Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (954)

Search Parameters:
Keywords = Picea

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2530 KiB  
Article
Soil Microbiome Drives Depth-Specific Priming Effects in Picea schrenkiana Forests Following Labile Carbon Input
by Kejie Yin, Lu Gong, Xinyu Ma, Xiaochen Li and Xiaonan Sun
Microorganisms 2025, 13(8), 1729; https://doi.org/10.3390/microorganisms13081729 - 24 Jul 2025
Viewed by 294
Abstract
The priming effect (PE), a microbially mediated process, critically regulates the balance between carbon sequestration and mineralization. This study used soils from different soil depths (0–20 cm, 20–40 cm, and 40–60 cm) under Picea schrenkiana forest in the Tianshan Mountains as the research [...] Read more.
The priming effect (PE), a microbially mediated process, critically regulates the balance between carbon sequestration and mineralization. This study used soils from different soil depths (0–20 cm, 20–40 cm, and 40–60 cm) under Picea schrenkiana forest in the Tianshan Mountains as the research object. An indoor incubation experiment was conducted by adding three concentrations (1% SOC, 2% SOC, and 3% SOC) of 13C-labelled glucose. We applied 13C isotope probe-phospholipid fatty acid (PLFA-SIP) technology to investigate the influence of readily labile organic carbon inputs on soil priming effect (PE), microbial community shifts at various depths, and the mechanisms underlying soil PE. The results indicated that the addition of 13C-labeled glucose accelerated the mineralization of soil organic carbon (SOC); CO2 emissions were highest in the 0–20 cm soil layer and decreased trend with increasing soil depth, with significant differences observed across different soil layers (p < 0.05). Soil depth had a positive direct effect on the cumulative priming effect (CPE); however, it showed negative indirect effects through physico-chemical properties and microbial biomass. The CPE of the 0–20 cm soil layer was significantly positively correlated with 13C-Gram-positive bacteria, 13C-Gram-negative bacteria, and 13C-actinomycetes. The CPE of the 20–40 cm and 40–60 cm soil layers exhibited a significant positive correlation with cumulative mineralization (CM) and microbial biomass carbon (MBC). Glucose addition had the largest and most significant positive effect on the CPE. Glucose addition positively affected PLFAs and particularly microbial biomass. This study provides valuable insights into the dynamics of soil carbon pools at varying depths following glucose application, advancing the understanding of forest soil carbon sequestration. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

17 pages, 1976 KiB  
Article
Soil Hydrological Properties and Organic Matter Content in Douglas-Fir and Spruce Stands: Implications for Forest Resilience to Climate Change
by Anna Klamerus-Iwan, Piotr Behan, Ewa Słowik-Opoka, María Isabel Delgado-Moreira and Lizardo Reyna-Bowen
Forests 2025, 16(8), 1217; https://doi.org/10.3390/f16081217 - 24 Jul 2025
Viewed by 288
Abstract
Climate change has intensified over recent decades, prompting shifts in forest management strategies, particularly in the Sudetes region of Poland, where native species like Norway spruce (Picea abies), European beech (Fagus sylvatica), and silver fir (Abies alba) [...] Read more.
Climate change has intensified over recent decades, prompting shifts in forest management strategies, particularly in the Sudetes region of Poland, where native species like Norway spruce (Picea abies), European beech (Fagus sylvatica), and silver fir (Abies alba) have historically dominated. To address these changes, non-native species such as Douglas fir (Pseudotsuga menziesii) have been introduced as potential alternatives. This study, conducted in the Jugów and Świerki forest districts, compared the soil properties and water retention capacities of Douglas fir (Dg) and Norway spruce (Sw) stands (age classes from 8–127 years) in the Fresh Mountain Mixed Forest Site habitat. Field measurements included temperature, humidity, organic matter content, water capacity, and granulometric composition. Results indicate that, in comparison to Sw stands, Dg stands were consistently linked to soils that were naturally finer textured. The observed hydrological changes were mostly supported by these textural differences: In all investigated circumstances, Dg soils demonstrated greater water retention, displaying a water capacity that was around 5% higher. In addition to texture, Dg stands showed reduced soil water repellency and a substantially greater organic matter content (59.74% compared to 27.91% in Sw), which further enhanced soil structure and moisture retention. Conversely, with increasing climatic stress, Sw soils, with coarser textures and less organic matter, showed decreased water retention. The study highlights the importance of species selection in sustainable forest management, especially under climate change. Future research should explore long-term ecological impacts, including effects on microbial communities, nutrient cycling, and biodiversity, to optimize forest resilience and sustainability. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

