Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (187)

Search Parameters:
Keywords = Pinch Analysis

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2474 KiB  
Article
Performance Analysis of a Novel Directly Combined Organic Rankine Cycle and Dual-Evaporator Vapor Compression Refrigeration Cycle
by Nagihan Bilir Sag and Metehan Isik
Appl. Sci. 2025, 15(15), 8545; https://doi.org/10.3390/app15158545 (registering DOI) - 31 Jul 2025
Viewed by 152
Abstract
Combining Organic Rankine Cycles (ORC) with cooling cycles offers a promising approach to achieving greater outputs within a single system. In this study, a novel directly combined ORC-VCC system has been designed to not only meet the cooling demand using a geothermal heat [...] Read more.
Combining Organic Rankine Cycles (ORC) with cooling cycles offers a promising approach to achieving greater outputs within a single system. In this study, a novel directly combined ORC-VCC system has been designed to not only meet the cooling demand using a geothermal heat source but also generate power. The proposed novel ORC-VCC system has been analyzed for its energetic performance using four selected fluids: R290, R600a, R601, and R1234ze(E). Parametric analysis has been conducted to investigate the effects of parameters of heat source temperature, heat source mass flow rate, cooling capacities, condenser temperature, ORC evaporator temperature, pinch point temperature difference and isentropic efficiencies on net power production. Among the working fluids, R290 has provided the highest net power production under all conditions in which it was available to operate. Additionally, the results have been analyzed concerning a reference cycle for comparative evaluation. The proposed novel cycle has outperformed the reference cycle in all investigated cases in terms of net power production such as demonstrating an improvement of approximately from 8.7% to 57.8% in geothermal heat source temperature investigations. Similar improvements have been observed over the reference cycle at lower heat source mass flow rates, where net power increases by up to 50.8%. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

25 pages, 20396 KiB  
Article
Constructing Ecological Security Patterns in Coal Mining Subsidence Areas with High Groundwater Levels Based on Scenario Simulation
by Shiyuan Zhou, Zishuo Zhang, Pingjia Luo, Qinghe Hou and Xiaoqi Sun
Land 2025, 14(8), 1539; https://doi.org/10.3390/land14081539 - 27 Jul 2025
Viewed by 288
Abstract
In mining areas with high groundwater levels, intensive coal mining has led to the accumulation of substantial surface water and significant alterations in regional landscape patterns. Reconstructing the ecological security pattern (ESP) has emerged as a critical focus for ecological restoration in coal [...] Read more.
In mining areas with high groundwater levels, intensive coal mining has led to the accumulation of substantial surface water and significant alterations in regional landscape patterns. Reconstructing the ecological security pattern (ESP) has emerged as a critical focus for ecological restoration in coal mining subsidence areas with high groundwater levels. This study employed the patch-generating land use simulation (PLUS) model to predict the landscape evolution trend of the study area in 2032 under three scenarios, combining environmental characteristics and disturbance features of coal mining subsidence areas with high groundwater levels. In order to determine the differences in ecological network changes within the study area under various development scenarios, morphological spatial pattern analysis (MSPA) and landscape connectivity analysis were employed to identify ecological source areas and establish ecological corridors using circuit theory. Based on the simulation results of the optimal development scenario, potential ecological pinch points and ecological barrier points were further identified. The findings indicate that: (1) land use changes predominantly occur in urban fringe areas and coal mining subsidence areas. In the land reclamation (LR) scenario, the reduction in cultivated land area is minimal, whereas in the economic development (ED) scenario, construction land exhibits a marked increasing trend. Under the natural development (ND) scenario, forest land and water expand most significantly, thereby maximizing ecological space. (2) Under the ND scenario, the number and distribution of ecological source areas and ecological corridors reach their peak, leading to an enhanced ecological network structure that positively contributes to corridor improvement. (3) By comparing the ESP in the ND scenario in 2032 with that in 2022, the number and area of ecological barrier points increase substantially while the number and area of ecological pinch points decrease. These areas should be prioritized for ecological protection and restoration. Based on the scenario simulation results, this study proposes a planning objective for a “one axis, four belts, and four zones” ESP, along with corresponding strategies for ecological protection and restoration. This research provides a crucial foundation for decision-making in enhancing territorial space planning in coal mining subsidence areas with high groundwater levels. Full article
Show Figures

