Ecological Network Construction and Optimization in the Southwest Alpine Canyon Area of China Based on Habitat Quality Assessment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Methods
2.3.1. Assessment of Habitat Quality
2.3.2. Construction of Ecological Network
- Identification of ecological source
- 2.
- Construction of ecological resistance surface
- 3.
- Identification of ecological corridors
- 4.
- Determination of ecological pinch points and barrier points
3. Results
3.1. Spatial and Temporal Characteristics of Habitat Quality
3.2. Identification and Distribution of Ecological Sources
3.2.1. Analysis of Morphological Spatial Patterns
3.2.2. Spatial Distribution of Ecological Sources
3.3. Identification and Distribution of Ecological Corridors
3.3.1. Analysis of Ecological Resistance Surface
3.3.2. Spatial Distribution of Ecological Corridors
3.4. Spatial Characteristics of Critical Ecological Nodes
4. Discussion
4.1. Spatiotemporal Patterns of Habitat Quality Change
4.2. Spatial Heterogeneity of Ecological Networks
4.3. Recommendations for Optimizing Ecosystem Management
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Díaz, S.; Settele, J.; Brondízio, E.S.; Ngo, H.T.; Agard, J.; Arneth, A.; Balvanera, P.; Brauman, K.A.; Butchart, S.H.; Chan, K.M.; et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 2019, 366, eaax3100. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Feng, Y.; Zhao, Z.; Zhang, Q.; Su, S. Socioeconomic drivers of forest loss and fragmentation: A comparison between different land use planning schemes and policy implications. Land Use Policy 2016, 54, 58–68. [Google Scholar] [CrossRef]
- Taillefumier, F.; Piégay, H. Contemporary land use changes in Prealpine Mediterranean Mountains: A multivariate GIS-based approach applied to two municipalities in the Southern French Prealps. Catena 2003, 51, 267–296. [Google Scholar] [CrossRef]
- Yu, Q.; Yue, D.; Wang, Y.; Kai, S.; Fang, M.; Ma, H.; Zhang, Q.; Huang, Y. Optimization of ecological node layout and stability analysis of ecological network in desert oasis: A typical case study of ecological fragile zone located at Deng Kou County (Inner Mongolia). Ecol. Indic. 2018, 84, 304–318. [Google Scholar] [CrossRef]
- Shen, Z.; Yin, H.; Kong, F.; Wu, W.; Sun, H.; Su, J.; Tian, S. Enhancing ecological network establishment with explicit species information and spatially coordinated optimization for supporting urban landscape planning and management. Landsc. Urban Plan. 2024, 248, 105079. [Google Scholar] [CrossRef]
- Klar, N.; Herrmann, M.; Henning-Hahn, M.; Pott-Dörfer, B.; Hofer, H.; Kramer-Schadt, S. Between ecological theory and planning practice: (Re-) Connecting forest patches for the wildcat in Lower Saxony, Germany. Landsc. Urban Plan. 2012, 105, 376–384. [Google Scholar] [CrossRef]
- Peng, J.; Yang, Y.; Liu, Y.; Hu, Y.; Du, Y.; Meersmans, J.; Qiu, S. Linking ecosystem services and circuit theory to identify ecological security patterns. Sci. Total Environ. 2018, 644, 781–790. [Google Scholar] [CrossRef]
- Fortin, M.-J.; Dale, M.R.T.; Brimacombe, C. Network ecology in dynamic landscapes. Proc. R. Soc. B 2021, 288, 20201889. [Google Scholar] [CrossRef]
- Chetkiewicz, C.-L.B.; St. Clair, C.C.; Boyce, M.S. Corridors for Conservation: Integrating Pattern and Process. Annu. Rev. Ecol. Evol. Syst. 2006, 37, 317–342. [Google Scholar] [CrossRef]
- Opdam, P.; Steingröver, E.; van Rooij, S. Ecological networks: A spatial concept for multi-actor planning of sustainable landscapes. Landsc. Urban Plan. 2006, 75, 322–332. [Google Scholar] [CrossRef]
- Gurrutxaga, M.; Lozano, P.J.; del Barrio, G. GIS-based approach for incorporating the connectivity of ecological networks into regional planning. J. Nat. Conserv. 2010, 18, 318–326. [Google Scholar] [CrossRef]
- Dong, J.; Dai, W.; Shao, G.; Xu, J. Ecological network construction based on minimum cumulative resistance for the city of Nanjing, China. ISPRS Int. J. Geo-Inf. 2015, 4, 2045–2060. [Google Scholar] [CrossRef]
- Belote, R.T.; Dietz, M.S.; McRae, B.H.; Theobald, D.M.; McClure, M.L.; Irwin, G.H.; McKinley, P.S.; Gage, J.A.; Aplet, G.H. Identifying corridors among large protected areas in the United States. PLoS ONE 2016, 11, e0154223. [Google Scholar] [CrossRef]
- Hall, L.S.; Krausman, P.R.; Morrison, M.L. The habitat concept and a plea for standard terminology. Wildl. Soc. Bull. 1997, 25, 173–182. Available online: http://www.jstor.org/stable/3783301 (accessed on 15 January 2025).