22 pages, 4848 KiB  
Article
Characterization and Mapping of Conservation Hotspots for the Climate-Vulnerable Conifers Abies nephrolepis and Picea jezoensis in Northeast Asia
by Seung-Jae Lee, Dong-Bin Shin, Jun-Gi Byeon, Sang-Hyun Lee, Dong-Hyoung Lee, Sang Hoon Che, Kwan Ho Bae and Seung-Hwan Oh
Forests 2025, 16(7), 1183; https://doi.org/10.3390/f16071183 - 18 Jul 2025
Viewed by 342
Abstract
Abies nephrolepis and Picea jezoensis are native Pinaceae trees distributed in high mountainous regions of Northeast Asia (typically above ~1000 m a.s.l. on the Korean peninsula, northeastern China, Sakhalin, and the Russian Far East) and southern boreal forests, vulnerable to climate change and [...] Read more.
Abies nephrolepis and Picea jezoensis are native Pinaceae trees distributed in high mountainous regions of Northeast Asia (typically above ~1000 m a.s.l. on the Korean peninsula, northeastern China, Sakhalin, and the Russian Far East) and southern boreal forests, vulnerable to climate change and human disturbances, necessitating accurate habitat identification for effective conservation. While protected areas (PAs) are essential, merely expanding existing ones often fail to protect populations under human pressure and climate change. Using species distribution models with current and projected climate data, we mapped potential habitats across Northeast Asia. Spatial clustering analyses integrated with PA and land cover data helped identify optimal sites and priorities for new conservation areas. Ensemble species distribution models indicated extensive suitable habitats, especially in southern Sikhote-Alin, influenced by maritime-continental climates. Specific climate variables strongly affected habitat suitability for both species. The Kamchatka peninsula consistently emerged as an optimal habitat under future climate scenarios. Our study highlights essential environmental characteristics shaping the habitats of these species, reinforcing the importance of strategically enhancing existing PAs, and establishing new ones. These insights inform proactive conservation strategies for current and future challenges, by focusing on climate refugia and future habitat stability. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

12 pages, 932 KiB  
Article
Determining Large Trees and Population Structures of Typical Tree Species in Northeast China
by Yutong Yang, Zhiyuan Jia, Shusen Ge, Yutang Li, Dongwei Kang and Junqing Li
Diversity 2025, 17(7), 491; https://doi.org/10.3390/d17070491 - 18 Jul 2025
Viewed by 206
Abstract
Specialized research on large trees in Northeast China is rare. To strengthen the understanding of local large trees, a survey of 4055 tree individuals from 75 plots in southeastern Jilin Province was conducted. The individual number and species composition of large trees in [...] Read more.
Specialized research on large trees in Northeast China is rare. To strengthen the understanding of local large trees, a survey of 4055 tree individuals from 75 plots in southeastern Jilin Province was conducted. The individual number and species composition of large trees in the community, as well as large individual standards in diameter at breast height (DBH) and population structures of typical tree species, were analyzed. By setting a DBH ≥ 50 cm as the threshold, 155 individuals across all the recorded trees were determined as large trees in the community, and 32.9% (51/155) of them were national second-class protected plant species in China. By setting the top 5% in DBH of a certain tree species as the threshold of large individuals of that tree species, the large individual criteria of six typical tree species were determined. The proportion of basal area of large trees to all trees was 30.4%, and the mean proportion of basal area of large individuals across the six typical tree species was 23.9% (±4.0%). As for the population characteristics, Abies nephrolepis and Picea jezoensis had large population sizes but relatively thin individuals, Tilia amurensis and Pinus koraiensis had small population sizes but relatively thick individuals, while Betula costata and Larix olgensis had medium population sizes and medium-sized individuals. Full article
(This article belongs to the Section Plant Diversity)
Show Figures