Figure 1

34 pages, 2504 KiB  
Review
Review of Challenges in Heat Exchanger Network Development for Electrified Industrial Energy Systems
by Stanislav Boldyryev, Oleksandr S. Ivashchuk, Goran Krajačić and Volodymyr M. Atamanyuk
Energies 2025, 18(14), 3685; https://doi.org/10.3390/en18143685 - 12 Jul 2025
Viewed by 332
Abstract
Shifting towards electrified industrial energy systems is pivotal for meeting global decarbonization objectives, especially since process heat is a significant contributor to greenhouse gas emissions in the industrial sector. This review examines the changing role of heat exchanger networks (HENs) within electrified process [...] Read more.
Shifting towards electrified industrial energy systems is pivotal for meeting global decarbonization objectives, especially since process heat is a significant contributor to greenhouse gas emissions in the industrial sector. This review examines the changing role of heat exchanger networks (HENs) within electrified process industries, where electricity-driven technologies, including electric heaters, steam boilers, heat pumps, mechanical vapour recompression, and organic Rankine cycles, are increasingly supplanting traditional fossil-fuel-based utilities. The analysis identifies key challenges associated with multi-utility integration, multi-pinch configurations, and low-grade heat utilisation that influence HEN design, retrofitting, and optimisation efforts. A comparative evaluation of various methodological frameworks, including mathematical programming, insights-based methods, and hybrid approaches, is presented, highlighting their relevance to the specific constraints and opportunities of electrified systems. Case studies from the chemicals, food processing, and cement sectors demonstrate the practicality and advantages of employing electrified heat exchanger networks (HENs), particularly in terms of energy efficiency, emissions reduction, and enhanced operational flexibility. The review concludes that effective strategies for the design of HENs are crucial in industrial electrification, facilitating increases in efficiency, reductions in emissions, and improvements in economic feasibility, especially when they are integrated with renewable energy sources and advanced control systems. Future initiatives must focus on harmonising technical advances with system-level resilience and economic sustainability considerations. Full article
Show Figures

Figure 1

24 pages, 7211 KiB  
Article
Hysteresis Model for Flexure-Shear Critical Circular Reinforced Concrete Columns Considering Cyclic Degradation
by Zhibin Feng, Jiying Wang, Hua Huang, Weiqi Liang, Yingjie Zhou, Qin Zhang and Jinxin Gong
Buildings 2025, 15(14), 2445; https://doi.org/10.3390/buildings15142445 - 11 Jul 2025
Viewed by 258
Abstract
Accurate seismic performance assessment of flexure-shear critical reinforced concrete (RC) columns necessitates precise hysteresis modeling that captures their distinct cyclic characteristics—particularly pronounced strength degradation, stiffness deterioration, and pinching effects. However, existing hysteresis models for such circular RC columns fail to comprehensively characterize these [...] Read more.
Accurate seismic performance assessment of flexure-shear critical reinforced concrete (RC) columns necessitates precise hysteresis modeling that captures their distinct cyclic characteristics—particularly pronounced strength degradation, stiffness deterioration, and pinching effects. However, existing hysteresis models for such circular RC columns fail to comprehensively characterize these coupled cyclic degradation mechanisms under repeated loading. This study develops a novel hysteresis model explicitly incorporating three key mechanisms: (1) directionally asymmetric strength degradation weighted by hysteretic energy, (2) cycle-dependent pinching governed by damage accumulation paths, and (3) amplitude-driven stiffness degradation decoupled from cycle count, calibrated and validated using 14 column tests from the Pacific Earthquake Engineering Research Center (PEER) structural performance database. Key findings reveal that significant strength degradation primarily manifests during initial loading cycles but subsequently stabilizes. Unloading stiffness degradation demonstrates negligible dependency on cycle number. Pinching effects progressively intensify with cyclic advancement. The model provides a physically rigorous framework for simulating seismic deterioration, significantly improving flexure-shear failure prediction accuracy, while parametric analysis confirms its potential adaptability beyond tested scenarios. However, applicability remains confined to specific parameter ranges with reliability decreasing near boundaries due to sparse data. Deliberate database expansion for edge cases is essential for broader generalization. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

