dorfner, Jan Klein, Katharina Senkleiter, Harald Lanig, Wolfgang Kreis and Jennifer Munkert
Molecules 2024, 29(23), 5788; https://doi.org/10.3390/molecules29235788 - 7 Dec 2024
Viewed by 1045
Abstract
Enzymes capable of processing a variety of compounds enable plants to adapt to diverse environmental conditions. PRISEs (progesterone-5β-reductase/iridoid synthase-like enzymes), examples of such substrate-promiscuous enzymes, are involved in iridoid and cardenolide pathways and demonstrate notable substrate promiscuity by reducing the activated C=C double [...] Read more.
Enzymes capable of processing a variety of compounds enable plants to adapt to diverse environmental conditions. PRISEs (progesterone-5β-reductase/iridoid synthase-like enzymes), examples of such substrate-promiscuous enzymes, are involved in iridoid and cardenolide pathways and demonstrate notable substrate promiscuity by reducing the activated C=C double bonds of plant-borne and exogenous 1,4-enones. In this study, we identified PRISE genes in Plantago media (PmdP5βR1) and Plantago lanceolata (PlP5βR1), and the corresponding enzymes were determined to share a sequence identity of 95%. Despite the high sequence identity, recombinant expressed PmdP5βR1 was 70 times more efficient than PlP5βR1 for converting progesterone. In order to investigate the underlying reasons for this significant discrepancy, we focused on specific residues located near the substrate-binding pocket and adjacent to the conserved phenylalanine “clamp”. This clamp describes two phenylalanines influencing substrate preferences by facilitating the binding of smaller substrates, such as 2-cyclohexen-1-one, while hindering larger ones, such as progesterone. Using structural analysis based on templates PDB ID: 5MLH and 6GSD from PRISE of Plantago major, along with in silico docking, we identified positions 156 and 346 as hot spots. In PlP5βR1 amino acid residues, A156 and F346 seem to be responsible for the diminished ability to reduce progesterone. Moreover, the double mutant PlP5βR_F156L_A346L, which contains the corresponding amino acids from PmdP5βR1, showed a 15-fold increase in progesterone 5β-reduction. Notably, this modification did not significantly alter the enzyme’s ability to convert other substrates, such as 8-oxogeranial, 2-cyclohexen-1-one, and methyl vinyl ketone. Hence, a rational enzyme design by reducing the number of hotspots selectively, specifically improved the substrate preference of PlP5βR1 for progesterone. Full article
(This article belongs to the Special Issue Metabolites of Biofunctional Interest from Plant Sources)
Show Figures

Graphical abstract

14 pages, 4643 KiB  
Article
Effects of Wilting and Exogenous Lactic Acid Bacteria on the Fermentation Quality and Microbial Community of Plantago lanceolata Silage
by Yanhua Tang, Qing Dou, Bin Luo, Lili Zhao, Puchang Wang, Xuedong Yang and Yi Xi
Fermentation 2024, 10(11), 536; https://doi.org/10.3390/fermentation10110536 - 22 Oct 2024
Viewed by 1267
Abstract
This study aimed to evaluate the effects of wilting and exogenous lactic acid bacteria treatments on the chemical composition, fermentation quality, and microbial community composition of Plantago lanceolata silage (PS). This experiment was carried out in the Guizhou Extension Station of Grassland Technology [...] Read more.
This study aimed to evaluate the effects of wilting and exogenous lactic acid bacteria treatments on the chemical composition, fermentation quality, and microbial community composition of Plantago lanceolata silage (PS). This experiment was carried out in the Guizhou Extension Station of Grassland Technology (25°38′48″ N, 106°13′6″ E). The PS samples were divided into four treatment groups, namely control PS (C-PS), wilting-treated PS (W-PS), Lactobacillus brucei-treated PS (LB-PS), and wilting + L. brucei-treated PS (WLB-PS) groups, and analyzed after 60 d of treatment. The W-PS and WLB-PS groups showed significantly lower ether extract, ash, and Neutral detergent fiber contents but significantly higher water-soluble carbohydrate content compared to the C-PS and LB-PS groups (p < 0.05). Additionally, the W-PS group had significantly lower propionic acid content but significantly higher butyric acid content compared to the other groups (p < 0.05). Meanwhile, the WLB-PS group had the highest lactic acid content, the lowest pH, and no butyric acid content (p < 0.05). Additionally, the WLB-PS group showed a high proliferation of beneficial bacterial species (Lactobacillus buchneri and Lactobacillus plantarum) and decreased proliferation of undesirable bacterial species (Clostridium lutlcellarli and Clostridium tyrobutyricum). In conclusion, the combination treatment with wilting and L. brucei increased beneficial microorganisms and inhibited undesirable microorganisms during ensiling, thereby improving the fermentation quality of PS. Therefore, the combination treatment with wilting and L. brucei may be an effective Plantago lanceolata silage modulation technique. Full article
(This article belongs to the Special Issue Functional Properties of Microorganisms in Fermented Foods)
Show Figures

