Multi-Scenario Simulation and Assessment of Ecological Security Patterns: A Case Study of Poyang Lake Eco-Economic Zone
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Sources
3. Research Methodology
3.1. Land Use Projections
3.1.1. PLUS Model
3.1.2. Neighborhood Weights and Accuracy Validation
3.1.3. Scenario Setting
- (1)
- The ND scenario is primarily based on the historical land use trends from 2000 to 2020, without considering the influence of policies or other external factors. It represents a condition with minimal human intervention, following the intrinsic dynamics of land use structure changes. The land use demand for each category is projected using a Markov chain model.
- (2)
- The ED scenario emphasizes the need for rapid urbanization and economic growth. Informed by elements of the “Key Tasks for New-type Urbanization and Urban-Rural Integration Development in Jiangxi Province (2020)”, this scenario assumes a rapid expansion of urban construction land, with land use transitions favoring built-up areas. This scenario is designed to analyze land use changes in the Poyang Lake Eco-Economic Zone under the tradeoff between economic development and ecological conservation.
- (3)
- The EP scenario aims to achieve sustainable development by prioritizing the conservation of ecological land types, such as forest, grassland, and water bodies. This scenario is guided by the Plan for the Eco-City Cluster around Poyang Lake (2015–2030) and relevant policies in Jiangxi Province, with the goal of balancing socio-economic development and environmental protection. Accordingly, stricter constraints on land use transitions are applied, and nature reserves are incorporated as exclusionary factors. This scenario explores the potential land use trajectories of the Poyang Lake Eco-Economic Zone under an ecological–development coordination framework [70].
3.2. Ecological Security Pattern Building
3.2.1. Ecological Source Site Identification
- (1)
- Habitat quality evaluation
- (2)
- MSPA analysis
- (3)
- Ecological source classification
3.2.2. Ecological Resistance Surface Constructions and Corridor Extraction
- (1)
- MCR modeling
- (2)
- Ecological corridor extraction
3.2.3. To Identify Ecological Pinch Points and Obstacle Points
4. Results and Analysis
4.1. 2030 Land Use Multi-Scenario Forecast Analysis
4.2. Identification of Ecological Source Area
4.2.1. Habitat Quality Importance Assessment
4.2.2. Morphological Spatial Structure (MSPA) Analysis
4.2.3. Identification and Significance Analysis of Ecological Source Areas
4.3. Resistance Surface Construction and Ecological Corridor Extraction Analysis
4.3.1. Integrated Resistance Surface Construction
4.3.2. Ecological Corridor Extraction
4.4. Ecological Pinch Point and Obstacle Point Extraction Analysis
4.5. Analysis of Ecological Security Pattern Construction
5. Discussion
5.1. PLUS Model and Ecological Security Pattern Coupling Study
5.2. Ecological Source Area Overlay Studies
5.3. Future Dynamic Impacts of Land Use Change on Ecological Elements
5.4. Ecological Zoning Management Strategies
5.5. Research Limitations
5.6. Future Research Directions
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cai, Z.; Ren, B.; Xie, Q.; Deng, X.; Yin, W.; Chen, L. Potential toxic heavy metals in village topsoil of antimony mining area: Pollution and distribution, environmental safety—A case study of Qilijiang village in xikuangshan mining area, central Hunan Province, China. Ecol. Indic. 2023, 155, 111033. [Google Scholar] [CrossRef]
- Cao, B.; Bai, C.; Xue, Y.; Yang, J.; Gao, P.; Liang, H.; Zhang, L.; Che, L.; Wang, J.; Xu, J.; et al. Wetlands rise and fall: Six endangered wetland species showed different patterns of habitat shift under future climate change. Sci. Total Environ. 2020, 731, 138518. [Google Scholar] [CrossRef] [PubMed]
- Balkanlou, K.R.; Müller, B.; Cord, A.F.; Panahi, F.; Malekian, A.; Jafari, M.; Egli, L. Spatiotemporal dynamics of ecosystem services provision in a degraded ecosystem: A systematic assessment in the Lake Urmia basin, Iran. Sci. Total Environ. 2020, 716, 137100. [Google Scholar] [CrossRef] [PubMed]