19 pages, 1272 KiB  
Article
Waste to Biofuel: Process Design and Optimisation for Sustainable Aviation Fuel Production from Corn Stover
by Nur Aina Najihah Halimi, Ademola Odunsi, Alex Sebastiani and Dina Kamel
Energies 2025, 18(13), 3418; https://doi.org/10.3390/en18133418 - 29 Jun 2025
Viewed by 580
Abstract
Addressing the urgent need to decarbonise aviation and valorise agricultural waste, this paper investigates the production of Sustainable Aviation Fuel (SAF) from corn stover. A preliminary evaluation based on a literature review indicates that among various conversion technologies, fast pyrolysis (FP) emerged as [...] Read more.
Addressing the urgent need to decarbonise aviation and valorise agricultural waste, this paper investigates the production of Sustainable Aviation Fuel (SAF) from corn stover. A preliminary evaluation based on a literature review indicates that among various conversion technologies, fast pyrolysis (FP) emerged as the most promising option, offering the highest fuel yield (22.5%) among various pathways, a competitive potential minimum fuel selling price (MFSP) of 1.78 USD/L, and significant greenhouse gas savings of up to 76%. Leveraging Aspen Plus simulation, SAF production via FP was rigorously designed and optimised, focusing on the heat integration strategy within the process to minimise utility consumption and ultimately the total cost. Consequently, the produced fuel exceeded the American Society for Testing and Materials (ASTM) limit for the final boiling point, rendering it unsuitable as a standalone jet fuel. Nevertheless, it achieves regulatory compliance when blended at a rate of up to 10% with conventional jet fuel, marking a practical route for early adoption. Energy optimisation through pinch analysis integrated four hot–cold stream pairs, eliminating external heating, reducing cooling needs by 55%, and improving sustainability and efficiency. Economic analysis revealed that while heat integration slashed utility costs by 84%, the MFSP only decreased slightly from 2.35 USD/L to 2.29 USD/L due to unchanging material costs. Sensitivity analysis confirmed that hydrogen, catalyst, and feedstock pricing are the most influential variables, suggesting targeted reductions could push the MFSP below 2 USD/L. In summary, this work underscores the technical and economic viability of corn stover-derived SAF, providing a promising pathway for sustainable aviation and waste valorisation. While current limitations restrict fuel quality during full substitution, the results affirm the feasibility of SAF blending and present a scalable, low-carbon pathway for future development. Full article
(This article belongs to the Special Issue Biomass and Waste-to-Energy for Sustainable Energy Production)
Show Figures