Figure 1

16 pages, 2674 KiB  
Article
Ginger Phytotoxicity: Potential Efficacy of Extracts, Metabolites and Derivatives for Weed Control
by Jesús G. Zorrilla, Carlos Rial, Miriam I. Martínez-González, José M. G. Molinillo, Francisco A. Macías and Rosa M. Varela
Agronomy 2024, 14(10), 2353; https://doi.org/10.3390/agronomy14102353 - 12 Oct 2024
Cited by 2 | Viewed by 1446
Abstract
The negative implications for weeds encourage the finding of novel sources of phytotoxic agents for sustainable management. While traditional herbicides are effective, especially at large scales, the environmental impact and proliferation of resistant biotypes present major challenges that natural sources could mitigate. In [...] Read more.
The negative implications for weeds encourage the finding of novel sources of phytotoxic agents for sustainable management. While traditional herbicides are effective, especially at large scales, the environmental impact and proliferation of resistant biotypes present major challenges that natural sources could mitigate. In this study, the potential of ginger metabolites as phytotoxic agents has been investigated for the first time. Root extracts, prepared via various extraction techniques, showed phytotoxicity in wheat (Triticum aestivum L. cv. Burgos) coleoptile bioassays at 800–100 ppm, and the most active extract (prepared by sonication with ethyl acetate) was purified by chromatographic methods, yielding seven compounds: five phenolic metabolites with gingerol and shogaol structures, β-sitosterol, and linoleic acid. Some of the major phenolic metabolites, especially [6]-shogaol and [6]-gingerol, exerted phytotoxicity on wheat coleoptiles, Plantago lanceolata and Portulaca oleracea (broadleaf dicotyledon weeds). This promoted the study of a collection of derivatives, revealing that the 5-methoxy, oxime, and acetylated derivatives of [6]-shogaol and [6]-gingerol had interesting phytotoxicities, providing clues for improving the stability of the isolated structures. Ginger roots have been demonstrated to be a promising source of bioactive metabolites for weed control, offering novel materials with potential for the development of agrochemicals based on natural products. Full article
(This article belongs to the Section Weed Science and Weed Management)
Show Figures

Figure 1

17 pages, 2163 KiB  
Article
Distribution of Non-Structural Carbohydrates and Root Structure of Plantago lanceolata L. under Different Defoliation Frequencies and Intensities
by Verónica M. Merino, René I. Aguilar, M. Jordana Rivero, Iván P. Ordóñez, Luis F. Piña, María Dolores López-Belchí, Mauricio I. Schoebitz, Felipe A. Noriega, Claudia I. Pérez, Andrew S. Cooke and Lubia M. Guedes
Plants 2024, 13(19), 2773; https://doi.org/10.3390/plants13192773 - 3 Oct 2024
Cited by 4 | Viewed by 1540
Abstract
Plantago lanceolata L. (plantain) increases herbage dry matter (DM) production and quality during warm and dry conditions due to its deep roots and drought tolerance and reduces nitrogen losses in grazing systems compared to traditional pastures. However, plantain density usually declines after the [...] Read more.
Plantago lanceolata L. (plantain) increases herbage dry matter (DM) production and quality during warm and dry conditions due to its deep roots and drought tolerance and reduces nitrogen losses in grazing systems compared to traditional pastures. However, plantain density usually declines after the third growing season, mainly due to defoliation management. The effects of defoliation frequency and intensity on water-soluble carbohydrate (WSC) reserves and below-ground plant responses need further research to optimize grazing strategies for improved productivity and sustainability of grazing systems. Our study investigated the effects of defoliation frequencies (15, 25, and 35 cm of extended leaf length, ELL) and intensities (5 and 8 cm of residual heights) on morphological traits and WSC concentrations in plantain biomass under controlled environmental conditions. Defoliation frequency significantly influenced morphological and chemical characteristics and biomass distribution more than residual height. Less frequent defoliations promoted above-ground herbage DM production, reproductive stems, and root biomass. Root architecture showed adaptations in response to defoliation frequency, optimizing resource acquisition efficiency. Frequent defoliation reduced high molecular weight WSC concentrations in leaves, affecting regrowth capacity and DM mass. A defoliation frequency of 25 cm ELL (~15 days) balances herbage production and root development, promoting long-term pasture sustainability. Full article
(This article belongs to the Section Plant Development and Morphogenesis)
Show Figures

