Plantain (Plantago lanceolata L.) as an Alternative Forage to Build Resilience and Reduce the Environmental Footprint of Grazing Dairy Systems in Temperate Northern Climates: A Review
Abstract
:1. Introduction
2. Materials and Methods
3. Plantain Agronomy in Temperate Climates
PL a | PRG b | |
---|---|---|
Soil pH | 4.2–7.8 | 5.0–7.0 |
Soil temperature (°C at 10 mm) | 10–12 | Up to 6 |
Annual rainfall (mm) | Less 500 | 450–635 |
Sward persistency (years) | Up to 5 | Up to 6 |
Potential yield (t DM ha−1 year−1) | 10–20 | 14–20 |
4. Nutritional Value and Bioactive Compounds of Plantain
PL a | PRG b | |
---|---|---|
Nutritional value | ||
Dry Matter (DM) (%) | 9–20 | 16–20 |
Metabolic energy (MJ/kg DM) | 10–11 | 11–12 |
Crude protein (% DM) | 13–20 | 17–20 |
Soluble sugar and starch (% DM) | 8–12 | 10–20 |
NDF (% DM) | 30–40 | 40–50 |
ADF (% DM) | 15–25 | 30–40 |
Mineral profile | ||
Phosphorous (% DM) | 0.35–0.45 | 0.35–0.45 |
Potassium (% DM) | 3.10–3.15 | 3.50–3.70 |
Sulphur (% DM) | 0.35–0.40 | 0.30–0.35 |
Calcium (% DM) | 1.50–2.00 | 0.40–0.60 |
Magnesium (% DM) | 0.15–0.20 | 0.10–0.15 |
Sodium (% DM) | 0.45–0.50 | 0.30–0.35 |
Chloride (% DM) | 1.70–1.80 | 1.10–1.20 |
Bioactive compound | ||
Aucubin (g/kg DM) | 6.00–7.00 | - |
Acteoside (g/kg DM) | 8.00–9.00 | - |
Catalpol (g/kg DM) | 0.50–1.00 | - |
5. The Impact of Feeding Plantain on Animal Production
6. Nitrogen Use Efficiency and Rumen Fermentation in the Dairy Cow
7. The Environmental Impact of Introducing Plantain to Grazing Swards
8. Research Gaps and Applications in Temperate Northern Climates
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ADF | Acid Detergent Fibre |
Ca | Calcium |
CF | Crude Fat |
CH | Cichorium intybus |
CH4 | Methane |
Cl | Chloride |
Co | Cobalt |
CO2 | Carbon Dioxide |
Cu | Copper |
DM | Dry Matter |
Fe | Iron |
GHG | Greenhouse Gases |
I | Iodine |
ME | Metabolisable Energy |
Mg | Magnesium |
Mn | Manganese |
MUN | Milk Urea Nitrogen |
N2O | Nitrous Oxide |
Na | Sodium |
NDF | Neutral Detergent Fibre |
NH3 | Ammonia |
NH4− | Ammonium |
NI | Northern Ireland |
NO | Nitric Oxide |
NO3− | Nitrate |
NSC | Non-Structural Carbohydrates |
NUE | Nitrogen Use Efficiency |
NZ | New Zealand |
OM | Organic Matter |
OMD | Organic Matter Digestibility |
PL | Plantago lanceolata |
PRG | Perennial Rye Grass or Lolium perenne L. |
RC | Red Clover or Trifolium pratense |
RDP | Rumen Degradable Protein |
S | Sulphur |
Se | Selenium |
WC | White Clover or Trifolium repens L. |
Zn | Zinc |
References
- McConnell, D.; Huson, K.; Gordon, A.; Lively, F. Identifying barriers to improving grass utilisation on dairy farms. Grassl. Sci. Eur. 2020, 25, 713–715. [Google Scholar]
- DAERA. Northern Ireland Farm Performance Indicators 2016/17. 2016. Available online: https://www.daera-ni.gov.uk/sites/default/files/publications/daera/NI%20Farm%20Performance%20Indicators%201617_0.pdf (accessed on 27 January 2025).
- Adenuga, A.H.; Davis, J.; Hutchinson, G.; Donnellan, T.; Patton, M. Estimation and determinants of phosphorus balance and use efficiency of dairy farms in Northern Ireland: A within and between farm random effects analysis. Agric. Syst. 2018, 164, 11–19. [Google Scholar] [CrossRef]
- Alothman, M.; Hogan, S.A.; Hennessy, D.; Dillon, P.; Kilcawley, K.N.; O’Donovan, M.; O’Callaghan, T.F. The “Grass-Fed” Milk Story: Understanding the Impact of Pasture Feeding on the Composition and Quality of Bovine Milk. Foods 2019, 8, 350. [Google Scholar] [CrossRef]
- Gilliland, T.J.; Johnston, J.; Connolly, C. A review of forage grass and clover seed use in Northern Ireland, UK between 1980 and 2004. Grass Forage Sci. 2007, 62, 239–254. [Google Scholar] [CrossRef]
- Agrisearch. 2024. Available online: https://www.agrisearch.org/grasscheck (accessed on 27 January 2025).
- MetOffice. 2022. Available online: https://www.metoffice.gov.uk/ (accessed on 17 June 2024).
- Keatley, P.; Caskie, P. Greenhouse Gas Emissions on Northern Ireland Dairy Farms-A Carbon Footprint Time Series Study. 2017. Available online: https://www.daera-ni.gov.uk/sites/default/files/publications/daera/Greenhouse%20Gas%20Emissions%20on%20Northern%20Ireland%20Dairy%20Farms_2.pdf (accessed on 17 June 2024).
- Burnett, N.; Hinson, S.; Stewart, I. The UK’s Plans and Progress to Reach Net Zero by 2050; House of Commons Library: London, UK, 2024.