- Nan, B.; Zhai, Y.; Wang, M.; Wang, H.; Cui, B. Ecological Security Assessment, Prediction, and Zoning Management: An Integrated Analytical Framework. Engineering 2024, 11. in press. [Google Scholar] [CrossRef]
- Liu, C.; Li, W.; Xu, J.; Zhou, H.; Li, C.; Wang, W. Global trends and characteristics of ecological security research in the early 21st century: A literature review and bibliometric analysis. Ecol. Indic. 2022, 137, 108734. [Google Scholar] [CrossRef]
- Bai, Y.; Wong, C.P.; Jiang, B.; Hughes, A.C.; Wang, M.; Wang, Q. Developing China’s Ecological Redline Policy using ecosystem services assessments for land use planning. Nat. Commun. 2018, 9, 3034. [Google Scholar] [CrossRef]
- Wang, Q.; Bai, X. Spatiotemporal characteristics of human activity and land use on ecosystem service functions in mountainous areas of Northeast Guizhou, Southwest China. Ecol. Eng. 2025, 212, 107473. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.; Tu, P.; Zhong, Y.; Huang, C.; Pan, X.; Xu, K.; Hong, S. Evaluating the Effects of Future Urban Expansion on Ecosystem Services in the Yangtze River Delta Urban Agglomeration under the Shared Socioeconomic Pathways. Ecol. Indic. 2024, 111, 111831. [Google Scholar] [CrossRef]
- Yimer, T.F.; Ayele, D.T.; Brihanu, Y.K.; Akele, M.L.; Kassaw, M.M.; Alemu, A.K.; Ayitegeb, D.Y.; Birhan, T.A.; Amare, Z.M.; Semegn, A.A.; et al. Ecological risk assessment of organochlorine pesticide residues in sediment samples from Lake Tana and Hayqe in Northwest Ethiopia. Emerg. Contam. 2024, 10, 100354. [Google Scholar] [CrossRef]
- Kuczynski, A.; Smith, R.G.R.; Fraser, C.E.; Larned, S.T. Environmental Indicators of Lake Ecosystem Health in Aotearoa New Zealand: Current State and Trends. Ecol. Indic. 2024, 165, 112185. [Google Scholar] [CrossRef]
- Fang, J.; Xu, L.; Lu, Q. Ecological security patterns of Chinese lakes based on ecosystem service values assessment and human threat factors evaluation. Ecol. Inform. 2024, 82, 102754. [Google Scholar] [CrossRef]
- Luo, X.; Le, F.; Zhang, Y.; Zhang, H.; Zhai, J.; Luo, Y. Multi-Scenario Analysis and Optimization Strategy of Ecological Security Pattern in the Weihe River Basin. J. Environ. Manag. 2024, 366, 121813. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, J.; Yin, X.; Ouyang, X.; Ji, C.; Li, S.; Wei, G. Human Activities and Ecosystem Health: A Historical Analysis of Poyang Lake. Ecol. Indic. 2024, 166, 112446. [Google Scholar] [CrossRef]
- Dai, L.; Liu, Y.; Luo, X. Integrating the MCR and DOI models to construct an ecological security network for the urban agglomeration around Poyang Lake, China. Sci. Total Environ. 2021, 754, 141868. [Google Scholar] [CrossRef]
- Deng, Y.; Shao, Z.; Dang, C.; Huang, X.; Zhuang, Q. The impact of policies on land cover and ecosystem services dynamics in the Poyang Lake Ecological Economic Zone, China. Ecol. Indic. 2023, 156, 111169. [Google Scholar] [CrossRef]
- Chen, M.; Zeng, S.; Jiang, B.; Wen, Z.; Wu, J.; Xia, J. The Comprehensive Evaluation of How Water Level Fluctuation and Temperature Change Affect Vegetation Cover Variations at a Lake of Ecological Importance (Poyang Lake), China. Ecol. Indic. 2023, 148, 110041. [Google Scholar] [CrossRef]
- Tian, Z.; Liu, S.; Gu, P.; Lv, X.; Peng, W. Construction of Ecological Security Patterns in Huludao City Based on the MSPA-MCR-FLUS Model. J. Agric. Res. Environ. 2024, 1, 1–17. [Google Scholar]
- Peng, K.; Jiang, W.; Ling, Z.; Hou, P.; Deng, Y. Evaluating the potential impacts of land use changes on ecosystem service value under multiple scenarios in support of SDG reporting: A case study of the Wuhan urban agglomeration. J. Clean. Prod. 2021, 307, 127321. [Google Scholar] [CrossRef]
- Shuai, N.; Hu, Y.; Gao, M.; Guo, Z.; Bai, Y. Construction and optimization of ecological networks in karst regions based on multi-scale nesting: A case study in Guangxi Hechi, China. Ecol. Inform. 2023, 74, 101963. [Google Scholar] [CrossRef]
- Peng, J.; Pan, Y.; Liu, Y.; Zhao, H.; Wang, Y. Linking ecological degradation risk to identify ecological security patterns in a rapidly urbanizing landscape. Habitat Int. 2018, 71, 110–124. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, W.; Zhang, Y.; Fu, B.; Zhao, Z.; Lv, Y.; Zhang, J. Progress in Ecological Security Research Based on Ecosystem Services. Acta Ecol. Sin. 2023, 43, 7821–7829. [Google Scholar] [CrossRef]