Figure 1

33 pages, 1551 KiB  
Review
Bioactive Compounds Produced by Endophytic Bacteria and Their Plant Hosts—An Insight into the World of Chosen Herbaceous Ruderal Plants in Central Europe
by Piotr Drożdżyński, Natalia Rutkowska, Magdalena Rodziewicz and Olga Marchut-Mikołajczyk
Molecules 2024, 29(18), 4456; https://doi.org/10.3390/molecules29184456 - 19 Sep 2024
Cited by 9 | Viewed by 3463
Abstract
The natural environment has been significantly impacted by human activity, urbanization, and industrialization, leading to changes in living organisms and their adaptation to harsh conditions. Species, including plants, adapt to these changes by creating mechanisms and modifications that allow them to survive in [...] Read more.
The natural environment has been significantly impacted by human activity, urbanization, and industrialization, leading to changes in living organisms and their adaptation to harsh conditions. Species, including plants, adapt to these changes by creating mechanisms and modifications that allow them to survive in harsh environments. Also, endophytes, microorganisms that live inside plants, can support plant growth and defense mechanisms in these conditions by synthesizing antimicrobial secondary metabolites. What is more, endophytes produce bioactive metabolites, including alkaloids, amines, and peptides, which play a crucial role in the relationship between endophytes and their host organisms. Endophytes themselves benefit from this by creating a stable environment for their survival and development. The aim of this review is to gain insight into endophytic bioactive metabolites from chosen synanthropic ruderal plants. Industrial activities release pollutants like heavy metals, by-products, and waste, which challenge living organisms and require adaptation. Synanthropic plants, where endophytes are abundant, are particularly valuable for their bioactive compounds, which are used in agriculture and medicine. This review presents, among others, endophytes of herbaceous ruderal plants from central Europe—Chelidonium majus L., Urtica dioica L., Plantago lanceolata L., Matricaria chamomilla L., Equisetum arvense L., Oenothera biennis L., Silybum marianum L., and Mentha piperita L. Full article
Show Figures

Graphical abstract

14 pages, 1869 KiB  
Article
Rooting Patterns and Aucubin Content in Plantago lanceolata
by Michal Pol, Olivier Potterat, Florian Tröber, Sylwia Lewandowska and Knut Schmidtke
Agriculture 2024, 14(8), 1352; https://doi.org/10.3390/agriculture14081352 - 13 Aug 2024
Cited by 3 | Viewed by 1594
Abstract
Ribwort plantain (Plantago lanceolata L.) is expected to open up new crop cultivation perspectives in arable farming in order to significantly reduce nitrogen losses through leaching, N2O emissions and to increase resilience under drought conditions. Therefore, this study investigated the [...] Read more.
Ribwort plantain (Plantago lanceolata L.) is expected to open up new crop cultivation perspectives in arable farming in order to significantly reduce nitrogen losses through leaching, N2O emissions and to increase resilience under drought conditions. Therefore, this study investigated the properties of the roots as an alternative to grasses for forage production under drought conditions. Ten genotypes of ribwort plantain were compared under field conditions in northern Switzerland, focusing on the characteristics of the root system and the aucubin content in the leaves and roots. Aucubin, known for inhibiting the nitrification process in the soil, varied according to genotype and season. All tested genotypes showed higher aucubin content in leaves than in roots, which may indicate the greater importance of leaves in reducing soil nitrification. Dry matter yield and for the first time root characteristics, such as root length density (RLD) and specific root length (SRL), were evaluated at two different soil depths, and at different distances from the plants. The results showed that ribwort is well adapted to acquire water and nutrients in terms of rooting in topsoil. In addition, a second field experiment conducted in eastern Germany (Saxony) confirmed the plant’s ability to root deeply after one year of cultivation, reaching depths of up to even 1.88 m. The obtained results indicate the high capacity of ribwort plantain to take up water and nutrients also from deeper soil layers. To reduce N2O emissions through the cultivation of ribwort plantain, the choice of genotype seems to be of great importance due to varying aucubin contents. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