- Carozzi, M.; Martin, R.; Klumpp, K.; Massad, R.S. Effects of climate change in European croplands and grasslands: Productivity, greenhouse gas balance and soil carbon storage. Biogeosciences 2022, 19, 3021–3050. [Google Scholar] [CrossRef]
- Whitehead, D. Management of Grazed Landscapes to Increase Soil Carbon Stocks in Temperate, Dryland Grasslands. Front. Sustain. Food Syst. 2020, 4, 585913. [Google Scholar] [CrossRef]
- NISRA. Greenhouse Gas Emissions for Northern Ireland by Source Sector for the Years 1990 to 2021. 2021. Available online: https://datavis.nisra.gov.uk/daera/northern-ireland-greenhouse-gas-emissions.html (accessed on 17 June 2024).
- Rivera, J.E.; Chará, J. CH4 and N2O Emissions from Cattle Excreta: A Review of Main Drivers and Mitigation Strategies in Grazing Systems. Front. Sustain. Food Syst. 2021, 5, 657936. [Google Scholar] [CrossRef]
- Lorenz, H.; Reinsch, T.; Hess, S.; Taube, F. Is low-input dairy farming more climate friendly? A meta-analysis of the carbon footprints of different production systems. J. Clean. Prod. 2019, 211, 161–170. [Google Scholar] [CrossRef]
- Pinxterhuis, J.B.; Judson, H.G.; Peterson, M.E.; Navarrete, S.; Minnée, E.; Dodd, M.B.; Davis, S.R. Implementing plantain (Plantago lanceolata) to mitigate the impact of grazing ruminants on nitrogen leaching losses to the environment: A review. Grass Forage Sci. 2024, 79, 144–157. [Google Scholar] [CrossRef]
- Fulkerson, W.J.; Horadagoda, A.; Neal, J.S.; Barchia, I.; Nandra, K.S. Nutritive value of forage species grown in the warm temperate climate of Australia for dairy cows: Herbs and grain crops. Livest. Sci. 2008, 114, 75–83. [Google Scholar] [CrossRef]
- Box, L.A.; Edwards, G.R.; Bryant, R.H. Milk production and urinary nitrogen excretion of dairy cows grazing plantain in early and late lactation. N. Z. J. Agric. Res. 2017, 60, 470–482. [Google Scholar] [CrossRef]
- Powell, A.; Kemp, P.; Jaya, I.D.; Osborne, M. Establishment, growth and development of plantain and chicory under grazing. Proc. N. Z. Grassl. Assoc. 2007, 69, 41–45. [Google Scholar] [CrossRef]
- Eady, C.; Conner, A.J.; Rowarth, J.S.; Coles, G.D.; Deighton, M.H.; Moot, D.J. An examination of the ability of plantain (Plantago lanceolata L.) to mitigate nitrogen leaching from pasture systems. N. Z. J. Agric. Res. 2024, 68, 130–157. [Google Scholar] [CrossRef]
- Troelstra, S.R.; Brouwer, R.; Stulen, I.; Freijsen, A.H.J.; Blacquière, T.; Kuiper, P.J.C.; Tánczos, O.G.; Van Hasselt, P.R.; Pons, T.L. Ecophysiology of Plantago Species. In Plantago: A Multidisciplinary Study; Springer: Berlin/Heidelberg, Germany, 1992; pp. 113–183. [Google Scholar]
- Stewart, A. Plantain (Plantago lanceolata)-a potential pasture species. Proc. N. Z. Grassl. Assoc. 1996, 58, 77–86. [Google Scholar] [CrossRef]
- Lee, J.M.; Hemmingson, N.R.; Minnee EM, K.; Clark CE, F. Management strategies for chicory (Cichorium intybus) and plantain (Plantago lanceolata): Impact on dry matter yield, nutritive characteristics and plant density. Crop Pasture Sci. 2015, 66, 168–183. [Google Scholar] [CrossRef]
- Taylor, A.; Moss, R. Plantain dominated in mown mixed swards, but produced less than the original ryegrass-dominant sward. J. N. Z. Grassl. 2023, 84, 73–78. [Google Scholar] [CrossRef]
- Hearn, C.; Egan, M.; Lynch, M.B.; Fleming, C.; O’Donovan, M. Seasonal variations in nutritive and botanical composition properties of multispecies grazing swards over an entire dairy grazing season. Grassl. Res. 2022, 1, 221–233. [Google Scholar] [CrossRef]
- Moorhead, A.J.E.; Piggot, G.J. The performance of pasture mixes containing ‘Ceres Tonic’ plantain (Plantago lanceolata) in Northland. Proc. N. Z. Grassl. Assoc. 2009, 71, 195–199. [Google Scholar] [CrossRef]
- Hearn, C.; M Egan, M.B.; Lynch, K.; Dolan, D.; Flynn, M. O’Donovan. Can the inclusion of ribwort plantain or chicory increase the seasonal and annual dry matter production of intensive dairy grazing swards? Eur. J. Agron. 2024, 152, 127020. [Google Scholar] [CrossRef]
- Jezequel, A.; Delaby, L.; Finn, J.A.; McKay, Z.C.; Horan, B. Sward species diversity impacts on pasture productivity and botanical composition under grazing systems. Grass Forage Sci. 2024, 79, 651–665. [Google Scholar] [CrossRef]
- Fitzpatrick, E.; Fox, R.; Cardiff, J.; Byrne, N. Effect of pasture type on dairy-beef heifer production efficiency. In Proceedings of the 30th EGF General Meeting 2024: Why Grasslands, Leeuwarden, The Netherlands, 9–13 June 2024. [Google Scholar]
- Baker, S.; Lynch, M.B.; Godwin, F.; Boland, T.M.; Kelly, A.K.; Evans, A.C.O.; Murphy, P.N.C.; Sheridan, H. Multispecies swards outperform perennial ryegrass under intensive beef grazing. Agric. Ecosyst. Environ. 2023, 345, 108335. [Google Scholar] [CrossRef]
- Wreford, A.; Topp CF, E. Impacts of climate change on livestock and possible adaptations: A case study of the United Kingdom. Agric. Syst. 2020, 178, 102737. [Google Scholar] [CrossRef]
- UKCP. The UK Climate Projections. 2024. Available online: https://www.metoffice.gov.uk/research/approach/collaboration/ukcp/about/project-news (accessed on 20 November 2024).