- Wei, W.; Zhang, Y.; Wei, X.; Xie, B.; Ma, Z.; Liu, C.; Yu, L.; Zhou, J.; Shi, W.; Liu, T.; et al. Construction and optimization of ecological security patterns based on ecosystem service function and ecosystem sensitivity in the important ecological functional area—A case study in the Yellow River Basin. Ecol. Eng. 2025, 215, 107609. [Google Scholar] [CrossRef]
- Li, L.; Huang, X.; Wu, D.; Yang, H. Construction of ecological security pattern adapting to future land use change in Pearl River Delta, China. Appl. Geogr. 2023, 154, 102946. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, E.; Zhang, C.; Liu, C.; Li, J. Multi-Scenario Simulation of Land Use Change and Ecosystem Service Value Based on the Markov–FLUS Model in Ezhou City, China. Sustainability 2024, 16, 6237. [Google Scholar] [CrossRef]
- Wang, T.; Li, H.; Huang, Y. The Complex Ecological Network’s Resilience of the Wuhan Metropolitan Area. Ecol. Indic. 2021, 130, 108101. [Google Scholar] [CrossRef]
- Miao, Z.; Pan, L.; Wang, Q.; Chen, P.; Yan, C.; Liu, L. Research on Urban Ecological Network under the Threat of Road Networks—A Case Study of Wuhan. ISPRS Int. J. Geo-Inf. 2019, 8, 342. [Google Scholar] [CrossRef]
- Zeng, W.; He, Z.; Bai, W.; He, L.; Chen, X.; Chen, J. Identification of Ecological Security Patterns of Alpine Wetland Grasslands Based on Landscape Ecological Risks: A Study in Zoigê County. Sci. Total Environ. 2024, 928, 172302. [Google Scholar] [CrossRef]
- Peng, J.; Zhao, S.; Dong, J.; Liu, Y.; Meersmans, J.; Li, H.; Wu, J. Applying Ant Colony Algorithm to Identify Ecological Security Patterns in Megacities. Environ. Model. Softw. 2019, 117, 214–222. [Google Scholar] [CrossRef]
- Xu, X.; Yang, G.; Tan, Y. Identifying Ecological Red Lines in China’s Yangtze River Economic Belt: A Regional Approach. Ecol. Indic. 2019, 96, 635–646. [Google Scholar] [CrossRef]
- Xu, X.; Wang, S.; Rong, W. Construction of Ecological Network in Suzhou Based on the PLUS and MSPA Models. Ecol. Indic. 2023, 154, 110740. [Google Scholar] [CrossRef]
- Zhao, C.; Wu, S.; Yang, L.; Wu, Y.; Xiao, P.; Xu, J.; Liu, Y. Evaluating Ecological Conservation Effectiveness of Security Patterns under Multiple Scenarios: A Case Study of Hubei Province. Ecol. Indic. 2024, 166, 112528. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, J.; Yuan, J.; Ji, P.; Deng, X.; Yang, Y. Constructing the Ecological Security Pattern of Nujiang Prefecture Based on the Framework of “Importance–Sensitivity–Connectivity”. Int. J. Environ. Res. Public Health 2022, 19, 10869. [Google Scholar] [CrossRef] [PubMed]
- Xu, A.; Hu, M.; Shi, J.; Bai, Q.; Li, X. Construction and Optimization of Ecological Network in Inland River Basin Based on Circuit Theory, Complex Network, and Ecological Sensitivity: A Case Study of Gansu Section of Heihe River Basin. Ecol. Model. 2024, 488, 110578. [Google Scholar] [CrossRef]
- Yang, J.; Deng, W.; Zhang, G.; Cui, X. Linking Endangered Species Protection to Construct and Optimize Ecological Security Patterns in the National Ecological Civilization Construction Demonstration Zone: A Case Study of Yichang, China. Ecol. Indic. 2024, 158, 111579. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, P.; Zhang, X.; Tong, H.; Zhang, W.; Liu, Y. Research on Landscape Pattern Construction and Ecological Restoration of Jiuquan City Based on Ecological Security Evaluation. Sustainability 2021, 13, 5732. [Google Scholar] [CrossRef]
- Sun, D.; Wu, X.; Wen, H.; Ma, X.; Zhang, F.; Ji, Q.; Zhang, J. Ecological Security Pattern Based on XGBoost-MCR Model: A Case Study of the Three Gorges Reservoir Region. J. Clean. Prod. 2024, 470, 143252. [Google Scholar] [CrossRef]
- Wang, B.; Fu, S.; Hao, Z.; Zhen, Z. Ecological Security Pattern Based on Remote Sensing Ecological Index and Circuit Theory in the Shanxi Section of the Yellow River Basin. Ecol. Indic. 2024, 166, 112382. [Google Scholar] [CrossRef]