- Sharp, R.; Tallis, H.T.; Ricketts, T.; Guerry, A.D.; Wood, S.A.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. InVEST User’s Guide; The Natural Capital Project: Stanford, CA, USA, 2014; p. 306. [Google Scholar]
- Terrado, M.; Sabater, S.; Chaplin-Kramer, B.; Mandle, L.; Ziv, G.; Acuña, V. Model development for the assessment of terrestrial and aquatic habitat quality in conservation planning. Sci. Total Environ. 2016, 540, 63–70. [Google Scholar] [CrossRef]
- Baral, H.; Keenan, R.J.; Sharma, S.K.; Stork, N.E.; Kasel, S. Spatial assessment and mapping of biodiversity and conservation priorities in a heavily modified and fragmented production landscape in north-central Victoria, Australia. Ecol. Indic. 2014, 36, 552–562. [Google Scholar] [CrossRef]
- Liang, D.; Reed, J.; Fakheran, S.; Moombe, K.; Siangulube, F.; Sunderland, T. Monitoring spatiotemporal changes in land use/land cover and its impacts on ecosystem services in southern zambia. Environ. Res. Commun. 2024, 6, 045004. [Google Scholar] [CrossRef]
- Soille, P. Morphological Image Analysis: Principles and Applications; Springer: Berlin, Germany, 1999; pp. 170–171. [Google Scholar]
- Chen, X.; Kang, B.; Li, M.; Du, Z.; Zhang, L.; Li, H. Identification of priority areas for territorial ecological conservation and restoration based on ecological networks: A case study of Tianjin City, China. Ecol. Indic. 2023, 146, 109809. [Google Scholar] [CrossRef]
- Wei, L.; Zhou, L.; Sun, D.; Yuan, B.; Hu, F. Evaluating the impact of urban expansion on the habitat quality and constructing ecological security patterns: A case study of Jiziwan in the Yellow River Basin, China. Ecol. Indic. 2022, 145, 109544. [Google Scholar] [CrossRef]
- Beier, P.; Noss, R.F. Do habitat corridors provide connectivity? Conserv. Biol. 1998, 12, 1241–1252. [Google Scholar] [CrossRef]
- Wang, S.; Wu, M.; Hu, M.; Fan, C.; Wang, T.; Xia, B. Promoting landscape connectivity of highly urbanized area: An ecological network approach. Ecol. Indic. 2021, 125, 107487. [Google Scholar] [CrossRef]
- Pickett, S.T.A.; Cadenasso, M.L.; Rosi-Marshall, E.J.; Belt, K.T.; Groffman, P.M.; Grove, J.M.; Irwin, E.G.; Kaushal, S.S.; LaDeau, S.L.; Nilon, C.H.; et al. Dynamic heterogeneity: A framework to promote ecological integration and hypothesis generation in urban systems. Urban Ecosyst. 2017, 20, 1–14. [Google Scholar] [CrossRef]
- Yu, K. Security patterns and surface model in landscape ecological planning. Landsc. Urban Plan. 1996, 36, 1–17. [Google Scholar] [CrossRef]
- Knaapen, J.P.; Scheffer, M.; Harms, B. Estimating habitat isolation in landscape planning. Landsc. Urban Plan. 1992, 23, 1–16. [Google Scholar] [CrossRef]
- Dickson, B.G.; Albano, C.M.; Anantharaman, R.; Beier, P.; Fargione, J.; Graves, T.A.; Gray, M.E.; Hall, K.R.; Lawler, J.J.; Leonard, P.B.; et al. Circuit-theory applications to connectivity science and conservation. Conserv. Biol. 2018, 33, 239–249. [Google Scholar] [CrossRef]
- Zeng, W.; He, Z.; Bai, W.; He, L.; Chen, X.; Chen, J. Identification of ecological security patterns of alpine wetland grasslands based on landscape ecological risks: A study in Zoigê County. Sci. Total Environ. 2024, 928, 172302. [Google Scholar] [CrossRef]