- Kew, S.F.; McCarthy, M.; Ryan, C.; Pirret, J.S.R.; Murtagh, E.; Vahlberg, M.; Amankona, A.; Pope, J.O.; Lott, F.; Claydon, O.; et al. Autumn and Winter Storms over UK and Ireland Are Becoming Wetter due to Climate Change: A Report; Grantham Institute for Climate Change: London, UK, 2024. [Google Scholar]
- Haughey, E.; Suter, M.; Hofer, D.; Hoekstra, N.J.; McElwain, J.C.; Lüscher, A.; Finn, J.A. Higher species richness enhances yield stability in intensively managed grasslands with experimental disturbance. Sci. Rep. 2018, 8, 15047. [Google Scholar] [CrossRef]
- Woodward, S.L.; Waugh, C.D.; Roach, C.G.; Fynn, D.; Phillips, J. Are diverse species mixtures better pastures for dairy farming? Proc. N. Z. Grassl. Assoc. 2013, 75, 79–84. [Google Scholar] [CrossRef]
- Dairy, N.Z. Plantain Overview. 2024. Available online: https://www.dairynz.co.nz/feed/crops/plantain-overview/ (accessed on 20 November 2024).
- Wilson, S.; Donaghy, D.; Horne, D.; Navarrete, S.; Kemp, P.; Rawlingson, C. Plantain (Plantago lanceolata L.) Leaf Elongation and Photosynthesis Rates Are Reduced under Waterlogging. Biol. Life Sci. Forum 2023, 27, 26. [Google Scholar] [CrossRef]
- Muir, P.D. Future Forage Systems Project. Plantain—A Brief Literature Review-On Farm Research. 2012. Available online: https://nzforagesystems.co.nz/wp-content/blogs.dir/57/uploads/library/Muir/Plantain_-_A_brief_Literature_Review_-_December_2012.pdf (accessed on 20 November 2024).
- Frame, J.; Hunt, I.V. The effects of cutting and grazing systems on herbage production from grass swards. Grass Forage Sci. 1971, 26, 163–172. [Google Scholar] [CrossRef]
- Pain, S.J.; Corkran, J.R.; Kenyon, P.R.; Morris, S.T.; Kemp, P.D. The influence of season on lambs’ feeding preference for plantain, chicory and red clover. Anim. Prod. Sci. 2015, 55, 1241–1249. [Google Scholar] [CrossRef]
- Kemp, P.D.; Kenyon, P.R.; Morris, S.T. The use of legume and herb forage species to create high performance pastures for sheep and cattle grazing systems. Rev. Bras. Zootec. 2010, 39, 169–174. [Google Scholar]
- Grace, C.; Boland, T.M.; Sheridan, H.; Lott, S.; Brennan, E.; Fritch, R.; Lynch, M.B. The effect of increasing pasture species on herbage production, chemical composition and utilization under intensive sheep grazing. Grass Forage Sci. 2018, 73, 852–864. [Google Scholar] [CrossRef]
- Wilson, S.; Donaghy, D.; Horne, D.; Navarrete, S.; Kemp, P. Investigating the impact of treading damage on the plantain (Plantago lanceolata L.) content and performance of a plantain/ perennial ryegrass (Lolium perenne L.) pasture over two years. J. New Zealand Grassl. 2024, 86, 97–107. [Google Scholar] [CrossRef]
- Merino, V.M.; Aguilar, R.I.; Rivero, M.J.; Ordóñez, I.P.; Piña, L.F.; López-Belchí, M.D.; Schoebitz, M.I.; Noriega, F.A.; Pérez, C.I.; Cooke, A.S.; et al. Distribution of Non-Structural Carbohydrates and Root Structure of Plantago lanceolata L. under Different Defoliation Frequencies and Intensities. Plants 2024, 13, 2773. [Google Scholar] [CrossRef] [PubMed]
- Ayala, W.; Barrios, E.; Bermudez, R.; Serran, N. Effect of Defoliation Strategies on the Productivity, Population and Morphology of Plantain (Plantago lanceolata). NZGA Res. Pract. Ser. 2011, 15, 69–72. [Google Scholar] [CrossRef]
- Freijsen AH, J.; Otten, H. A comparison of the responses of two Plantago species to nitrate availability in culture experiments with exponential nutrient addition. Oecologia 1987, 74, 389–395. [Google Scholar] [CrossRef]
- Lambers, H.; Posthumus, F.; Stulen, I.; Lanting, L.; van de Dijk, S.J.; Hofstra, R. Energy metabolism of Plantago lanceolata as dependent on the supply of mineral nutrients. Physiol. Plant. 1981, 51, 85–92. [Google Scholar] [CrossRef]
- Al-Marashdeh, O.; Cameron, K.; Hodge, S.; Gregorini, P.; Edwards, G. Integrating Plantain (Plantago lanceolata L.) and Italian Ryegrass (Lolium multiflorum Lam.) into New Zealand Grazing Dairy System: The Effect on Farm Productivity, Profitability, and Nitrogen Losses. Animals 2021, 11, 376. [Google Scholar] [CrossRef]
- Jezequel, A.; Delaby, L.; McKay, Z.C.; Fleming, C.; Horan, B. Effect of sward species diversity combined with a reduction in nitrogen fertiliser on the performances of spring calving grazing dairy cows. J. Dairy Sci. 2024, 107, 11104–11116. [Google Scholar] [CrossRef]
- Minneé, E.M.K.; Waghorn, G.C.; Lee, J.M.; Clark, C.E.F. Including chicory or plantain in a perennial ryegrass/white clover-based diet of dairy cattle in late lactation: Feed intake, milk production and rumen digestion. Anim. Feed Sci. Technol. 2017, 227, 52–61. [Google Scholar] [CrossRef]
- Minneé, E.M.; Kuhn-Sherlock, B.; Pinxterhuis, I.J.; Chapman, D.F. Meta-analyses comparing the nutritional composition of perennial ryegrass (Lolium perenne) and plantain (Plantago lanceolata) pastures. J. N. Z. Grassl. 2019, 81, 117–124. [Google Scholar] [CrossRef]