12 pages, 1531 KiB  
Article
Reduced Translocation Confers Paraquat Resistance in Plantago lanceolata
by Vhuthu Ndou, Deon Kotze, Biljana Marjanovic-Painter, Ethel E. Phiri, Petrus J. Pieterse and Molahlehi S. Sonopo
Agronomy 2024, 14(5), 977; https://doi.org/10.3390/agronomy14050977 - 6 May 2024
Cited by 2 | Viewed by 1633
Abstract
Ribwort plantain (Plantago lanceolata L.) is a common weed in the winter rainfall region of South Africa. This weed is widespread across vineyards, orchards, and roadsides in the region. The weed has already evolved resistance to glyphosate and paraquat; however, the mechanism [...] Read more.
Ribwort plantain (Plantago lanceolata L.) is a common weed in the winter rainfall region of South Africa. This weed is widespread across vineyards, orchards, and roadsides in the region. The weed has already evolved resistance to glyphosate and paraquat; however, the mechanism of paraquat resistance has not been documented. This study aimed to investigate the resistance mechanisms in this resistant (R) biotype. Dose–response trials conducted with R biotypes from the Robertson area reconfirmed paraquat resistance. Dose–response trials established that the paraquat rate causing 50% mortality (LD50) for the R biotype is three times greater than for the susceptible (S) biotype. To find out how paraquat affected the photosynthetic performance of P. lanceolata, the quantum yield of photosystem II was measured. The photosystem reaction centres of the R biotype recovered 24 h after paraquat treatment. To evaluate paraquat transport in the plant cell, selective transport inhibitors were applied. Plantago lanceolata (S) biotypes had the highest electrolyte leakage after paraquat treatment. A combined radio/UV-HPLC was used for the separation and identification of paraquat and its metabolites. Paraquat degradation was not observed, indicating that metabolism was not a resistance mechanism within the R biotype. To assess leaf absorption and translocation, [14C]-labelled paraquat was applied to fully expanded leaves. There were no significant differences in paraquat absorption. However, paraquat translocation differed significantly across the R and S biotypes, indicating that non-target site resistance through reduced paraquat translocation was the main mechanism of resistance in the R biotype. As the resistance of weed species to post-emergence herbicides continues to increase, achieving sustainable weed management necessitates the implementation of diversified weed control strategies. Full article
Show Figures

Figure 1

35 pages, 6952 KiB  
Review
Selected Plants as Sources of Natural and Active Ingredients for Cosmetics of the Future
by Sławomir Kowalczyk, Mirosława Grymel, Janusz Bilik, Wiktoria Kula, Agata Wawoczny, Paulina Grymel and Danuta Gillner
Appl. Sci. 2024, 14(8), 3487; https://doi.org/10.3390/app14083487 - 20 Apr 2024
Cited by 6 | Viewed by 6931
Abstract
A clear trend of replacing synthetic cosmetic ingredients with natural ones can be observed in modern cosmetology. This entails the need to search for bioactive ingredients in the natural environment, especially in plants. This paper presents a comprehensive overview of dermatological, cosmetic, and [...] Read more.
A clear trend of replacing synthetic cosmetic ingredients with natural ones can be observed in modern cosmetology. This entails the need to search for bioactive ingredients in the natural environment, especially in plants. This paper presents a comprehensive overview of dermatological, cosmetic, and pharmacological properties of highly potent plants, namely Acmella oleracea (A. oleracea), Centella asiatica (C. asiatica), Psoralea corylifolia (P. corylifolia), Plantago lanceolata L. (P. lanceolata L.), and Solidago virgaurea L. (S. virgaurea L.). Biological activity and phytochemical constituents are presented for all plants, but special attention is paid to ingredients of particular value to the cosmetics industry. The advantages of spilanthol and bakuchiol as a replacement for the popular botulinum toxin and retinol are discussed. Natural habitats, ethnomedical importance, cultivation area, as well as extraction methods of active plant ingredients are presented in detail. A wide spectrum of biological activity indicates the enormous potential of the presented plants in formulating new cosmetic and dermatological preparations. Full article
(This article belongs to the Special Issue Bioactive Compounds: From Extraction to Application)
Show Figures