- Saura, S.; Bodin, Ö.; Fortin, M.J. Editor’s choice: Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 2014, 51, 171–182. [Google Scholar] [CrossRef]
- Jalkanen, J.; Toivonen, T.; Moilanen, A. Identification of ecological networks for land-use planning with spatial conservation prioritization. Landsc. Ecol. 2020, 35, 353–371. [Google Scholar] [CrossRef]
- Leoncini, F.; Semenzato, P.; Di Febbraro, M.; Loy, A.; Ferrari, C. Come back to stay: Landscape connectivity analysis for the Eurasian otter (Lutra lutra) in the western Alps. Biodivers. Conserv. 2023, 32, 653–669. [Google Scholar] [CrossRef]
- Pineda-Zapata, S.; González-Ávila, S.; Armenteras, D.; González-Delgado, T.M.; Morán-Ordonez, A. Mapping the way: Identifying priority potential corridors for protected areas connectivity in Colombia. Perspect. Ecol. Conserv. 2024, 22, 156–166. [Google Scholar] [CrossRef]
- Rosot, M.A.D.; Maran, J.C.; da Luz, N.B.; Garrastazú, M.C.; de Oliveira, Y.M.M.; Franciscon, L.; Clerici, N.; Vogt, P.; de Freitas, J.V. Riparian forest corridors: A prioritization analysis to the Landscape Sample Units of the Brazilian National Forest Inventory. Ecol. Indic. 2018, 93, 501–511. [Google Scholar] [CrossRef]
- Almasieh, K.; Rouhi, H.; Kaboodvandpour, S. Habitat suitability and connectivity for the brown bear (Ursus arctos) along the Iran-Iraq border. Eur. J. Wildl. Res. 2019, 65, 57. [Google Scholar] [CrossRef]
- Field, R.D.; Parrott, L. Mapping the functional connectivity of ecosystem services supply across a regional landscape. Elife 2022, 11, e69395. [Google Scholar] [CrossRef]
- Xiao, S.; Wu, W.; Guo, J.; Ou, M.; Pueppke, S.G.; Ou, W.; Tao, Y. An evaluation framework for designing ecological security patterns and prioritizing ecological corridors: Application in Jiangsu Province, China. Landsc. Ecol. 2020, 35, 2517–2534. [Google Scholar] [CrossRef]
- Qian, M.; Huang, Y.; Cao, Y.; Wu, J.; Xiong, Y. Ecological network construction and optimization in Guangzhou from the perspective of biodiversity conservation. J. Environ. Manag. 2023, 336, 117692. [Google Scholar] [CrossRef] [PubMed]
- Nie, W.; Shi, Y.; Siaw, M.J.; Yang, F.; Wu, R.; Wu, X.; Zheng, X.; Bao, Z. Constructing and optimizing ecological network at county and town Scale: The case of Anji County, China. Ecol. Indic. 2021, 132, 108294. [Google Scholar] [CrossRef]
- Xu, X.; Wang, S.; Rong, W. Construction of ecological network in Suzhou based on the PLUS and MSPA models. Ecol. Indic. 2023, 154, 110740. [Google Scholar] [CrossRef]
- Gu, Z.; Gong, J.; Wang, Y. Construction and evaluation of ecological networks among natural protected areas based on “quality-structure–function”: A case study of the Qinghai-Tibet area. Ecol. Indic. 2023, 151, 110228. [Google Scholar] [CrossRef]
- Zheng, D.; Zhang, Q.; Wu, S. Mountain Geoecology and Sustainable Development of the Tibetan Plateau; Springer Science & Business Media: Dordrecht, The Netherlands, 2000. [Google Scholar]
- Lai, J.; Zhao, T.; Qi, S. Spatiotemporal variation in vegetation and its driving mechanisms in the Southwest Alpine Canyon Area of China. Forests 2023, 14, 2357. [Google Scholar] [CrossRef]