- Cheng, L.; Al-Marashdeh, O.; McCormick, J.; Guo, X.; Chen, A.; Logan, C.; Edwards, G. Live weight gain, animal behaviour and urinary nitrogen excretion of dairy heifers grazing ryegrass–white clover pasture, chicory or plantain. N. Z. J. Agric. Res. 2017, 61, 454–467. [Google Scholar] [CrossRef]
- Della Rosa, M.M.; Sandoval, E.; Luo, D.; Pacheco, D.; Jonker, A. Effect of feeding fresh forage plantain (Plantago lanceolata) or ryegrass-based pasture on methane emissions, total-tract digestibility, and rumen fermentation of nonlactating dairy cows. J. Dairy Sci. 2022, 105, 6628–6638. [Google Scholar] [CrossRef]
- Langworthy, A.D.; Freeman, M.J.; Hills, J.L.; McLaren, D.K.; Rawnsley, R.P.; Pembleton, K.G. A Forage Allowance by Forage Type Interaction Impacts the Daily Milk Yield of Early Lactation Dairy Cows. Animals 2023, 13, 1406. [Google Scholar] [CrossRef]
- Rodriguez, R.; Balocchi, O.; Alomar, D.; Morales, R. Comparison of a Plantain-Chicory Mixture with a Grass Permanent Sward on the Live Weight Gain and Meat Quality of Lambs. Animals 2020, 10, 2275. [Google Scholar] [CrossRef] [PubMed]
- Hamacher, M.; Malisch, C.S.; Reinsch, T.; Taube, F.; Loges, R. Evaluation of yield formation and nutritive value of forage legumes and herbs with potential for diverse grasslands due to their concentration in plant specialized metabolites. Eur. J. Agron. 2021, 128, 126307. [Google Scholar]
- Mangwe, M.C.; Bryant, R.H.; Beck, M.R.; Beale, N.; Bunt, C.; Gregorini, P. Forage herbs as an alternative to ryegrass-white clover to alter urination patterns in grazing dairy systems. Anim. Feed Sci. Technol. 2019, 252, 11–22. [Google Scholar] [CrossRef]
- Rahman, M.A.; Redoy, M.R.A.; Shuvo, A.A.S.; Chowdhury, R.; Hossain, E.; Sayem, S.M.; Rashid, M.H.; Al-Mamun, M. Influence of herbal supplementation on nutrient digestibility, blood biomarkers, milk yield, and quality in tropical crossbred cows. PLoS ONE 2024, 19, e0313419. [Google Scholar] [CrossRef]
- Zhou, N.; Li, H.; Wang, B.; Rengel, Z.; Li, H. Differential root nutrient-acquisition strategies underlie biogeochemical niche separation between grasses and forbs across grassland biomes. Funct. Ecol. 2024, 38, 2286–2299. [Google Scholar] [CrossRef]
- Darch, T.; Blackwell, M.S.A.; Hood, J.; Lee, M.R.F.; Storkey, J.; Beaumont, D.A.; McGrath, S.P. The effect of soil type on yield and micronutrient content of pasture species. PLoS ONE 2022, 17, e0277091. [Google Scholar] [CrossRef]
- Merino, V.M.; Aguilar, R.; Piña, L.F.; Navarrete, S.; Garriga, M.; Noriga, F.; Ostria-Gallardo, E.; López, M.D.; Rivero, M.J. Regrowth Dynamics and Morpho-Physiological Characteristics of Plantago lanceolata under Different Defoliation Frequency and Residual Heights. PLoS ONE 2024, 19. [Google Scholar] [CrossRef]
- Oliveira, B.; Lopez, I.; Cranston, L.; Kemp, P.; Donaghy, D. Using Leaf Regrowth Stage to Define Defoliation Interval for Diverse Pastures of Complementary Species (Lolium perenne L., Bromus valdivianus Phil., Dactylis glomerata L. and Trifolium pepens L.). J. N. Z. Grassl. 2023, 85, 309–320. [Google Scholar] [CrossRef]
- Turner, L.R.; Donaghy, D.J.; Lane, P.A.; Rawnsley, R.P. Effect of Defoliation Management, Based on Leaf Stage, on Perennial Ryegrass (Lolium perenne L.), Prairie Grass (Bromus willdenowii Kunth.) and Cocksfoot (Dactylis glomerata L.) under Dryland Conditions. 1. Regrowth, Tillering and Water-soluble Carbohydrate Concentration. Grass Forage Sci. 2006, 61, 164–174. [Google Scholar] [CrossRef]
- Li, G.D.; Kemp, P.D.; Hodgson, J. Regrowth, Morphology and Persistence of Grasslands Puna Chicory (Cichorium intybus L.) in Response to Grazing Frequency and Intensity. Grass Forage Sci. 1997, 52, 33–41. [Google Scholar] [CrossRef]
- Benot, M.-L.; Morvan-Bertrand, A.; Mony, C.; Huet, J.; Sulmon, C.; Decau, M.-L.; Prud’homme, M.-P.; Bonis, A. Grazing Intensity Modulates Carbohydrate Storage Pattern in Five Grass Species from Temperate Grasslands. Acta Oecologica 2019, 95, 108–115. [Google Scholar] [CrossRef]
- Raeside, M.; Nie, Z.; Behrendt, R. Improving mineral availability for grazing livestock in Australian pasture systems by using plantain and lucerne. In Proceedings of the 16th Australian Agronomy Conference, Capturing Opportunities and Overcoming Obstacles in Australian Agronomy, Armidale, Australia, 14–18 October 2012. [Google Scholar]
- Cooledge, E.C.; Kendall, N.R.; Leake, J.R.; Chadwick, D.R.; Jones, D.L. Herbal leys increase forage macro- and micronutrient content, spring lamb nutrition, liveweight gain, and reduce gastrointestinal parasites compared to a grass-clover ley. Agric. Ecosyst. Environ. 2024, 367, 108991. [Google Scholar] [CrossRef]