Figure 1

19 pages, 932 KiB  
Review
Polyphenols in Agricultural Grassland Crops and Their Health-Promoting Activities—A Review
by Emily P. Verhulst, Nigel P. Brunton and Dilip K. Rai
Foods 2023, 12(22), 4122; https://doi.org/10.3390/foods12224122 - 14 Nov 2023
Cited by 9 | Viewed by 2816
Abstract
Grassland crops are emerging reservoirs of undisturbed, natural antioxidants and phytochemicals, such as phenolic acids and flavonoids. The present review will focus on the most commonly cultivated crops, namely Lolium perenne L, Cichorium intybus L, Plantago lanceolata L. and Trifolium pratense L, which [...] Read more.
Grassland crops are emerging reservoirs of undisturbed, natural antioxidants and phytochemicals, such as phenolic acids and flavonoids. The present review will focus on the most commonly cultivated crops, namely Lolium perenne L, Cichorium intybus L, Plantago lanceolata L. and Trifolium pratense L, which have been recognized for their polyphenolic composition. However, these crops are often undervalued and underutilized, yet have the means of potentially creating novel, value-added food and nutraceutical products. Previous studies relating to these crops have identified them as rich sources of caffeic acid, chlorogenic acid, daidzein, kaempferol, luteolin, and quercetin. The key to harnessing the hidden potential of these species is the recovery, identification, and characterization of the phytochemicals they contain. Considering the upsurge of research studies on alternative plant-based diets for the health of humans and the planet earth, there is a necessity to understand the phytochemical composition and the bioactivity that they possess. This review summarizes recovery methods of phytochemicals from the aforementioned grassland crops and their compositional and functional (antioxidant, anti-cancer, and anti-diabetic) characterization and discusses the potential for grassland crops as an abundant reservoir of health-promoting ingredients which can increase the nutritional composition within novel food innovations or within nutraceuticals. Full article
(This article belongs to the Special Issue Polyphenols and Health Benefits)
Show Figures

Figure 1

6 pages, 633 KiB  
Proceeding Paper
Plantain (Plantago lanceolata L.) Leaf Elongation and Photosynthesis Rates Are Reduced under Waterlogging
by Samuel Wilson, Daniel Donaghy, David Horne, Soledad Navarrete, Peter Kemp and Chris Rawlingson
Biol. Life Sci. Forum 2023, 27(1), 26; https://doi.org/10.3390/IECAG2023-14976 - 13 Oct 2023
Cited by 1 | Viewed by 1013
Abstract
Plantain (Plantago lanceolata L.) has been identified by the New Zealand dairy sector as an option for reducing nitrogen losses from grazed pastures. However, there is growing concern over its poor persistence. Reports have suggested that plantain does not tolerate waterlogged soils; [...] Read more.
Plantain (Plantago lanceolata L.) has been identified by the New Zealand dairy sector as an option for reducing nitrogen losses from grazed pastures. However, there is growing concern over its poor persistence. Reports have suggested that plantain does not tolerate waterlogged soils; however, there is little scientific evidence to support those claims. Thus, the present study aimed to investigate the impact of waterlogging on plantain growth and survival. In a glasshouse, three water treatments were applied to plantain plants in pots: control (soil water below field capacity but not limited), wet (soil water marginally above field capacity), and waterlogged (water table 5 cm below the surface) for 39 days, followed by 27 days under the control watering treatment. Leaf elongation and photosynthesis were measured during the experiment. The mean leaf elongation rate of waterlogged plants was 37% lower than control plants during the stress period, but not significantly different than control plants during the recovery period. Waterlogging reduced the rate of photosynthesis in plantain leaves by 15% on average in comparison with control watering during the stress period; however, waterlogged and control plants had a similar mean photosynthesis rate during the recovery period. The results show that plantain growth and photosynthesis were significantly limited under waterlogging; however, the rapid recovery of both processes following the removal of stress suggests that important physiological functions remained intact under waterlogging, possibly due to tolerance mechanisms. These findings suggest that while waterlogging may cause limitations for plantain growth, there is no evidence to suggest that it alone could cause irreversible damage to plants and thus prevent their recovery. Rather, waterlogging stress could undermine the ability of plantain to compete with species that are tolerant of waterlogging within mixed pastures. Full article
(This article belongs to the Proceedings of The 3rd International Electronic Conference on Agronomy)
Show Figures