- Zhou, Y.; Yi, Y.; Liu, H.; Tang, C.; Zhang, S. Spatiotemporal dynamic of soil erosion and the key factors impact processes over semi-arid catchments in Southwest China. Ecol. Eng. 2024, 201, 107217. [Google Scholar] [CrossRef]
- Zhao, S.; Wu, X.; Zhou, J.; Pereira, P. Spatiotemporal tradeoffs and synergies in vegetation vitality and poverty transition in rocky desertification area. Sci. Total Environ. 2021, 752, 141770. [Google Scholar] [CrossRef] [PubMed]
- Xiao, D.; He, X.; Zhang, W.; Hu, P.; Sun, M.; Wang, K. Microbiological mechanism underlying vegetation restoration across climatic gradients in a karst ecosystem. Land Degrad. Dev. 2022, 33, 3245–3259. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, K.; Cheng, J.; Cheddadi, R.; Wan, Q.; Chen, C.; Tang, Y.; Yue, Y.; Jia, X.; Zheng, Z. Vertical biome shifts and climate changes since the last glacial maximum in the southeastern margin of the Tibetan plateau, Southwest China. Quat. Sci. Rev. 2024, 324, 108441. [Google Scholar] [CrossRef]
- Ministry of Water Resources of the People’s Republic of China. Soil and Water Conservation Regionalization Map of China; China Water & Power Press: Beijing, China, 2016; pp. 182–195, 987–992. [Google Scholar]
- Jokar Arsanjani, J. Characterizing, monitoring, and simulating land cover dynamics using GlobeLand30: A case study from 2000 to 2030. J. Environ. Manag. 2018, 214, 66–75. [Google Scholar] [CrossRef]
- Shafizadeh-Moghadam, H.; Minaei, M.; Feng, Y.; Pontius, R.G. GlobeLand30 maps show four times larger gross than net land change from 2000 to 2010 in Asia. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 240–248. [Google Scholar] [CrossRef]
- Hu, Q.; Xiang, M.; Chen, D.; Zhou, J.; Wu, W.; Song, Q. Global cropland intensification surpassed expansion between 2000 and 2010: A spatio-temporal analysis based on GlobeLand30. Sci. Total Environ. 2020, 746, 141035. [Google Scholar] [CrossRef]
- Jia, M.; Li, X.; Gong, Y.; Belabbes, S.; Dell’Oro, L. Estimating natural disaster loss using improved daily night-time light data. Int. J. Appl. Earth Obs. Geoinf. 2023, 120, 103359. [Google Scholar] [CrossRef]
- Duan, Y.; Xiong, J.; Cheng, W.; Wang, N.; He, W.; He, Y.; Liu, J.; Yang, G.; Wang, J.; Yang, J. Assessment and spatiotemporal analysis of global flood vulnerability in 2005–2020. Int. J. Disaster Risk Reduct. 2022, 80, 103201. [Google Scholar] [CrossRef]
- Arowolo, A.O.; Deng, X.; Olatunji, O.A.; Obayelu, A.E. Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. Sci. Total Environ. 2018, 636, 597–609. [Google Scholar] [CrossRef]
- Cao, Z.; Wu, M.; Wang, D.; Wan, B.; Jiang, H.; Tan, X.; Zhang, Q. Space-time cube uncovers spatiotemporal patterns of basin ecological quality and their relationship with water eutrophication. Sci. Total Environ. 2024, 916, 170195. [Google Scholar] [CrossRef]
- European Commission, Directorate-General for Joint Research Centre (JRC), Bio-Economy Unit. MSPA Guide. August 2023. Available online: https://ies-ows.jrc.ec.europa.eu/gtb/GTB/MSPA_Guide.pdf (accessed on 18 May 2025).