- Darch, T.; Mcgrath, S.P.; Lee MR, F.; Beaumont, D.A.; Blackwell MS, A.; Horrocks, C.A.; Storkey, J. The Mineral Composition of Wild-Type and Cultivated Varieties of Pasture Species. Agronomy 2020, 10, 1463. [Google Scholar] [CrossRef]
- Marley, C.L.; Fychan, R.; Davies, J.W.; Scott, M.B.; Sanderson, R. Micronutrient content of forages with differing root systems. In Proceedings of the British Grassland Society, 13th Research Conference-Multi-Species Swards, Online, 2–4 March 2021. [Google Scholar]
- Nguyen, T.T.; Navarrete, S.; Horne, D.J.; Donaghy, D.J.; Kemp, P.D. Incorporating plantain with perennial ryegrass-white clover in a dairy grazing system: Dry matter yield, botanical composition, and nutritive value response to sowing rate, plantain content and season. Agronomy 2022, 12, 2789. [Google Scholar] [CrossRef]
- Nguyen, T.T. Impact of Plantain (Plantago lanceolata) Based Pasture on Milk Production of Dairy Cows and Nitrate Leaching from Pastoral Systems. Ph.D. Thesis, Massey University, Palmerston North, New Zealand, 2023. [Google Scholar]
- Nguyen, T.T.; Navarrete, S.; Horne, D.J.; Donaghy, D.J.; Kemp, P.D. Forage plantain (Plantago lanceolata L.): Meta-analysis quantifying the decrease in nitrogen excretion, the increase in milk production, and the changes in milk composition of dairy cows grazing pastures containing plantain. Anim. Feed. Sci. Technol. 2022, 285, 115244. [Google Scholar] [CrossRef]
- Box, L.A.; Judson, H.G. The concentration of bioactive compounds in Plantago lanceolata is genotype specific. J. N. Z. Grassl. 2018, 80, 113–118. [Google Scholar] [CrossRef]
- Navarrete, S.; Kemp, P.D.; Pain, S.J.; Back, P.J. Bioactive compounds, aucubin and acteoside, in plantain (Plantago lanceolata L.) and their effect on in vitro rumen fermentation. Anim. Feed Sci. Technol. 2016, 222, 158–167. [Google Scholar] [CrossRef]
- Pembleton, K.G.; Hills, J.L.; Freeman, M.J.; McLaren, D.K.; French, M.; Rawnsley, R.P. More milk from forage: Milk production, blood metabolites, and forage intake of dairy cows grazing pasture mixtures and spatially adjacent monocultures. J. Dairy Sci. 2016, 99, 3512–3528. [Google Scholar] [CrossRef]
- Wims, E.; B McCarthy, J.P.; Murphy, T.F.; O’Callaghan, M.D. Effect of sward type on urinary nitrogen excretion of late lactation cows. In Proceedings of the 75th Annual Meeting of The European Federation of Animal Science, Florence, Italy, 1–5 September 2024. [Google Scholar]
- Mangwe, M.C.; Bryant, R.H.; Beck, M.R.; Fleming, A.E.; Gregorini, P. Grazed chicory, plantain or ryegrass–white clover alters milk yield and fatty acid composition of late-lactating dairy cows. Anim. Prod. Sci. 2020, 60, 107–113. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Navarrete, S.; Horne, D.; Donaghy, D.; Kemp, P. Milk production and nitrogen excretion of grazed dairy cows in response to plantain (Plantago lanceolata) content and lactation season. Anim. Biosci. 2024, 38, 67–76. [Google Scholar] [CrossRef] [PubMed]
- Marshall, C.J.; Beck, M.R.; Garrett, K.; Barrell, G.K.; Al-Marashdeh, O.; Gregorini, P. Nitrogen Balance of Dairy Cows Divergent for Milk Urea Nitrogen Breeding Values Consuming Either Plantain or Perennial Ryegrass. Animals 2021, 11, 2464. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.T.; Navarrete, S.; Horne, D.; Donaghy, D.; Bryant, R.H.; Kemp, P. Dairy Cows Grazing Plantain-Based Pastures Have Increased Urine Patches and Reduced Urine N Concentration That Potentially Decreases N Leaching from a Pastoral System. Animals 2023, 13, 528. [Google Scholar] [CrossRef] [PubMed]
- Gregorini, P.; Minnee EM, K.; Griffiths, W.; Lee, J.M. Dairy cows increase ingestive mastication and reduce ruminative chewing when grazing chicory and plantain. J. Dairy Sci. 2013, 96, 7798–7805. [Google Scholar] [CrossRef]
- Durmic, Z.; Moate, P.J.; Jacobs, J.L.; Vadhanabhuti, J.; Vercoe, P.E. In vitro fermentability and methane production of some alternative forages in Australia. Anim. Prod. Sci. 2016, 56, 641–645. [Google Scholar] [CrossRef]
- Badgery, W.; Li, G.; Simmons, A.; Wood, J.; Smith, R.; Peck, D.; Ingram, L.; Durmic, Z.; Cowie, A.; Humphries, A.; et al. Reducing enteric methane of ruminants in Australian grazing systems—A review of the role for temperate legumes and herbs. Crop Pasture Sci. 2023, 74, 661–679. [Google Scholar] [CrossRef]
- Githiori, J.B.; Athanasiadou, S.; Thamsborg, S.M. Use of plants in novel approaches for control of gastrointestinal helminths in livestock with emphasis on small ruminants. Vet Parasitol 2006, 139, 308–320. [Google Scholar] [CrossRef]
- Bloemhoff, Y.; Danaher, M.; Andrew, F.; Morgan, E.; Mulcahy, G.; Power, C.; Sayers, R. Parasite control practices on pasture-based dairy farms in the Republic of Ireland. Vet. Parasitol. 2014, 204, 352–363. [Google Scholar] [CrossRef]