Figure 1

16 pages, 4128 KiB  
Article
Plasticity of Plantago lanceolata L. in Adaptation to Extreme Environmental Conditions
by Zbigniew Miszalski, Paweł Kaszycki, Marta Śliwa-Cebula, Adriana Kaczmarczyk, Miron Gieniec, Paulina Supel and Andrzej Kornaś
Int. J. Mol. Sci. 2023, 24(17), 13605; https://doi.org/10.3390/ijms241713605 - 2 Sep 2023
Cited by 8 | Viewed by 2265
Abstract
This study aimed at characterizing some adaptive changes in Plantago lanceolata L. exposed to harsh conditions of a desert-like environment generating physiological stress of limited water availability and exposure to strong light. It was clearly shown that the plants were capable of adapting [...] Read more.
This study aimed at characterizing some adaptive changes in Plantago lanceolata L. exposed to harsh conditions of a desert-like environment generating physiological stress of limited water availability and exposure to strong light. It was clearly shown that the plants were capable of adapting their root system and vascular tissues to enable efficient vegetative performance. Soil analyses, as well as nitrogen isotope discrimination data show that P. lanceolata leaves in a desert-like environment had better access to nitrogen (nitrite/nitrate) and were able to fix it efficiently, as compared to the plants growing in the surrounding forest. The arbuscular mycorrhiza was also shown to be well-developed, and this was accompanied by higher bacterial frequency in the root zone, which might further stimulate plant growth. A closer look at the nitrogen content and leaf veins with a higher number of vessels and a greater vessel diameter made it possible to define the changes developed by the plants populating sandy habitats as compared with the vegetation sites located in the nearby forest. A determination of the photosynthesis parameters indicates that the photochemical apparatus in P. lanceolata inhabiting the desert areas adapted slightly to the desert-like environment and the time of day, with some changes of the reaction center (RC) size (photosystem II, PSII), while the plants’ photochemical activity was at a similar level. No differences between the two groups of plants were observed in the dissipation of light energy. The exposure of plants to harsh conditions of a desert-like environment increased the water use efficiency (WUE) value in parallel with possible stimulation of the β-carboxylation pathway. Full article
(This article belongs to the Special Issue Drought Stress Tolerance in Plants in 2022)
Show Figures

Figure 1

14 pages, 2072 KiB  
Article
Effective Proportion of Plantain (Plantago lanceolata L.) in Mixed Pastures for Botanical Stability and Mitigating Nitrous Oxide Emissions from Cow Urine Patches
by Chi Vi, Peter D. Kemp, Surinder Saggar, Soledad Navarrete and David J. Horne
Agronomy 2023, 13(6), 1447; https://doi.org/10.3390/agronomy13061447 - 24 May 2023
Cited by 11 | Viewed by 2482
Abstract
Plantain (Plantago lanceolata L.) is recognised for its ability to improve summer feed productivity as well as mitigate nitrous oxide (N2O) emissions from grazed pastoral soils. This study aims to determine the proportion of plantain required in perennial ryegrass ( [...] Read more.
Plantain (Plantago lanceolata L.) is recognised for its ability to improve summer feed productivity as well as mitigate nitrous oxide (N2O) emissions from grazed pastoral soils. This study aims to determine the proportion of plantain required in perennial ryegrass (Lolium perenne L.) and white clover (Trifolium repens L.), or RWC, mixed swards to maintain yield stability and to quantify N2O emission reductions. The botanical composition was monitored when plantain was sown at different rates of 0%, 30%, 50% and 70% in RWC pastures under grazing by dairy cows over 2 grazing years. Urine from cows grazing RWC (6.15 g N L−1), 30% (5.40 g N L−1) and 50% (4.40 g N L−1) plantain mixed pastures was used to measure N2O emissions (n = 5) from the pastures of their origin and to assess the impact of the plantain rhizosphere on N2O emissions by applying the RWC urine to the 50% plantain mixed pasture, and vice versa, in late summer–autumn using the static chambers technique. After declining in spring, the plantain content recovered in early autumn and reached a peak of 40% in the 30% plantain mixed pasture and around 50% in the 50% and 70% plantain mixed pastures in winter. A lower N content in urine, and therefore a lower urine N-loading rate from cows grazing in the 50% plantain mixed pasture, resulted in 39% lower total N2O emissions compared to RWC urine treatment. In conclusion, 30% to 50% plantain in mixed pastures was stable throughout the 2 years, and it not only reduced the urinary N concentration in grazing cattle but also contributed to reduced N2O EFs. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

Back to TopTop