Figure 1

19 pages, 7129 KiB  
Article
Dendroclimatic Reconstruction of Seasonal Precipitation from Two Endangered Spruce Species in Northeastern Mexico
by Christian Wehenkel, Oscar A. Díaz-Carrillo and Jose Villanueva-Díaz
Atmosphere 2025, 16(7), 863; https://doi.org/10.3390/atmos16070863 - 15 Jul 2025
Viewed by 307
Abstract
Water availability is a major constraint on socioeconomic development in northeastern Mexico, highlighting the need for effective water resource planning that accounts for the variability and extremes of precipitation. In this study, seasonal precipitation reconstructions were developed using tree-ring chronologies from spruce species [...] Read more.
Water availability is a major constraint on socioeconomic development in northeastern Mexico, highlighting the need for effective water resource planning that accounts for the variability and extremes of precipitation. In this study, seasonal precipitation reconstructions were developed using tree-ring chronologies from spruce species (Picea spp.). A representative chronology for Picea mexicana Martínez was developed from two populations and spans the period 1786–2020, while a chronology for Picea martinezii T.F. Patterson was established from three populations covering 1746–2020. Both species exhibited significant positive correlations with January–May precipitation (r = 0.65 and 0.71, respectively; p < 0.01) and negative correlations with maximum temperature over the same period (r = −0.52 and −0.59, respectively). Two January–May precipitation reconstructions were produced for periods with adequate sample depth (EPS > 0.85): 1851–2020 for P. mexicana and 1821–2020 for P. martinezii. Both reconstructions revealed pronounced interannual variability, with recurrent droughts and persistently dry conditions, particularly evident in the P. mexicana series. Spatial correlation analyses indicated a historical link between reconstructed precipitation and the El Niño–Southern Oscillation (ENSO). These results highlight the value of spruce species for dendroclimatic reconstruction and their sensitivity to precipitation variability, especially as rising maximum temperatures may compromise their persistence in the Sierra Madre Oriental. Full article
(This article belongs to the Special Issue Forest Ecosystems in a Changing Climate)
Show Figures

Figure 1

16 pages, 4159 KiB  
Article
Integrated Transcriptomic and Metabolic Analyses Highlight Key Pathways Involved in the Somatic Embryogenesis of Picea mongolica
by Jinling Dai, Shengli Zhang and Yu’e Bai
Plants 2025, 14(14), 2141; https://doi.org/10.3390/plants14142141 - 11 Jul 2025
Viewed by 368
Abstract
In the severe environment of Hunshandake Sandy Land, the uncommon and indigenous Chinese tree species Picea mongolica is an important biological component. Conventional seed propagation in P. mongolica is constrained by low germination rates, prolonged breeding cycles, and hybrid offspring genetic instability, limiting [...] Read more.
In the severe environment of Hunshandake Sandy Land, the uncommon and indigenous Chinese tree species Picea mongolica is an important biological component. Conventional seed propagation in P. mongolica is constrained by low germination rates, prolonged breeding cycles, and hybrid offspring genetic instability, limiting efficient varietal improvement. In contrast, somatic embryogenesis (SE) offers superior propagation efficiency, exceptional germination synchrony, and strict genetic fidelity, enabling rapid mass production of elite regenerants. However, SE in P. mongolica is hampered by severe genotype dependence, poor mature embryo induction rates, and loss of embryogenic potential during long-term cultures, restricting the production of high-quality seedlings. In this study, we aimed to analyze the transcriptome and metabolome of three crucial phases of SE: mature somatic embryos (MSEs), globular somatic embryos (GSEs), and embryogenic calli (EC). Numerous differentially expressed genes (DEGs) were found, especially in pathways linked to ribosomal functions, flavonoid biosynthesis, and the metabolism of starch and sucrose. Additionally, 141 differentially accumulated metabolites (DAMs) belonging to flavonoids, organic acids, carbohydrates, lipids, amino acids, and other metabolites were identified. An integrated study of metabolomic and transcriptome data indicated considerable enrichment of DEGs and DAMs in starch and sucrose metabolism, as well as phenylpropanoid biosynthesis pathways, all of which are required for somatic embryo start and development. This study revealed a number of metabolites and genes linked with SE, offering important insights into the molecular mechanisms driving SE in P. mongolica and laying the groundwork for the development of an efficient SE system. Full article
(This article belongs to the Section Plant Physiology and Metabolism)
Show Figures

Figure 1

20 pages, 3952 KiB  
Article
Assessing the Height Gain Trajectory of White Spruce and Hybrid Spruce Provenances in Canadian Boreal and Hemiboreal Forests
by Suborna Ahmed, Valerie LeMay, Alvin Yanchuk, Peter Marshall and Gary Bull
Forests 2025, 16(7), 1123; https://doi.org/10.3390/f16071123 - 7 Jul 2025
Viewed by 340
Abstract
We assessed the impacts of tree improvement programs on the associated gains in yield of white spruce (Picea glauca (Moench) Voss) and hybrid spruce (Picea engelmannii Parry ex Engelmann x Picea glauca (Moench) Voss) over long temporal and large spatial extents. The [...] Read more.
We assessed the impacts of tree improvement programs on the associated gains in yield of white spruce (Picea glauca (Moench) Voss) and hybrid spruce (Picea engelmannii Parry ex Engelmann x Picea glauca (Moench) Voss) over long temporal and large spatial extents. The definition of gain varied in the tree improvement programs. We assessed the definition of gain using a sensitivity analysis, altering the evaluation age with the definitions of the baseline and top performers. We used meta-data from provenance trials extracted from the literature to model the yields of provenances relative to those of standard stocks. Using a previously developed meta-model and a chosen gain definition, a meta-dataset of the gain of plantation ages was developed. Using this gain meta-dataset, a gain trajectory model was fitted for white and hybrid spruce provenances across Canadian boreal and hemiboreal forests. The planting site, mean annual daily temperature, mean annual precipitation, and number of degree days > 5 °C had large impacts on gain. This model can be used to predict gain up to harvest age at any planting site in the boreal and hemiboreal forests of Canada. Further, these gain trajectories could be averaged over a region to indicate the yield potential of tree improvement programs. Full article
(This article belongs to the Section Forest Inventory, Modeling and Remote Sensing)
Show Figures