- Broquet, M.; Campos, F.S.; Cabral, P.; David, J. Habitat quality on the edge of anthropogenic pressures: Predicting the impact of land use changes in the Brazilian Upper Paraguay river basin. J. Clean. Prod. 2024, 459, 142546. [Google Scholar] [CrossRef]
- Hu, W.; Li, G.; Gao, Z.; Jia, G.; Wang, Z.; Li, Y. Assessment of the impact of the Poplar Ecological Retreat Project on water conservation in the Dongting Lake wetland region using the InVEST model. Sci. Total Environ. 2020, 733, 139423. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Pan, S.; Chen, W.; Zeng, J.; Xu, H.; Gu, T. Spatially non-stationary response of habitat quality to land use activities in World’s protected areas over 20 years. J. Clean. Prod. 2023, 419, 138245. [Google Scholar] [CrossRef]
- Wu, L.; Sun, C.; Fan, F. Estimating the characteristic spatiotemporal variation in habitat quality using the InVEST model–A case study from Guangdong–Hong Kong–Macao Greater Bay Area. Remote Sens. 2021, 13, 1008. [Google Scholar] [CrossRef]
- Mengist, W.; Soromessa, T.; Feyisa, G.L. Landscape change effects on habitat quality in a forest biosphere reserve: Implications for the conservation of native habitats. J. Clean. Prod. 2021, 329, 129778. [Google Scholar] [CrossRef]
- Wang, H.; Hu, Y.; Yan, H.; Liang, Y.; Guo, X.; Ye, J. Trade-off among grain production, animal husbandry production, and habitat quality based on future scenario simulations in Xilinhot. Sci. Total Environ. 2022, 817, 153015. [Google Scholar] [CrossRef]
- Wei, Q.; Abudureheman, M.; Halike, A.; Yao, K.; Yao, L.; Tang, H.; Tuheti, B. Temporal and spatial variation analysis of habitat quality on the PLUS-InVEST model for Ebinur Lake Basin, China. Ecol. Indic. 2022, 145, 109632. [Google Scholar] [CrossRef]
- Zhao, Y.; Qu, Z.; Zhang, Y.; Ao, Y.; Han, L.; Kang, S.; Sun, Y. Effects of human activity intensity on habitat quality based on nighttime light remote sensing: A case study of Northern Shaanxi, China. Sci. Total Environ. 2022, 851, 158037. [Google Scholar] [CrossRef]
- Vogt, P.; Riitters, K.H.; Estreguil, C.; Kozak, J.; Wade, T.G.; Wickham, J.D. Mapping spatial patterns with morphological image processing. Landsc. Ecol. 2006, 22, 171–177. [Google Scholar] [CrossRef]
- Ma, B.; Wu, C.; Jia, X.; Zhang, Y.; Zhou, Z. Predicting water quality using partial least squares regression of land use and morphology (Danjiangkou Reservoir, China). J. Hydrol. 2023, 624, 129828. [Google Scholar] [CrossRef]
- Vogt, P.; Riitters, K. GuidosToolbox: Universal digital image object analysis. Eur. J. Remote Sens. 2017, 50, 352–361. [Google Scholar] [CrossRef]
- Kim, J.; Song, Y. Integrating ecosystem services and ecological connectivity to prioritize spatial conservation on Jeju Island, South Korea. Landsc. Urban Plan. 2023, 239, 104865. [Google Scholar] [CrossRef]
- Gomes, M.; Ralph, T.J.; Helander, C.; Humphries, M.S. Landscape connectivity dynamics of the transboundary Mara River catchment, East Africa, and implications for river and wetland response in a globally important conservation region. Catena 2023, 228, 107148. [Google Scholar] [CrossRef]
- Wei, Q.; Halike, A.; Yao, K.; Chen, L.; Balati, M. Construction and optimization of ecological security pattern in Ebinur Lake Basin based on MSPA-MCR models. Ecol. Indic. 2022, 138, 108857. [Google Scholar] [CrossRef]