- He, H.; Yu, X.; Yu, H.; Ma, Z.; Luo, Y.; Liu, T.; Zhao, Y. Suitable Habitat Evaluation and Ecological Security Pattern Optimization for the Ecological Restoration of Giant Panda Habitat Based on Nonstationary Factors and MCR Model. Ecol. Model. 2024, 494, 110760. [Google Scholar] [CrossRef]
- Huang, L.; Chen, Z.; Yang, Z.; Chen, M.; Chen, X.; Zhai, T.; Qiu, T. Integrating “Quality-Risk-Demand” Framework and Circuit Theory to Identify Spatial Range and Priority Area of Ecological Security Pattern in a Rapidly Urbanizing Landscape. Ecol. Inform. 2024, 82, 102673. [Google Scholar] [CrossRef]
- Pan, J.; Liang, J.; Zhao, C. Identification and Optimization of Ecological Security Pattern in Arid Inland Basin Based on Ordered Weighted Average and Ant Colony Algorithm: A Case Study of Shule River Basin, NW China. Ecol. Indic. 2023, 154, 110588. [Google Scholar] [CrossRef]
- Sui, L.; Yan, Z.; Li, K.; Wang, C.; Shi, Y.; Du, Y. Prediction of Ecological Security Network in Northeast China Based on Landscape Ecological Risk. Ecol. Indic. 2024, 160, 111783. [Google Scholar] [CrossRef]
- Li, S.; Xiao, W.; Zhao, Y.; Lv, X. Incorporating Ecological Risk Index in the Multi-Process MCRE Model to Optimize the Ecological Security Pattern in a Semi-Arid Area with Intensive Coal Mining: A Case Study in Northern China. J. Clean. Prod. 2020, 247, 119143. [Google Scholar] [CrossRef]
- Gou, R.; Su, W.; Quan, X.; Huang, X. Identification of Ecological Security Patterns in the Quiet Zone of the “China Sky Eye”—Based on OWA and Circuit Theory. Acta Ecol. Sin. 2024, 44, 9636–9651. [Google Scholar] [CrossRef]
- Wu, S.; Zhao, C.; Yang, L.; Huang, D.; Wu, Y.; Xiao, P. Spatial and Temporal Evolution Analysis of Ecological Security Pattern in Hubei Province Based on Ecosystem Service Supply and Demand Analysis. Ecol. Indic. 2024, 162, 112051. [Google Scholar] [CrossRef]
- Yang, W.; Ye, H. Identification of Ecological Networks in the Guangdong-Hong Kong-Macao Greater Bay Area Based on Habitat Quality. Acta Ecol. Sin. 2023, 43, 10430–10442. [Google Scholar] [CrossRef]
- Gao, L.; Tao, F.; Liu, R.; Wang, Z.; Leng, H.; Zhou, T. Multi-Scenario Simulation and Ecological Risk Analysis of Land Use Based on the PLUS Model: A Case Study of Nanjing. Sustain. Cities Soc. 2022, 85, 104055. [Google Scholar] [CrossRef]
- Laar, C.; Annan, K.B.K.; Gibrilla, A.; Kusi-Afrakoma, Z.; Korkor-Asante, O.; Saah-Hayford, M.; Anornu, G. Assessing the Impact of Land Use and Land Cover Change on the Densu Delta Wetland Using Markov Chain Modeling and Artificial Neural Networks. Environ. Chall. 2024, 17, 101018. [Google Scholar] [CrossRef]
- Sarif, M.O.; Gupta, R.D.; Sharifi, A. Predicting Prayagraj’s Urbanization Trajectory Using CA-ANN Modelling: Population Pressures and Land Use Dynamics. J. Environ. Manag. 2024, 370, 122469. [Google Scholar] [CrossRef]
- Chasia, S.; Olang, L.O.; Sitoki, L. Modelling of Land-Use/Cover Change Trajectories in a Transboundary Catchment of the Sio-Malaba-Malakisi Region in East Africa Using the CLUE-s Model. Ecol. Model. 2023, 476, 110256. [Google Scholar] [CrossRef]
- Liao, G.; He, P.; Gao, X.; Lin, Z.; Huang, C.; Zhou, W.; Deng, L. Land Use Optimization of Rural Production–Living–Ecological Space at Different Scales Based on the BP–ANN and CLUE–S Models. Ecol. Indic. 2022, 137, 108710. [Google Scholar] [CrossRef]
- Qiao, X.; Li, Z.; Lin, J.; Wang, H.; Zheng, S.; Yang, S. Assessing Current and Future Soil Erosion under Changing Land Use Based on InVEST and FLUS Models in the Yihe River Basin, North China. Int. Soil Water Conserv. Res. 2024, 12, 298–312. [Google Scholar] [CrossRef]
- Xin, S.; Li, Z.; Chen, N.; Zhang, Z.; Zhang, X.; Chen, H.; Kang, L. The Contribution of Multi-Objective Land Use Optimization to Reducing Ecological Risk: A Case Study of the Lanzhou-Xining Urban Agglomeration. Ecol. Indic. 2024, 168, 112604. [Google Scholar] [CrossRef]
- Luan, C.; Liu, R.; Li, Y.; Zhang, Q. Comparison of Various Models for Multi-Scenario Simulation of Land Use/Land Cover to Predict Ecosystem Service Value: A Case Study of Harbin-Changchun Urban Agglomeration, China. J. Clean. Prod. 2024, 478, 144012. [Google Scholar] [CrossRef]