Figure 1

21 pages, 2875 KiB  
Article
A Study on the Optimization of Ecological Spatial Structure Based on Landscape Risk Assessment: A Case Study of Wensu County, Xinjiang, China
by Qian Li, Junjie Yan, Junhui Cheng, Yan Xu, Yincheng Gong, Guangpeng Zhang, Hongbo Ling and Ruyi Pan
Land 2025, 14(7), 1323; https://doi.org/10.3390/land14071323 - 21 Jun 2025
Viewed by 442
Abstract
Ecological network construction has been widely accepted and applied to guide regional ecological conservation and restoration. For arid regions, ecological networks proposed based on ecological risk assessments are better aligned with the sensitive and fragile characteristics of local ecosystems. This study assesses landscape [...] Read more.
Ecological network construction has been widely accepted and applied to guide regional ecological conservation and restoration. For arid regions, ecological networks proposed based on ecological risk assessments are better aligned with the sensitive and fragile characteristics of local ecosystems. This study assesses landscape ecological risk in Wensu County, located on the southern slope of the Tianshan Mountains in the arid region of northwestern China, and it further proposes an optimized ecological network. A multidimensional framework composed of the natural environment, human society, and landscape patterns was employed to construct an ecological risk assessment system. Spatial principal component analysis (SPCA) was applied to identify the spatial pattern of ecological risk. Morphological spatial pattern analysis (MSPA) and a minimum cumulative resistance (MCR) model integrated with circuit theory were used to extract the ecological sources and delineate the ecological corridors. The results reveal significant spatial heterogeneity in terms of ecological risk: Low-risk zones (16.26%) are concentrated in the southwestern forest and water areas. In comparison, high-risk zones (28.27%) are mainly distributed in the northern mountainous mining region. A total of 24 ecological source patches (4105.24 km2), 44 ecological corridors (313.6 km), 39 ecological pinch points, and 38 ecological barriers were identified. Following optimization, the Integral Index of Connectivity (IIC) increased by 89.04%, and the Landscape Coherence Probability (LCP) rose by 105.23%, indicating markedly enhanced ecological connectivity. The current ecological network exhibits weak connectivity in the south and fragmentation in the central region. Targeted restoration of critical nodes, optimization of corridor configurations, and expansion of ecological sources are recommended to improve landscape connectivity and promote biodiversity conservation. Full article
Show Figures

Figure 1

12 pages, 1244 KiB  
Article
Evaluation of Energy Consumption for Mineral Processing of Tungsten Ore in Mongolia: Khovd Aimag and Erdene-Soum as Case Studies
by Ha Bich Trinh, Seunghyun Kim, Taehun Son, Junkun Song and Jaeryeong Lee
Minerals 2025, 15(6), 660; https://doi.org/10.3390/min15060660 - 19 Jun 2025
Viewed by 292
Abstract
The tungsten deposits in Mongolia have the potential to be exploited as an alternative source to alleviate the risk due to the monopolization in the global production of such a critical metal. However, it is challenging to develop an efficient mineral processing method [...] Read more.
The tungsten deposits in Mongolia have the potential to be exploited as an alternative source to alleviate the risk due to the monopolization in the global production of such a critical metal. However, it is challenging to develop an efficient mineral processing method that can complement the supply based on the currently available energy resources in Mongolia. Therefore, the present study investigated the range of energy required for the beneficiation of tungsten ores, including theoretical assumptions and practical evaluation for two processes in Mongolia. The range of energy consumption was 0.12 to 2.21 kWh/t for crushing and 0.29 to 4.62 kWh/t for grinding regarding the range of Kick’s constant 0.2–0.6 kWh/t and Bond work index 7–17 kWh/t, respectively. The most dominant impact factor in the comminution was the product size. The evaluation of 18 different comminution–flotation circuits indicated a range of required energy from 362 kWh to 8298 kWh. The maximum values of energy consumption for mineral processing of Erdene-soum and Khovd Aimag tungsten ore were 6280 and 6355 kWh. An estimation regarding the energy demand (6355 kWh) and supply energy for the process of Khovd Aimag ore was conducted to propose a suitable system of renewable energy resources using the power pinch analysis method. Full article
(This article belongs to the Section Mineral Processing and Extractive Metallurgy)
Show Figures