- Saura, S.; Pascual-Hortal, L. A new habitat availability index to integrate connectivity in landscape conservation planning: Comparison with existing indices and application to a case study. Landsc. Urban Plan. 2007, 83, 91–103. [Google Scholar] [CrossRef]
- Mitchell, M.G.E.; Bennett, E.M.; Gonzalez, A. Linking landscape connectivity and ecosystem service provision: Current knowledge and research gaps. Ecosystems 2013, 16, 894–908. [Google Scholar] [CrossRef]
- Fan, J.; Wang, Q.; Ji, M.; Sun, Y.; Feng, Y.; Yang, F.; Zhang, Z. Ecological network construction and gradient zoning optimization strategy in urban-rural fringe: A case study of Licheng District, Jinan City, China. Ecol. Indic. 2023, 150, 110251. [Google Scholar] [CrossRef]
- Liu, H.; Wang, Z.; Zhang, L.; Tang, F.; Wang, G.; Li, M. Construction of an ecological security network in the Fenhe River Basin and its temporal and spatial evolution characteristics. J. Clean. Prod. 2023, 417, 137961. [Google Scholar] [CrossRef]
- Mu, H.; Li, X.; Ma, H.; Du, X.; Huang, J.; Su, W.; Yu, Z.; Xu, C.; Liu, H.; Yin, D.; et al. Evaluation of the policy-driven ecological network in the Three-North Shelterbelt region of China. Landsc. Urban Plan. 2022, 218, 104305. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, J.; Qiao, N.; Huang, Y.; Bai, Z. Identifying ecological strategic points based on multi-functional ecological networks: A case study of Changzhi City, China. Appl. Geogr. 2023, 157, 103002. [Google Scholar] [CrossRef]
- Zhang, D.; Ren, H.; Sun, P.; Jing, P.; Guo, B. Construction of multi-level ecological security network in fragmented nature landscape using the three-dimensional framework of ecological adaptability. Ecol. Indic. 2023, 157, 111229. [Google Scholar] [CrossRef]
- An, Y.; Liu, S.; Sun, Y.; Shi, F.; Liu, Y.; Beazley, R. Determining the importance of core areas in the alpine shrub-meadow gradient zone of the Qinghai-Tibet Plateau. Ecol. Model. 2021, 440, 109392. [Google Scholar] [CrossRef]
- McRae, B.H.; Dickson, B.G.; Keitt, T.H.; Shah, V.B. Using circuit theory to model connectivity in ecology, evolution, and conservation. Ecology 2008, 89, 2712–2724. [Google Scholar] [CrossRef]
- Li, X.; Li, X.; Lyu, X.; Dang, D.; Wang, K.; Zhang, C.; Cao, W. Linking ecological and social systems to promote regional security management: A perspective of ecosystem services supply-flow-demand. Ecol. Indic. 2023, 156, 111124. [Google Scholar] [CrossRef]
- Lai, J.; Qi, S. Coupled effects of climate change and human activities on vegetation dynamics in the Southwestern Alpine Canyon Region of China. J. Mt. Sci. 2024, 21, 3234–3248. [Google Scholar] [CrossRef]
- Janus, J.; Bozek, P. Land abandonment in Poland after the collapse of socialism: Over a quarter of a century of increasing tree cover on agricultural land. Ecol. Eng. 2019, 138, 106–117. [Google Scholar] [CrossRef]
- Zhang, C.; Ran, W.; Fang, S.; Hu, S.; Beckmann, M.; Volk, M. Divergent glacier area and elevation changes across the Tibetan Plateau in the early 21st century. Anthropocene 2023, 44, 100419. [Google Scholar] [CrossRef]