- Liang, X.; Guan, Q.; Clarke, K.C.; Liu, S.; Wang, B.; Yao, Y. Understanding the Drivers of Sustainable Land Expansion Using a Patch-Generating Land Use Simulation (PLUS) Model: A Case Study in Wuhan, China. Comput. Environ. Urban Syst. 2021, 85, 101569. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, J.; Xiong, N.; Liang, B.; Wang, Z.; Cressey, E.L. Spatial and Temporal Variation, Simulation and Prediction of Land Use in Ecological Conservation Area of Western Beijing. Remote Sens. 2022, 14, 1452. [Google Scholar] [CrossRef]
- Chen, H.; Jin, G.; Tang, H.; Wu, J.; Wang, Y.-G.; Zhang, Z.; Deng, Y.; Zhang, S. Spatiotemporal Variations of Water Levels and River-Lake Interaction in the Poyang Lake Basin under the Extreme Drought. J. Hydrol. Reg. Stud. 2025, 57, 102165. [Google Scholar] [CrossRef]
- Zhang, P.; Mao, J.; Gu, K.; Dai, L.; Dai, H. Integrated Scheduling–Assessing System for Drought Mitigation in the River–Connected Lake. J. Environ. Manag. 2022, 313, 114999. [Google Scholar] [CrossRef]
- Han, Y.; Zhang, K.; Lin, Q.; Huang, S.; Yang, X. Assessing Lake Ecosystem Health from Disturbed Anthropogenic Landscapes: Spatial Patterns and Driving Mechanisms. Ecol. Indic. 2023, 147, 110007. [Google Scholar] [CrossRef]
- Ye, J.-H.; Yu, T.; Xu, Z.-T.; Liu, H.-Y.; Cai, Q.-R. Distribution and probabilistic integrated ecological risk assessment of heavy metals in the surface water of Poyang Lake, China. Chin. J. Anal. Chem. 2021, 49, 29–34. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Giannetti, B.F.; Almeida, C.M.V.B.; Sevegnani, F.; Li, R. Spatiotemporal differentiation and mechanism of anthropogenic factors affecting ecosystem service value in the Urban Agglomeration around Poyang Lake, China. Ecol. Indic. 2023, 154, 110733. [Google Scholar] [CrossRef]
- Xu, X.; Liu, J.; Zhang, S.; Li, R.; Yan, C.; Wu, S. China Multi-Period Land Use Land Cover Remote Sensing Monitoring Dataset (CNLUCC); Resource and Environment Science and Data Center, Chinese Academy of Sciences: Beijing, China, 2018; Available online: https://www.resdc.cn/DOI/doi.aspx?DOIid=54 (accessed on 8 April 2025).
- Xu, X. China GDP Spatial Distribution Kilometer Grid Dataset. Resource and Environment Science Data Center, Chinese Academy of Sciences. 2017. Available online: https://www.resdc.cn/DOI/doi.aspx?DOIid=33 (accessed on 8 April 2025).
- Xu, X. China Meteorological Monthly Spatial Interpolation Dataset. Resource and Environment Science Data Center, Chinese Academy of Sciences. 2022. Available online: https://www.resdc.cn/DOI/DOI.aspx?DOIID=104 (accessed on 8 April 2025).
- National Earth System Science Data Center. Available online: http://www.geodata.cn (accessed on 8 April 2025).
- National Geographic Information Resources Catalog Service. Available online: http://www.ngcc.cn (accessed on 8 April 2025).
- Geospatial Data Cloud Platform, Computer Network Information Center, Chinese Academy of Sciences. Available online: http://www.gscloud.cn (accessed on 8 April 2025).
- Lv, J.; Wang, Y.; Liang, X.; Yao, Y.; Ma, T.; Guan, Q. Simulating Urban Expansion by Incorporating an Integrated Gravitational Field Model into a Demand-Driven Random Forest-Cellular Automata Model. Cities 2021, 109, 103044. [Google Scholar] [CrossRef]
- Zuo, R.; Ma, Y.; Tang, M.; Luo, H.; Li, J.; Liao, T.; Gong, Y.; Zhang, S.; Gong, J.; Yi, Y. Regional Carbon Storage Dynamics Driven by Tea Plantation Expansion: Insights from Meitan County, China. Land 2025, 14, 227. [Google Scholar] [CrossRef]
- Cao, X.; Liu, Z.; Li, S.; Gao, Z. Integrating the Ecological Security Pattern and the PLUS Model to Assess the Effects of Regional Ecological Restoration: A Case Study of Hefei City, Anhui Province. Int. J. Environ. Res. Public Health 2022, 19, 6640. [Google Scholar] [CrossRef]
- Yu, J.; Guo, S.; Wang, S.; Luo, Y. Multi-Scenario Simulation of Land Use Change and Ecosystem Health Assessment in Chengdu Metropolitan Area Based on SD-PLUS-VORS Coupled Modeling. Sustainability 2025, 17, 3202. [Google Scholar] [CrossRef]
- Sun, Y.; Yang, J.; Song, S.; Zhu, J.; Dai, J. Multi-Level Vector Cellular Automata Modeling and Land Use Change Simulation. Acta Geogr. Sin. 2020, 75, 2164–2179. [Google Scholar] [CrossRef]