Graphical abstract

15 pages, 977 KiB  
Review
Heat Exchanger Networks: Applications for Industrial Integrations
by Bahar Saeb Gilani and Tatiana Morosuk
Energies 2025, 18(12), 3021; https://doi.org/10.3390/en18123021 - 6 Jun 2025
Viewed by 493
Abstract
Heat integration is a crucial concept in process engineering and energy management. It refers to using heat exchangers and process modifications to maximize energy efficiency, lowering cost and/or carbon emissions within industrial processes through minimizing the external heating and cooling requirements (utility savings). [...] Read more.
Heat integration is a crucial concept in process engineering and energy management. It refers to using heat exchangers and process modifications to maximize energy efficiency, lowering cost and/or carbon emissions within industrial processes through minimizing the external heating and cooling requirements (utility savings). There are two key aspects of heat integration. “Heat Exchanger Network” is an approach to designing efficient connections among the heat exchangers to transfer heat between several hot and cold streams. “Pinch Analysis” is a systematic methodology that determines the optimal energy recovery by identifying the “pinch point” to maximize heat recovery. The paper aims to review the actual status of research in the field of application of heat exchanger networks for industrial integrations and highlight the perspectives. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

20 pages, 2495 KiB  
Article
Low-Temperature ORC Systems: Influence of the Approach Point and Pinch Point Temperature Differences
by James Bull, Jed Pound, Jovana Radulovic and James M. Buick
Energies 2025, 18(11), 2954; https://doi.org/10.3390/en18112954 - 4 Jun 2025
Viewed by 416
Abstract
The International Energy Agency states that geothermal energy technologies could meet 15% of the global electricity demand growth, provided cost reductions continue. Organic Rankine Cycle (ORC) systems are expected to play a key role in achieving this ambitious target. Recognized for their effectiveness [...] Read more.
The International Energy Agency states that geothermal energy technologies could meet 15% of the global electricity demand growth, provided cost reductions continue. Organic Rankine Cycle (ORC) systems are expected to play a key role in achieving this ambitious target. Recognized for their effectiveness in converting low-to-moderate temperature heat, ORC systems are already in use in numerous installations. The performance of ORC systems is primarily influenced by operational conditions and the choice of working fluid. A key system design challenge arises from the operational conditions of ORC systems, which are closely tied to the design and sizing of heat exchange components. This study examines the effect of the pinch point temperature difference, and the approach point temperature on the thermodynamic performance of a low-temperature ORC, with cycle efficiency and the total heat transfer area of the evaporator serving as the main performance indicators. The analysis uses a parametric approach to assess ORC performance by varying pinch point and approach point temperatures for a range of suitable working fluids. An optimal design region is identified, where the trade-off between thermal efficiency and heat exchanger size is most advantageous. These results offer valuable theoretical insights for low-temperature ORC design, highlighting the importance of selecting pinch point and approach point temperatures that strike a balance between thermal and economic goals. Full article
(This article belongs to the Collection Advances in Heat Transfer Enhancement)
Show Figures