- Sargison, N.D. Sustainable helminth control practices in the United Kingdom. Small Rumin. Res. 2014, 118, 35–40. [Google Scholar] [CrossRef]
- Al-Mamun, M.; Abe, D.; Kofujita, H.; Tamura, Y.; Sano, H. Comparison of the bioactive components of the ecotypes and cultivars of plantain (Plantago lanceolata L.) herbs. Anim. Sci. J. 2008, 79, 83–88. [Google Scholar] [CrossRef]
- Reza, M.M.; Redoy, M.R.A.; Rahman, M.A.; Ety, S.; Alim, M.A.; Cheng, L.; Al-Mamun, M. Response of plantain (Plantago lanceolata L.) supplementation on nutritional, endo-parasitic, and endocrine status in lambs. Trop. Anim. Health Prod. 2021, 53, 82. [Google Scholar] [CrossRef] [PubMed]
- Totty, V.K.; Greenwood, S.L.; Bryant, R.H.; Edwards, G.R. Nitrogen partitioning and milk production of dairy cows grazing simple and diverse pastures. J. Dairy Sci. 2013, 96, 141–149. [Google Scholar] [CrossRef]
- Woods, R.R.; Cameron, K.C.; Edwards, G.R.; Di, H.J.; Clough Tim, J. Reducing nitrogen leaching losses in grazed dairy systems using an Italian ryegrass-plantain-white clover forage mix. Grass Forage Sci. 2018, 73, 878–887. [Google Scholar] [CrossRef]
- Beck, M.R.; Garrett, K.; Thompson, B.R.; Stevens, D.R.; Barrell, G.K.; Gregorini, P. Plantain (Plantago lanceolata) reduces the environmental impact of farmed red deer (Cervus elaphus). Transl. Anim. Sci. 2020, 4, txaa160. [Google Scholar] [CrossRef]
- Minnée, E.M.K.; Leach, C.M.T.; Dalley, D.E. Substituting a pasture-based diet with plantain (Plantago lanceolata) reduces nitrogen excreted in urine from dairy cows in late lactation. Livest. Sci. 2020, 239, 104093. [Google Scholar] [CrossRef]
- Pol, M.V.; Schmidtke, K.; Lewandowska, S. Plantago lanceolata—An overview of its agronomically and healing valuable features. Open Agric. 2021, 6, 479–488. [Google Scholar] [CrossRef]
- Lu, Z.; Xu, Z.; Shen, Z.; Tian, Y.; Shen, H. Dietary energy level promotes rumen microbial protein synthesis by improving the energy productivity of the ruminal microbiome. Front. Microbiol. 2019, 10, 847. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Navarrete, S.; Horne, D.J.; Donaghy, D.J.; Kemp, P.D. Effect of plantain content in ryegrass-based dairy pastures on nitrate leaching and key components of the nitrogen cycle. In Adaptive Strategies for Future Farming; Occasional Report No. 34; Christensen, C.L., Horne, D.J., Singh, R., Eds.; Occasional Report No. 34; Farmed Landscapes Research Centre, Massey University: Palmerston North, New Zealand, 2022; p. 7. [Google Scholar]
- Fransen, K.E.; Gard, S.M.; Pinxterhuis, I.; Minnée, E.M.K.; Peterson, M.E.; Mudge, P.; Woods, R.R.; Al-Marashdeh, O.; Horne, D.; Beukes, P.C.; et al. Comment on ‘An examination of the ability of plantain (Plantago lanceolata L.) to mitigate nitrogen leaching from pasture systems’. N. Z. J. Agric. Res. 2024, 68, 158–170. [Google Scholar] [CrossRef]
- Milne, A.E.; Glendining, M.J.; Bellamy, P.; Misselbrook, T.; Gilhespy, S.; Casado, M.R.; Whitmore, A.P. Analysis of uncertainties in the estimates of nitrous oxide and methane emissions in the UK’s greenhouse gas inventory for agriculture. Atmos. Environ. 2014, 82, 94–105. [Google Scholar] [CrossRef]
- Carmona-Flores, L.; Bionaz, M.; Downing, T.; Sahin, M.; Cheng, L.; Ates, S. Milk Production, N Partitioning, and Methane Emissions in Dairy Cows Grazing Mixed or Spatially Separated Simple and Diverse Pastures. Animals 2020, 10, 1301. [Google Scholar] [CrossRef]
- Lavery, A.; Ferris, C.P. Proxy Measures and Novel Strategies for Estimating Nitrogen Utilisation Efficiency in Dairy Cattle. Animals 2021, 11, 343. [Google Scholar] [CrossRef] [PubMed]
- López-Aizpún, M.; Horrocks, C.A.; Charteris, A.F.; Marsden, K.A.; Ciganda, V.S.; Evans, J.R.; Cárdenas, L.M. Meta-analysis of global livestock urine-derived nitrous oxide emissions from agricultural soils. Glob. Chang. Biol. 2020, 26, 2002–2013. [Google Scholar] [CrossRef] [PubMed]
- Vi, C.; Kemp, P.D.; Saggar, S.; Navarrete, S.; Horne, D.J. Effective Proportion of Plantain (Plantago lanceolata L.) in Mixed Pastures for Botanical Stability and Mitigating Nitrous Oxide Emissions from Cow Urine Patches. Agronomy 2023, 13, 1447. [Google Scholar] [CrossRef]
- Chibuike, G.; Newton, P.; Bowatte, S.; Beechey-Gradwell, Z.; Brock, S.; Thompson, D.; Luo, D. 2024 Does plantain reduce N2O emissions from a pasture soil previously exposed to elevated atmospheric CO2? In Opportunities for Improved Farm Catchment Outcomes; Christensen, C.L., Horne, D.J., Singh, R., Eds.; Occasional Report No. 36; Farmed Landscapes Research Centre, Massey University: Palmerston North, New Zealand, 2024; 6p, Available online: http://flrc.massey.ac.nz/publications.html (accessed on 20 November 2024).