- Cheng, Q.; Chen, R.; Xu, W.; Wang, M. Characteristics of Spatial and Temporal Evolution of Coastal Wetland Landscape Patterns and Prediction Analysis—A Case Study of Panjin Wetland, China. Land 2025, 14, 118. [Google Scholar] [CrossRef]
- Hillard, E.M.; Nielsen, C.K.; Groninger, J.W. Swamp Rabbits as Indicators of Wildlife Habitat Quality in Bottomland Hardwood Forest Ecosystems. Ecol. Indic. 2017, 79, 47–53. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X.; Feng, H.; Li, Y.; Yu, J.; Liu, Y.; Du, H. Dynamic Evolution and Simulation of Habitat Quality in Arid Regions: A Case Study of the Hexi Region, China. Ecol. Model. 2024, 493, 110726. [Google Scholar] [CrossRef]
- Luo, J.; Fu, H. Constructing an Urban Cooling Network Based on PLUS Model: Implications for Future Urban Planning. Ecol. Indic. 2023, 154, 110887. [Google Scholar] [CrossRef]
- Mu, B.; Tian, G.; Xin, G.; Hu, M.; Yang, P.; Wang, Y.; Xie, H.; Mayer, A.L.; Zhang, Y. Measuring Dynamic Changes in the Spatial Pattern and Connectivity of Surface Waters Based on Landscape and Graph Metrics: A Case Study of Henan Province in Central China. Land 2021, 10, 471. [Google Scholar] [CrossRef]
- Saura, S.; Torné, J. Conefor Sensinode 2.2: A Software Package for Quantifying the Importance of Habitat Patches for Landscape Connectivity. Environ. Model. Softw. 2009, 24, 135–139. [Google Scholar] [CrossRef]
- Li, X.; Tao, H.; Wang, J.; Zhang, B.; Liu, Z.; Liu, Z.; Li, J. Integrated Evaluation of the Ecological Security Pattern in Central Beijing Using InVEST, MSPA, and Multifactor Indices. Land 2025, 14, 205. [Google Scholar] [CrossRef]
- Sun, T.; Lei, D.; Liu, L.; Bao, G.; Fu, H. Quantitative Comparison of Minimum Ecological Land in the Dianchi Lake Basin Based on the Minimum Cumulative Resistance Model and Scenario Simulation Method. Acta Ecol. Sin. 2024, 44, 9135–9145. [Google Scholar] [CrossRef]
- Chen, W.; Liu, H.; Wang, J. Construction and Optimization of Regional Ecological Security Patterns Based on MSPA-MCR-GA Model: A Case Study of Dongting Lake Basin in China. Ecol. Indic. 2024, 165, 112169. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, A. Identification of land use conflicts and dynamic response analysis of natural-social factors in rapidly urbanizing areas—A case study of urban agglomeration in the middle reaches of Yangtze River. Ecol. Indic. 2024, 161, 112009. [Google Scholar] [CrossRef]
- Jiang, S.; Feng, F.; Zhang, X.; Xu, C.; Jia, B.; Lafortezza, R. Driving Factors of Fragmentation in Urban Landscapes: Local Contributions, Spatial Relationships, and Causal Effects. Ecologies 2025, 174, 113454. [Google Scholar] [CrossRef]
- Han, P.; Xiong, H.; Hu, H.; Zhou, J.; Wang, M. Integrating Risk-Conflict Assessment for Constructing and Optimizing Ecological Security Patterns of Polder Landscape in the Urban–Rural Fringe. Ecol. Indic. 2024, 166, 112256. [Google Scholar] [CrossRef]
- Chang, X.; Xing, Y.; Wang, J.; Yang, H.; Gong, W. Effects of Land Use and Cover Change (LUCC) on Terrestrial Carbon Stocks in China between 2000 and 2018. Resour. Conserv. Recycl. 2022, 182, 106333. [Google Scholar] [CrossRef]
- Tian, C.; Zhong, J.; You, Q.; Fang, C.; Hu, Q.; Liang, J.; He, J.; Yang, W. Land Use Modeling and Habitat Quality Assessment under Climate Scenarios: A Case Study of the Poyang Lake Basin. Ecol. Indic. 2025, 172, 113292. [Google Scholar] [CrossRef]
- Fu, Y.; Huang, M.; Gong, D.; Lin, H.; Fan, Y.; Du, W. Dynamic Simulation and Prediction of Carbon Storage Based on Land Use/Land Cover Change from 2000 to 2040: A Case Study of the Nanchang Urban Agglomeration. Remote Sens. 2023, 15, 4645. [Google Scholar] [CrossRef]
- Qing, L.; Huanhuan, F.; Fuqing, Z.; Wenbo, C.; Yuanping, X.; Bing, Y. The dominant role of human activity intensity in spatial pattern of ecosystem health in the Poyang Lake ecological economic zone. Ecol. Indic. 2024, 166, 112347. [Google Scholar] [CrossRef]
- Li, Y.; Liu, J.L.; Li, J.J.; Yang, C.Y.; Luo, G.J. Construction of Ecological Security Patterns in Karst Basins Based on Ecological Corridor Identification: A Case Study of the Nanming River Basin in Guizhou. Environ. Sci. 2024, 1, 1–23. [Google Scholar] [CrossRef]