Figure 1

26 pages, 7235 KiB  
Article
Ecological Network Construction and Optimization in the Southwest Alpine Canyon Area of China Based on Habitat Quality Assessment
by Xiran Chen, Jiayue Xiong, Yinghui Guan and Jinxing Zhou
Remote Sens. 2025, 17(11), 1913; https://doi.org/10.3390/rs17111913 - 31 May 2025
Viewed by 536
Abstract
The Southwest Alpine Canyon Area (SACA) is a typical ecologically sensitive location in China; therefore, constructing and optimizing an ecological network for this area is essential to ensure the regional ecological security of its fragile ecosystems. This study employed the InVEST model to [...] Read more.
The Southwest Alpine Canyon Area (SACA) is a typical ecologically sensitive location in China; therefore, constructing and optimizing an ecological network for this area is essential to ensure the regional ecological security of its fragile ecosystems. This study employed the InVEST model to quantitatively assess the habitat quality of the SACA for the years 2000, 2010, and 2020. The ecological sources were determined based on the results of a habitat quality assessment and a Morphological Spatial Pattern Analysis (MSPA). Finally, ecological corridors, ecological pinch points, and ecological barrier points were identified using circuit theory. The results indicated that the SACA’s habitat quality was relatively good, but experienced slight degradation from 0.87 in 2000 to 0.84 in 2020. Anthropogenic activities have been identified as the primary contributor to habitat quality decline in the region. Geographically, the habitat quality is significantly poorer in the southeast and northwest of the SACA. A total of 319 ecological sources were identified, predominantly located in the southwest and northeast of the SACA, comprising 43.27% of the total area. Furthermore, 94 ecological corridors were delineated, covering an area of 74,015.61 km2 and extending over 182.80 km in length in total. A total of 38 ecological pinch points and 39 ecological barrier points were distinguished, with a noticeable concentration in regions undergoing ecological degradation. Overall, while the ecological network structure in the SACA is complex and highly interconnected, it faces challenges relating to material cycling and ecological network circulation. Future ecological restoration and protection efforts should focus on areas along the border between the ecological maintenance area in southeastern Tibet (Region I) and the water conservation area in eastern Tibet–western Sichuan (Region II). Additionally, the establishment of ecological protection belts around potential ecological corridors is proposed to enhance ecosystem connectivity. These findings could provide a robust scientific foundation for territorial spatial planning, ecological preservation, and restoration in the SACA. Full article
Show Figures

Figure 1

11 pages, 1432 KiB  
Article
Energy-Saving Design of Urea Method for Hydrazine Hydrate Process
by Zhihao Wang, Xiaojing Wang, Haibin Wu, Shengting Li and Yongjie Xu
Processes 2025, 13(5), 1585; https://doi.org/10.3390/pr13051585 - 20 May 2025
Viewed by 586
Abstract
The conventional urea-based process for hydrazine hydrate production faces challenges including low product yield and high energy consumption. To overcome these limitations, we propose an innovative integrated approach combining jet reactor technology with membrane separation, further enhanced through heat network optimization. Through process [...] Read more.
The conventional urea-based process for hydrazine hydrate production faces challenges including low product yield and high energy consumption. To overcome these limitations, we propose an innovative integrated approach combining jet reactor technology with membrane separation, further enhanced through heat network optimization. Through process simulation and sensitivity analysis, the following optimal distillation parameters were identified: nine theoretical stages, feed entry at the fifth stage, a reflux ratio of 0.6, and a distillate flow rate of 354 kg/h. Systematic optimization of the heat exchanger network (HEN) using pinch technology achieved substantial energy savings, reducing hot utility consumption by 66.8% (to 1317 MJ/h) and cold utility usage by 62.7% (to 1503 MJ/h). The redesigned HEN prioritized temperature-cascaded heat recovery, enabling 67% energy recuperation from exothermic reaction streams. Operational costs decreased by 12%, underscoring the economic viability of coupling process intensification with thermal integration. This work establishes a sustainable framework for hydrazine hydrate synthesis, balancing industrial feasibility with reduced environmental impact in chemical manufacturing. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