Figure 1

18 pages, 7356 KiB  
Review
Applied Chemical Ecology of Spruce Beetle in Western North America
by Christopher J. Fettig, Jackson P. Audley and Allen Steven Munson
Forests 2025, 16(7), 1103; https://doi.org/10.3390/f16071103 - 3 Jul 2025
Viewed by 284
Abstract
Spruce beetle (Dendroctonus rufipennis (Kirby)) is a major cause of spruce (Picea spp.) mortality in western North America. We synthesized the literature on the chemical ecology of spruce beetle, focusing on efforts to reduce host tree losses. This literature dates back [...] Read more.
Spruce beetle (Dendroctonus rufipennis (Kirby)) is a major cause of spruce (Picea spp.) mortality in western North America. We synthesized the literature on the chemical ecology of spruce beetle, focusing on efforts to reduce host tree losses. This literature dates back to the mid-20th century and focuses on spruce beetle populations in Alaska, U.S., western Canada, and the central and southern Rocky Mountains, U.S. Spruce beetle aggregation pheromone components include frontalin (1,5-dimethyl-6,8-dioxabicyclo[3.2.1]octane), seudenol (3-methyl-2-cyclohexen-1-ol), MCOL (1-methyl-2-cyclohexen-1-ol), and verbenene (4-methylene-6,6-dimethylbicyclo[3.1.1]hept-2-ene). The attraction of spruce beetle to one aggregation pheromone component is enhanced by the co-release of other aggregation pheromones and host compounds (e.g., α-pinene). Several baits that attract spruce beetles are commercially available and are used for survey and detection, population suppression, snag creation, and experimental purposes. The antiaggregation pheromone is MCH (3-methyl-2-cyclohexen-1-one), which has been evaluated for reducing colonization of felled spruce since the 1970s. Beginning in the early 2000s, MCH has been evaluated for protecting live, standing spruce from colonization by and mortality attributed to spruce beetle. With a few exceptions, significant reductions in levels of spruce beetle colonization and/or spruce mortality were reported. More recent efforts have combined MCH with other repellents (e.g., nonhost compounds) in hope of increasing levels of tree protection. Today, several formulations of MCH are registered for tree protection purposes in the U.S. and Canada. Full article
(This article belongs to the Section Forest Health)
Show Figures

Figure 1

15 pages, 27708 KiB  
Article
Defoliation of Norway Spruce by Spruce Budworm (Lepidoptera: Tortricidae) and Protection Using Bacillus thuringiensis
by Alvaro Fuentealba, Richard Berthiaume, Simon Fortier, Louis Morneau and Éric Bauce
Forests 2025, 16(7), 1056; https://doi.org/10.3390/f16071056 - 25 Jun 2025
Viewed by 303
Abstract
Norway spruce (Picea abies (L.) Karst.) has been widely planted beyond its natural range due to its fast growth rate and valuable wood. In Québec, over 200 million seedlings have been planted since 1964. Several of these plantations are now facing a [...] Read more.
Norway spruce (Picea abies (L.) Karst.) has been widely planted beyond its natural range due to its fast growth rate and valuable wood. In Québec, over 200 million seedlings have been planted since 1964. Several of these plantations are now facing a new potential threat, i.e., spruce budworm (Choristoneura fumiferana (Clem.)) infestations. Despite contrasting results, Norway and white spruce (P. glauca [Moench] Voss) apparently sustain a similar degree of budworm defoliation. The main study objective is to quantify defoliation in Norway spruce caused by spruce budworm. We also evaluate the efficacy of Bacillus thuringiensis Berliner spp. kurstaki (Btk) in protecting this exotic host tree. Annual defoliation was assessed in plantations of Norway, white, and black spruce (P. mariana [Mill.] BSP) between 2018 and 2022 in the Bas-Saint-Laurent region. Additional surveys were conducted in Norway and white spruce plantations in the Gaspésie and Côte-Nord to evaluate Btk efficacy. We show that both species exhibit similar defoliation levels, though Norway spruce sometimes sustains greater damage (e.g., 35% vs. 10% in 2019). Btk formulations showed low efficacy in protecting Norway spruce foliage (≥49.32% defoliation in treated plantations). Further studies are needed to understand factors influencing Btk efficacy on this host. Full article
(This article belongs to the Special Issue Monitoring and Control of Forest Pests)
Show Figures