- Dan, L. Multi-Scenario Simulation of Land Use in the Poyang Lake Ecological and Economic Zone Considering the Ecological Network. Master’s Thesis, Wuhan University, Wuhan, China, 2020. [Google Scholar]
- Liang, Z. Spatiotemporal Changes in Land Use and Ecological Security Patterns in the Poyang Lake Ecological and Economic Zone. Master’s Thesis, Jiangxi Normal University, Wuhan, China, 2021. [Google Scholar]
- Zhao, Y.; Luo, Y.; Yi, T.; Wang, Z.; Wang, N.; Wu, J. Construction of Ecological Security Patterns in Shenzhen Based on the Supply-Demand Matching of Ecosystem Services. Chin. J. Appl. Ecol. 2022, 33, 2475–2484. [Google Scholar] [CrossRef]
- Pelorosso, R.; Noce, S.; De Notaris, C.; Gobattoni, F.; Apollonio, C.; Petroselli, A.; Recanatesi, F.; Ripa, M.N. The Nexus between Connectivity, Climate, and Land Use: A Scenario Assessment of Bio-Energy Landscape Connectivity in Central Italy. J. Environ. Manag. 2025, 376, 124521. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Pan, J.; Zhu, X. Optimizing the ecological source area identification method and building ecological corridor using a genetic algorithm: A case study in Weihe River Basin, NW China. Ecol. Inform. 2024, 80, 102519. [Google Scholar] [CrossRef]
- Li, M.; Chen, L.; Zhao, F.; Bu, Q.; Tang, J.; Wang, X.; Zhao, B.; Feng, Q.; Yang, L. The Distribution Pattern of Human Pathogens in Soil Was Affected by Social-Economic Pattern and Landscape Fragmentation in Rapidly Urbanizing Areas. Ecol. Front. 2025, 45, 589–598. [Google Scholar] [CrossRef]
- Ding, G.; Guo, J.; Yi, D.; Ou, M.; Yang, G. Evaluating habitat isolation driven by future urban growth: A landscape connectivity perspective. Environ. Impact Assess. Rev. 2025, 113, 107886. [Google Scholar] [CrossRef]
- Wang, X.; Wen, D.; Liu, P.; Wei, C.; Zhao, P.; Xu, N. Maintaining Ecological Connectivity in Highly Urbanized Areas: Optimal Strategy, Key Patches and Protection Policy. Ecol. Indic. 2024, 164, 112152. [Google Scholar] [CrossRef]
- Ren, Y.; Zhang, L.; Wei, X.; Song, Y.; Wu, S.; Wang, H.; Chen, X.; Qiao, Y.; Liang, T. Evaluating and Simulating the Impact of Afforestation Policy on Land Use and Ecosystem Services Trade-Offs in Linyi, China. Ecol. Indic. 2024, 160, 111898. [Google Scholar] [CrossRef]
- Zhu, L.; Zhu, K.; Zeng, X. Evolution of landscape pattern and response of ecosystem service value in international wetland cities: A case study of Nanchang City. Ecol. Indic. 2023, 155, 110987. [Google Scholar] [CrossRef]
- Li, J.; Liang, L.; Chao, Y.; Wang, X.; Qiu, M.; Luo, P.; Zhu, Y. Construction of the Ecological Security Pattern of Mu Us Sandy Land Based on the “Source–Resistance–Corridor” Theory. Ecol. Indic. 2025, 171, 113162. [Google Scholar] [CrossRef]
- Guo, Z.; Zhu, C.; Fan, X.; Li, M.; Xu, N.; Yuan, Y.; Guan, Y.; Lyu, C.; Bai, Z. Analysis of ecological network evolution in an ecological restoration area with the MSPA-MCR model: A case study from Ningwu County, China. Ecol. Indic. 2025, 170, 113067. [Google Scholar] [CrossRef]
- Tang, B.; Wang, H.; Liu, J.; Zhang, W.; Zhao, W.; Cheng, D.; Zhang, L.; Jiao, L. Identification of Ecological Restoration Priority Areas Integrating Ecological Security and Feasibility of Restoration. Ecol. Indic. 2024, 158, 111557. [Google Scholar] [CrossRef]
- Gu, Y.; Lin, N.; Cao, B.; Ye, X.; Pang, B.; Du, W.; Dou, H.; Zou, C.; Xu, C.; Xu, D.; et al. Assessing the Effectiveness of Ecological Conservation Red Line for Mitigating Anthropogenic Habitat Degradation in River Corridors. Ecol. Indic. 2023, 154, 110742. [Google Scholar] [CrossRef]
- Huang, A.; Xu, Y.; Sun, P.; Zhou, G.; Liu, C.; Lu, L.; Xiang, Y.; Wang, H. Land Use/Land Cover Changes and Its Impact on Ecosystem Services in Ecologically Fragile Zone: A Case Study of Zhangjiakou City, Hebei Province, China. Ecol. Indic. 2019, 104, 604–614. [Google Scholar] [CrossRef]
- Xu, L.; Liu, X.; Tong, D.; Liu, Z.; Yin, L.; Zheng, W. Forecasting Urban Land Use Change Based on Cellular Automata and the PLUS Model. Land 2022, 11, 652. [Google Scholar] [CrossRef]
- Li, C.; Wu, Y.; Gao, B.; Zheng, K.; Wu, Y.; Li, C. Multi-scenario simulation of ecosystem service value for optimization of land use in the Sichuan-Yunnan ecological barrier, China. Ecol. Indic. 2021, 132, 108328. [Google Scholar] [CrossRef]