19 pages, 2450 KiB  
Review
First Web Space Reconstruction in Acquired Defects: A Literature-Based Review and Surgical Experience
by Cesare Tiengo, Francesca Mazzarella, Luca Folini, Stefano L’Erario, Pasquale Zona, Daniele Brunelli and Franco Bassetto
J. Clin. Med. 2025, 14(10), 3428; https://doi.org/10.3390/jcm14103428 - 14 May 2025
Viewed by 444
Abstract
The first web space of the hand plays a fundamental role in daily hand function, facilitating crucial movements, such as pinching, grasping, and opposition. The structural anomalies of acquired defects of this anatomical region, whether secondary to trauma, burns, or post-oncological surgical resections, [...] Read more.
The first web space of the hand plays a fundamental role in daily hand function, facilitating crucial movements, such as pinching, grasping, and opposition. The structural anomalies of acquired defects of this anatomical region, whether secondary to trauma, burns, or post-oncological surgical resections, necessitate meticulous reconstructive strategies to ensure both functional restoration and aesthetic integrity. Given the complexity and variability of first web defects, a broad spectrum of reconstructive techniques has been developed, ranging from skin grafting and local flap reconstructions to advanced microsurgical approaches. This review comprehensively examines the existing literature on first web reconstruction techniques, analyzing their indications, advantages, and limitations. Additionally, it explores innovative techniques and emerging trends in the field, such as tissue engineering, regenerative medicine, and composite tissue allotransplantation, which may revolutionize future reconstructive strategies. The primary objective is to provide clinicians with an evidence-based guide to selecting the most appropriate reconstructive strategy tailored to individual patient needs. Furthermore, we incorporate our institutional experience in managing first web defects, highlighting key surgical principles, patient outcomes, and challenges encountered. Through this analysis, we aim to refine the understanding of first web reconstruction and contribute to the ongoing evolution of hand surgery techniques. Full article
(This article belongs to the Special Issue Innovation in Hand Surgery)
Show Figures

Figure 1

25 pages, 27132 KiB  
Article
Multi-Scenario Simulation and Assessment of Ecological Security Patterns: A Case Study of Poyang Lake Eco-Economic Zone
by Yuke Song, Mangen Li, Linghua Duo, Niannan Chen, Jinping Lu and Wanzhen Yang
Sustainability 2025, 17(9), 4017; https://doi.org/10.3390/su17094017 - 29 Apr 2025
Viewed by 511
Abstract
Ecological security is integral to national security strategies, making the construction of ecological security patterns essential for mitigating ecological risks. However, predictive research on ecological security patterns (ESPs) remains limited. This study integrates the Patch-generating Land Use Simulation (PLUS) model with ecological security [...] Read more.
Ecological security is integral to national security strategies, making the construction of ecological security patterns essential for mitigating ecological risks. However, predictive research on ecological security patterns (ESPs) remains limited. This study integrates the Patch-generating Land Use Simulation (PLUS) model with ecological security pattern analysis to provide scientific insights into spatial governance and optimization in the Poyang Lake Ecological and Economic Zone (PLEEZ). First, the PLUS model simulated land use changes in 2030 under three scenarios: natural development (ND), economic development (ED), and ecological protection (EP). Based on these projections, ecological security patterns were constructed using the Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model, the Morphological Spatial Pattern Analysis (MSPA) method, Conefor 2.6, the Minimum Cumulative Resistance (MCR) model, and resistance theory. The results indicate: (1) 19, 18, and 21 ecological source areas were identified under different scenarios, covering 6093.16 km2, 5973.21 km2, and 6702.56 km2, respectively, with 9, 8, and 10 important source sites, primarily in the north. (2) 37, 35, and 43 ecological corridors were delineated, exhibiting a spiderweb-like distribution. (3) 94, 62, and 107 ecological pinch points and 116, 121, and 104 ecological barrier points were detected. The Ecological Node Aggregation Area was identified as a critical zone for targeted ecological protection and restoration. Finally, the ecological zoning management strategy of “Four Cores, Two Zones, and One Belt” was proposed. This study offers valuable insights for sustainable land use planning and ecological risk mitigation. Full article
Show Figures