- Huws, S.A.; Creevey, C.J.; Oyama, L.B.; Mizrahi, I.; Denman, S.E.; Popova, M.; Morgavi, D.P. Addressing Global Ruminant Agricultural Challenges Through Understanding the Rumen Microbiome: Past, Present, and Future. Front. Microbiol. 2018, 9, 2161. [Google Scholar] [CrossRef]
- Hynes, D.N.; Stergiadis, S.; Gordon, A.; Yan, T. Effects of crude protein level in concentrate supplements on animal performance and nitrogen utilization of lactating dairy cows fed fresh-cut perennial grass. J. Dairy Sci. 2016, 99, 8111–8120. [Google Scholar] [CrossRef]
- Katongole, C.B.; Yan, T. Effect of Varying Dietary Crude Protein Level on Feed Intake, Nutrient Digestibility, Milk Production, and Nitrogen Use Efficiency by Lactating Holstein-Friesian Cows. Animals 2020, 10, 2439. [Google Scholar] [CrossRef]
- Doran, M.J.; Mulligan, F.J.; Lynch, M.B.; Fahey, A.G.; Markiewicz-Keszycka, M.; Rajauria, G.; Pierce, K.M. Effects of Protein Supplementation Strategy and Genotype on Milk Production and Nitrogen Utilisation Efficiency in Late-Lactation, Spring-Calving Grazing Dairy Cows. Animals 2023, 13, 570. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, M.; Jiang, L.; Guan, L. Could natural phytochemicals be used to reduce nitrogen excretion and excreta-derived N2O emissions from ruminants? J. Anim. Sci. Biotechnol. 2023, 14, 140. [Google Scholar] [CrossRef]
- Thompson, L.R.; Rowntree, J.E. Invited Review: Methane sources, quantification, and mitigation in grazing beef systems. Appl. Anim. Sci. 2020, 36, 556–573. [Google Scholar] [CrossRef]
- Zaman, M.; Kleineidam, K.; Bakken, L.; Berendt, J.; Bracken, C.; Butterbach-Bahl, K.; Cai, Z.; Chang, S.X.; Clough, T.; Dawar, K.; et al. Methane Production in Ruminant Animals. In Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options Using Nuclear and Related Techniques; Zaman, M., Heng, L., Müller, C., Eds.; Springer: Cham, Switzerland, 2021. [Google Scholar] [CrossRef]
- Møller, H.B.; Moset, V.; Brask, M.; Weisbjerg, M.R.; Lund, P. Feces composition and manure derived methane yield from dairy cows: Influence of diet with focus on fat supplement and roughage type. Atmos. Environ. 2014, 94, 36–43. [Google Scholar] [CrossRef]
- Thacharodi, A.; Hassan, S.; Ahmed, Z.H.T.; Singh, P.; Maqbool, M.; Meenatchi, R.; Pugazhendhi, A.; Sharma, A. The ruminant gut microbiome vs enteric methane emission: The essential microbes may help to mitigate the global methane crisis. Environ. Res. 2024, 261, 119661. [Google Scholar] [PubMed]
- IPCC. Summary for Policymakers. In Climate Change 2013: Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK; New York, NY, USA, 2013; Available online: https://www.ipcc.ch/site/assets/uploads/2018/02/WG1AR5_SPM_FINAL.pdf (accessed on 20 November 2024).
- DEFRA. Farming Evidence Pack a High-Level Overview of the UK Agricultural Industry July 2024. 2024. Available online: https://www.gov.uk/government/publications/farming-evidence-pack-a-high-level-overview-of-the-uk-agricultural-industry (accessed on 20 November 2024).