- Luo, J.; Fu, H. Constructing the Future Wetland Ecological Security Pattern with Multi-Scenario Simulation. Ecol. Indic. 2023, 153, 110473. [Google Scholar] [CrossRef]
Data Type | Resolution | Data Sources |
---|---|---|
Land use data | 30 m | Resource and Environmental Science Data Platform (https://www.resdc.cn/, accessed on 2 April 2024) |
Socio-economic data | \ | |
Annual average temperature data | 1 km | |
Average annual precipitation data | 1 km | |
Monthly precipitation data | 1 km | National Earth System Science Data Center (https://www.geodata.cn/, accessed on 2 April 2024) |
River and road data | \ | National Catalogue Service For Geographic Information (https://www.webmap.cn/, accessed on 2 April 2024) |
DEM | 30 m | Geospatial Data Cloud (http://www.gscloud.cn/, accessed on 2 April 2024) |
Land Use Type | Cultivated Land | Forested Land | Grassland | Watershed | Construction Land | Unutilized Land |
---|---|---|---|---|---|---|
Neighborhood weight | 0.33 | 0.10 | 0.38 | 0.40 | 1.00 | 0.57 |
Natural Development Scenarios | Economic Development Scenarios | Ecological Protection Scenarios | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | A | B | C | D | E | F | A | B | C | D | E | F | |
A | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 1 |
B | 1 | 1 | 1 | 0 | 1 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 0 | 1 |
C | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
D | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 0 | 1 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 | 0 |
E | 1 | 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 1 | 0 |
F | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
Norm | Categorization | Drag Coefficient | Weights |
---|---|---|---|
Land use type | Cultivated land | 3 | 0.45 |
Forested areas | 1 | ||
Grassland | 1 | ||
Water | 5 | ||
Construction Land | 9 | ||
Unutilized land | 7 | ||
DEM/m | <100 | 1 | 0.2 |
100~400 | 3 | ||
400~700 | 5 | ||
700~1000 | 7 | ||
>1000 | 9 | ||
Slope/(°) | <3 | 1 | 0.15 |
3~8 | 3 | ||
8~15 | 5 | ||
15~25 | 7 | ||
>25 | 9 | ||
Distance from road/m | <1000 | 9 | 0.2 |
1000~2000 | 7 | ||
2000~3000 | 5 | ||
3000~4000 | 3 | ||
>4000 | 1 |
Land Use Type | 2020 | Three Scenario Land Use Types for 2030 | ||||||
---|---|---|---|---|---|---|---|---|
Natural Development Scenarios (ND) | Economic Development Scenarios (ED) | Ecological Protection Scenarios (EP) | ||||||
Area/km2 | Ratio/% | Area/km2 | Ratio/% | Area/km2 | Ratio/% | Area/km2 | Ratio/% | |
Cultivated land | 19,668.919 | 38.44 | 19,279.865 | 37.68 | 19,193.686 | 37.51 | 19,281.785 | 37.68 |
Woodland | 20,677.221 | 40.41 | 20,411.276 | 39.89 | 20,375.838 | 39.82 | 20,700.814 | 40.46 |
Grassland | 1881.909 | 3.68 | 1897.358 | 3.71 | 1888.161 | 3.69 | 1899.935 | 3.71 |
Water | 5631.0534 | 11 | 5656.376 | 11.05 | 5446.608 | 10.64 | 5670.979 | 11.08 |
Construction land | 2783.458 | 5.44 | 3410.753 | 6.67 | 3752.091 | 7.33 | 3101.960 | 6.06 |
Unutilized land | 526.369 | 1.03 | 513.301 | 1 | 512.545 | 1 | 513.456 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Li, M.; Duo, L.; Chen, N.; Lu, J.; Yang, W. Multi-Scenario Simulation and Assessment of Ecological Security Patterns: A Case Study of Poyang Lake Eco-Economic Zone. Sustainability 2025, 17, 4017. https://doi.org/10.3390/su17094017
Song Y, Li M, Duo L, Chen N, Lu J, Yang W. Multi-Scenario Simulation and Assessment of Ecological Security Patterns: A Case Study of Poyang Lake Eco-Economic Zone. Sustainability. 2025; 17(9):4017. https://doi.org/10.3390/su17094017
Chicago/Turabian StyleSong, Yuke, Mangen Li, Linghua Duo, Niannan Chen, Jinping Lu, and Wanzhen Yang. 2025. "Multi-Scenario Simulation and Assessment of Ecological Security Patterns: A Case Study of Poyang Lake Eco-Economic Zone" Sustainability 17, no. 9: 4017. https://doi.org/10.3390/su17094017
APA StyleSong, Y., Li, M., Duo, L., Chen, N., Lu, J., & Yang, W. (2025). Multi-Scenario Simulation and Assessment of Ecological Security Patterns: A Case Study of Poyang Lake Eco-Economic Zone. Sustainability, 17(9), 4017. https://doi.org/10.3390/su17094017