- Pei, X.; Zhao, X.; Liu, J.; Liu, W.; Zhang, H.; Jiao, J. Habitat degradation changes and disturbance factors in the Tibetan Plateau in the 21st century. Environ. Res. 2024, 260, 119616. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, R.; Cheng, X.; Christos, V.; Philbin, S.P.; Zhao, R.; Zhao, X. Assessing the landscape ecological risk of road construction: The case of the Phnom Penh-Sihanoukville Expressway in Cambodia. Ecol. Indic. 2023, 154, 110582. [Google Scholar] [CrossRef]
- Lord, J.M.; Norton, D.A. Scale and the spatial concept of fragmentation. Conserv. Biol. 1990, 4, 197–202. [Google Scholar] [CrossRef]
- Luo, Y.; Wu, J.; Wang, X.; Zhao, Y.; Feng, Z. Understanding ecological groups under landscape fragmentation based on network theory. Landsc. Urban Plan. 2021, 210, 104066. [Google Scholar] [CrossRef]
- Li, T.; Bao, R.; Li, L.; Tang, M.; Deng, H. Temporal and spatial changes of habitat quality and their potential driving factors in southwest China. Land 2023, 12, 346. [Google Scholar] [CrossRef]
- Bian, C.; Yang, L.; Zhao, X.; Yao, X.; Xiao, L. The impact of human activity expansion on habitat quality in the Yangtze River Basin. Land 2024, 13, 908. [Google Scholar] [CrossRef]
- Li, J.; Hu, D.; Wang, Y.; Chu, J.; Yin, H.; Ma, M. Study of identification and simulation of ecological zoning through integration of landscape ecological risk and ecosystem service value. Sustain. Cities Soc. 2024, 107, 105442. [Google Scholar] [CrossRef]
- Yue, Z.; Xiao, C.; Feng, Z.; Wang, Y.; Yan, H. Accelerating decline of habitat quality in Chinese border areas. Resour. Conserv. Recycl. 2024, 206, 107665. [Google Scholar] [CrossRef]
- Zhu, Y.; Jia, P.; Liu, Y. Spatiotemporal evolution effects of habitat quality with the conservation policies in the Upper Yangtze River, China. Sci. Rep. 2025, 15, 5972. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Dai, E.; Yin, L.; Ma, L. Land use/land cover change and the effects on ecosystem services in the Hengduan Mountain region, China. Ecosyst. Serv. 2018, 34, 55–67. [Google Scholar] [CrossRef]
- Clauze, C.; Godet, C.; Tarabon, S.; Eggert, C.; Vuidel, G.; Bailleul, M.; Miaud, C. From single to multiple habitat connectivity: The key role of composite ecological networks for amphibian conservation and habitat restoration. Biol. Conserv. 2024, 289, 110418. [Google Scholar] [CrossRef]
- Yang, J.; Deng, W.; Zhang, G.; Cui, X. Linking endangered species protection to construct and optimize ecological security patterns in the national ecological civilization construction demonstration zone: A case study of Yichang, China. Ecol. Indic. 2024, 158, 111579. [Google Scholar] [CrossRef]
Data Type | Source | Website | Type | Original Spatial Resolution | Time |
---|---|---|---|---|---|
Land use | the GlobeLand30 V2020 series provided by the Ministry of Natural Resources | https://www.ngcc.cn/xwzx/ywcg/202401/t20240103_1270.html (accessed on 28 February 2024) | Raster | 30m | 2000, 2010, 2020 |
NDVI | the 2022 MODIS image MOD13Q1 product from NASA | https://modis.gsfc.nasa.gov/ (accessed on 17 December 2023) | Raster | 250m | 2022 |
DEM | GDEMV3 provided by the Geospatial Data Cloud Platform | https://www.gscloud.cn/ (accessed on 5 December 2023) | Raster | 30m | 2022 |