- Barczyk, L.; Kuntu-Blankson, K.; Calanca, P.; Six, J.; Ammann, C. N2O emission factors for cattle urine: Effect of patch characteristics and environmental drivers. Nutr. Cycl. Agroecosyst. 2023, 127, 173–189. [Google Scholar] [CrossRef] [PubMed]
- Ding, K.; Luo, J.; Welten, B.; de Klein, C.A.M. The effect of plantain (Plantago lanceolata L.) in pasture swards on gaseous nitrogen emissions from nitrogen-enriched urine patches. Plant Soil 2024. [Google Scholar] [CrossRef]
- Egan, A.; Moloney, T.; Murphy, J.B.; Forrestal, P.J. Ribwort plantain inclusion reduces nitrate leaching from grass-clover swards; A multi-year five soil study. Agric. Ecosyst. Environ. 2024, 380, 109376. [Google Scholar] [CrossRef]
- Earl-Goulet, S.; Talbot, W.D.; Cameron, K.C.; Di, H.J. Effects of plantain in pasture on nitrous oxide emissions from cattle urine patches, as affected by urine deposition timing and soil type. N. Z. J. Agric. Res. 2023, 66, 44–60. [Google Scholar] [CrossRef]
- Krol, D.J.; Carolan, R.; Minet, E.; McGeough, K.L.; Watson, C.J.; Forrestal, P.J.; Richards, K.G. Improving and disaggregating N2O emission factors for ruminant excreta on temperate pasture soils. Sci. Total Environ. 2016, 568, 327–338. [Google Scholar] [CrossRef]
- Oenema, O.; Wrage, N.; Velthof, G.L.; van Groenigen, J.W.; Dolfing, J.; Kuikman, P.J. Trends in Global Nitrous Oxide Emissions from Animal Production Systems. Nutr. Cycl. Agroecosystems 2005, 72, 51–65. [Google Scholar] [CrossRef]
- Saggar, S.; Jha, N.; Deslippe, J.; Bolan, N.S.; Luo, J.; Giltrap, D.L.; Tillman, R.W. Denitrification and N2O:N2 production in temperate grasslands: Processes, measurements, modelling and mitigating negative impacts. Sci. Total Environ. 2013, 465, 173–195. [Google Scholar] [CrossRef]
- Dijkstra, J.; Oenema, O.; van Groenigen, J.W.; Spek, J.W.; van Vuuren, A.M.; Bannink, A. Diet effects on urine composition of cattle and N2O emissions. Animal 2013, 7 (Suppl. S2), 292–302. [Google Scholar] [CrossRef]
- Podolyan, A.; Di, H.J.; Cameron, K.C. Effect of plantain on nitrous oxide emissions and soil nitrification rate in pasture soil under a simulated urine patch in Canterbury. N. Z. J. Soils Sediments 2020, 20, 1468–1479. [Google Scholar] [CrossRef]
- Pijlman, J.; Berger, S.J.; Lexmond, F.; Bloem, J.; van Groenigen, J.W.; Visser, E.J.W.; Erisman, J.W.; van Eekeren, N. Can the presence of plantain (Plantago lanceolata L.) improve nitrogen cycling of dairy grassland systems on peat soils? N. Z. J. Agric. Res. 2020, 63, 106–122. [Google Scholar] [CrossRef]
- Nyameasem, J.K.; Ben Halima, E.; Malisch, C.S.; Razavi, B.S.; Taube, F.; Reinsch, T. Nitrous Oxide Emission from Forage Plantain and Perennial Ryegrass Swards Is Affected by Belowground Resource Allocation Dynamics. Agronomy 2021, 11, 1936. [Google Scholar] [CrossRef]
- Simon, P.L.; de Klein CA, M.; Worth, W.; Rutherford, A.J.; Dieckow, J. The efficacy of Plantago lanceolata for mitigating nitrous oxide emissions from cattle urine patches. Sci. Total Environ. 2019, 691, 430–441. [Google Scholar] [CrossRef] [PubMed]
- Gardiner, C.A.; Clough, T.J.; Cameron, K.C.; Di, H.J.; Edwards, G.R.; de Klein CA, M. Potential inhibition of urine patch nitrous oxide emissions by Plantago lanceolata and its metabolite aucubin. N. Z. J. Agric. Res. 2018, 61, 495–503. [Google Scholar] [CrossRef]
- Jonathan, I.; Otene, J.; Hedley, M.J.; Bishop, P. Reduction of Nitrous Oxide Emissions from Urine Patches from Grazed Dairy Pastures in New Zealand: A Preliminary Assessment of ORUN® as an Alternative to the Use of Nitrification Inhibitor Dicyandiamide (DCD). Sustainability 2024, 16, 2843. [Google Scholar] [CrossRef]
- Fornara, D.A.; Tilman, D. Plant functional composition influences rates of soil carbon and nitrogen accumulation. J. Ecol. 2008, 96, 314–322. [Google Scholar] [CrossRef]
Number of Publications | |||
---|---|---|---|
Relevant | Not Relevant | Total | |
All publications | 142 | 75 | 217 |
Temperate Zone | |||
Northern Hemisphere | 42 | 37 | 79 |
Southern Hemisphere | 91 | 37 | 128 |
Both Hemispheres (review articles) | 9 | 1 | 10 |
Year | |||
<2018 | 53 | 50 | 103 |
2018–2024 | 69 | 25 | 115 |
Topics | |||
Cattle only | 28 | 2 | 30 |
Sward only | 47 | 11 | 58 |
Cattle, sward and emissions | 65 | 3 | 68 |
Different Animals/Soil | 3 | 58 | 61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chesney, L.E.; Carnovale, F.; Huson, K.M.; Rutherford, N.; Patterson, D. Plantain (Plantago lanceolata L.) as an Alternative Forage to Build Resilience and Reduce the Environmental Footprint of Grazing Dairy Systems in Temperate Northern Climates: A Review. Sustainability 2025, 17, 3131. https://doi.org/10.3390/su17073131
Chesney LE, Carnovale F, Huson KM, Rutherford N, Patterson D. Plantain (Plantago lanceolata L.) as an Alternative Forage to Build Resilience and Reduce the Environmental Footprint of Grazing Dairy Systems in Temperate Northern Climates: A Review. Sustainability. 2025; 17(7):3131. https://doi.org/10.3390/su17073131
Chicago/Turabian StyleChesney, Lauren E., Francesca Carnovale, Kathryn M. Huson, Naomi Rutherford, and David Patterson. 2025. "Plantain (Plantago lanceolata L.) as an Alternative Forage to Build Resilience and Reduce the Environmental Footprint of Grazing Dairy Systems in Temperate Northern Climates: A Review" Sustainability 17, no. 7: 3131. https://doi.org/10.3390/su17073131
APA StyleChesney, L. E., Carnovale, F., Huson, K. M., Rutherford, N., & Patterson, D. (2025). Plantain (Plantago lanceolata L.) as an Alternative Forage to Build Resilience and Reduce the Environmental Footprint of Grazing Dairy Systems in Temperate Northern Climates: A Review. Sustainability, 17(7), 3131. https://doi.org/10.3390/su17073131