Figure 1

23 pages, 17458 KiB  
Article
Spatial–Temporal Evolution of Ecological Network Structure During 1967–2021 in Yongding River Floodplain
by Junyi Su, Minghao Wu and Zhicheng Liu
Land 2025, 14(5), 930; https://doi.org/10.3390/land14050930 - 24 Apr 2025
Cited by 1 | Viewed by 489
Abstract
Constructing a rational ecological network is crucial for balancing regional development with environmental protection. However, existing research typically emphasizes the analysis of overall patterns, lacking an in-depth exploration of the dynamic changes in key elements and the interactions between different components. Using the [...] Read more.
Constructing a rational ecological network is crucial for balancing regional development with environmental protection. However, existing research typically emphasizes the analysis of overall patterns, lacking an in-depth exploration of the dynamic changes in key elements and the interactions between different components. Using the Yongding River floodplain as a case study, this study applied morphological spatial pattern analysis, landscape connectivity metrics, and biodiversity assessments to identify core ecological source areas. Circuit theory was used to delineate ecological corridors and analyze network evolution across four key years, while graph theory facilitated an in-depth analysis of network structural characteristics. Furthermore, key areas for ecological restoration were identified within the floodplain. We found that the number of ecological source patches in the study area has remained relatively stable, though their total area has shown a fluctuating decline, accounting for approximately 10% of the floodplain. Additionally, ecological corridors have decreased significantly from 1967 to 2021, with a marked reduction in major corridors, leading to increased resistance to material and energy flow and a corresponding decline in network connectivity and stability. More importantly, current ecological pinch points are primarily distributed in a bead-like pattern along the Yongding River channel, while ecological barriers are concentrated in the northern and eastern floodplain, often at intersections of dense road networks and ecological corridors. These critical areas of fragmentation within the ecological network are prioritized for targeted ecological protection and restoration efforts. Overall, this study advances our understanding of the spatial distribution and composition of key ecological elements within river corridor networks and offers a framework for evaluating these networks through a multidimensional optimization approach for ecological source patches. At the same time, we conducted an in-depth analysis of key fragmentation areas in the Yongding River floodplain, providing valuable guidance for future ecological protection and restoration initiatives in river corridors. Full article
Show Figures

Figure 1

21 pages, 2857 KiB  
Article
Energy Integration and WEP Technical Evaluation of a Large-Scale PVC Production Process
by Antonio Mendivil-Arrieta, Eduardo Andres Aguilar-Vasquez, Juan Manuel Diaz-Perez, Miguel Ramos-Olmos and Ángel Darío Gonzaléz-Delgado
Sci 2025, 7(2), 41; https://doi.org/10.3390/sci7020041 - 2 Apr 2025
Cited by 1 | Viewed by 966
Abstract
PVC has become an indispensable material worldwide. However, its production method (suspension) presents significant sustainability challenges, such as negative environmental impacts and high operational costs due to energy consumption. For this reason, a combined analysis was conducted involving energy integration using Aspen Energy [...] Read more.
PVC has become an indispensable material worldwide. However, its production method (suspension) presents significant sustainability challenges, such as negative environmental impacts and high operational costs due to energy consumption. For this reason, a combined analysis was conducted involving energy integration using Aspen Energy Analyzer™ V14 software and a technical process analysis. This methodology aims to reduce industrial utility consumption and assess the sustainability performance of this alternative. The integration through pinch analysis revealed that it is possible to reduce the energy consumption of the process by 29% in heating utilities and 6% in cooling utilities. The minimum utility requirements were 21 GJ/h for heating (down from 29 GJ/h) and 131 GJ/h for cooling (down from 139 GJ/h). This reduction resulted in approximately a 41% decrease in utility costs. Additionally, the reduction in burner energy consumption led to lower greenhouse gas emissions, with a decreased natural gas consumption of approximately 279 m3. However, only two streams could be integrated due to technical process limitations; therefore, it is recommended to explore integrations with complex operations such as reactors and phase-change processes. In addition to this, the WEP technical evaluation yielded promising results showing a decrease in the specific energy intensity by 3219.506 MJ/t (being 4681.8 MJ/t), which represents an economic saving in industrial services (energy purposes) of approximately USD 886.000 per year, satisfying the optimization of the process despite the limitations when integrating it energetically. Finally, a more in-depth analysis should be conducted to further integrate other streams of the process to reduce utilities consumption. Full article
Show Figures

Figure 1

Back to TopTop