Nature reserves | the China Nature Reserve Specimen Resource Sharing Platform | http://bhq.papc.cn/specimen.html (accessed on 29 April 2020) | Vector | - | 2022 |
Road | the OpenStreetMap platform | https://openmaptiles.org/ (accessed on 27 January 2024) | Vector | - | 2022 |
Source of Threat | Maximum Distance/km | Weight | Decay |
---|---|---|---|
Farmland | 5 | 0.6 | Linear |
Artificial surface | 9 | 0.9 | Exponential |
Bare land | 4 | 0.3 | Linear |
Land Use Type | Habitat Appropriateness | Source of Threat | ||
---|---|---|---|---|
Farmland | Artificial Surface | Bare Land | ||
Farmland | 0.4 | 0 | 0.5 | 0.3 |
Grassland | 0.8 | 0.5 | 0.6 | 0.2 |
Bare land | 0.1 | 0 | 0.1 | 0 |
Woodland | 1 | 0.7 | 0.8 | 0.4 |
Water | 0.9 | 0.6 | 0.7 | 0.3 |
Artificial surface | 0 | 0 | 0 | 0 |
Resistance Factor | Resistance Value | Weights | ||||
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | ||
Land use type | Woodland | Water and grassland | Farmland | Bare land | Artificial surface | 0.45 |
NDVI | ≥0.84 | 0.70–0.84 | 0.51–0.70 | 0.26–0.51 | ≤0.26 | 0.05 |
Slope/(°) | ≤13.25 | 13.25–23.44 | 23.44–32.96 | 32.96–43.15 | ≥43.15 | 0.09 |
Elevation/m | ≤1776 | 1776–2864 | 2864–3792 | 3792–4568 | ≥4568 | 0.10 |
Distance from a nature reserve/km | ≥2.00 | 1.00–2.00 | 0.50–1.00 | 0.30–0.50 | ≤0.30 | 0.07 |
Distance from a railway/km | ≥2.00 | 1.50–2.00 | 1.00–1.50 | 0.50–1.00 | ≤0.50 | 0.13 |
Distance from a trunk road/km | ≥1.20 | 0.80–1.20 | 0.60–0.80 | 0.30–0.60 | ≤0.30 | 0.11 |
Research Division | Administrative Districts and Counties | Year | |||
---|---|---|---|---|---|
2000 | 2010 | 2020 | Variation | ||
Region I | Linzhi | 0.89 | 0.91 | 0.86 | −0.03 |
Gongbujiangda | 0.86 | 0.88 | 0.67 | −0.19 | |
Milin | 0.90 | 0.89 | 0.84 | −0.06 | |
Lang | 0.82 | 0.81 | 0.67 | −0.15 | |
Region II | Luding | 0.91 | 0.91 | 0.90 | −0.01 |
Kangding | 0.90 | 0.89 | 0.88 | −0.02 | |
Yajiang | 0.91 | 0.91 | 0.91 | −0.00 | |
Litang | 0.86 | 0.86 | 0.84 | −0.02 | |
Batang | 0.88 | 0.88 | 0.83 | −0.05 | |
Gongjue | 0.84 | 0.84 | 0.83 | −0.01 | |
Changdu | 0.89 | 0.88 | 0.84 | −0.05 | |
Luolong | 0.83 | 0.82 | 0.75 | −0.08 | |
Basu | 0.74 | 0.80 | 0.58 | −0.16 | |
Bomi | 0.85 | 0.88 | 0.78 | −0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, X.; Xiong, J.; Guan, Y.; Zhou, J. Ecological Network Construction and Optimization in the Southwest Alpine Canyon Area of China Based on Habitat Quality Assessment. Remote Sens. 2025, 17, 1913. https://doi.org/10.3390/rs17111913
Chen X, Xiong J, Guan Y, Zhou J. Ecological Network Construction and Optimization in the Southwest Alpine Canyon Area of China Based on Habitat Quality Assessment. Remote Sensing. 2025; 17(11):1913. https://doi.org/10.3390/rs17111913
Chicago/Turabian StyleChen, Xiran, Jiayue Xiong, Yinghui Guan, and Jinxing Zhou. 2025. "Ecological Network Construction and Optimization in the Southwest Alpine Canyon Area of China Based on Habitat Quality Assessment" Remote Sensing 17, no. 11: 1913. https://doi.org/10.3390/rs17111913
APA StyleChen, X., Xiong, J., Guan, Y., & Zhou, J. (2025). Ecological Network Construction and Optimization in the Southwest Alpine Canyon Area of China Based on Habitat Quality Assessment. Remote Sensing, 17(11), 1913. https://doi.org/10.3390/rs17111913