Figure 1

17 pages, 4165 KiB  
Article
The Influence of Thermal Modification, Moisture Content, Frequency, and Vibration Direction Plane on the Damping of Spruce Wood (Picea abies) as Determined by the Wavelet Transform Method
by Miran Merhar and Rostand Moutou Pitti
Forests 2025, 16(7), 1055; https://doi.org/10.3390/f16071055 - 25 Jun 2025
Viewed by 295
Abstract
This article analyses the main effect and interaction of thermal modification, wood moisture content, frequency, and vibration direction on the damping of spruce wood. Samples were thermally modified at three different temperatures (180 °C, 200 °C, and 230 °C) and then equilibrated at [...] Read more.
This article analyses the main effect and interaction of thermal modification, wood moisture content, frequency, and vibration direction on the damping of spruce wood. Samples were thermally modified at three different temperatures (180 °C, 200 °C, and 230 °C) and then equilibrated at four different relative humidities (RHs) (20%, 44%, 76%, and 88%). The specimens were then freely supported and excited with a hammer to vibrate freely. Damping at the frequencies of the first three bending vibration modes for vibrations in the radial (LR plane) and tangential (LT plane) directions was determined using the wavelet transform method, which enables a decoupling of the vibration modes and thus a precise and accurate determination of the damping values. Damping increases with the wood moisture content for different modification levels, whereby the damping in the LR vibration direction plane differs from the damping in the LT vibration direction plane. For an unmodified sample and at frequency at the first vibration mode, damping in the radial plane is greater than in the tangential plane, but the relationships change with RHs, modification levels, and vibration direction planes. The dependence of damping on various factors has a strong influence on the calculation of various acoustic indicators, where damping of the wood is considered for the calculation, since damping for the same sample differs depending on the direction of vibration and the frequencies at different vibration modes. Full article
(This article belongs to the Section Wood Science and Forest Products)
Show Figures

Figure 1

23 pages, 1193 KiB  
Article
Conifer By-Products Extracted Using Hydrodynamic Cavitation as a Convenient Source of Phenolic Compounds and Free Amino Acids with Antioxidant and Antimicrobial Properties
by Luisa Pozzo, Andrea Raffaelli, Lidia Ciccone, Federica Zabini, Andrea Vornoli, Vincenzo Calderone, Lara Testai and Francesco Meneguzzo
Molecules 2025, 30(13), 2722; https://doi.org/10.3390/molecules30132722 - 25 Jun 2025
Viewed by 474
Abstract
Softwood bark and twigs represent by-products of forest supply chains rich in extractable bioactive compounds. This study aimed at evaluating the bioactive molecules of hydrodynamic cavitation (HC) based extracts of bark and twigs from different conifer plants and exploring their antioxidant capacity. Samples [...] Read more.
Softwood bark and twigs represent by-products of forest supply chains rich in extractable bioactive compounds. This study aimed at evaluating the bioactive molecules of hydrodynamic cavitation (HC) based extracts of bark and twigs from different conifer plants and exploring their antioxidant capacity. Samples of Picea abies twigs (RAR) and bark (CAR) and Abies alba twigs (SFT) underwent extraction using a pilot-scale Venturi reactor HC device. The freeze-dried extracts were characterized for the antioxidant capacity, through both in vitro and ex vivo assays, the antimicrobial activity, and the content of phenolics and free amino acids by UHPLC-ESI-MS/MS. HC-based aqueous extracts were obtained quickly and with low energy consumption. We found 10 phenolic acids, nine flavonols, three flavan-3-ols, five flavanones, three procyanidins, two stilbenoids, and 10 other phenolic compounds. Moreover, eight essential and seven dispensable amino acids were found. The principal component analysis showed clear discrimination among the three extracts. The CAR extract showed antimicrobial activity. The SFT extract showed the higher anthocyanins content and antioxidant activity, both through in vitro and ex vivo methods. These preliminary results confirm that by-products of Picea abies and Abies alba are rich in bioactive compounds and antioxidant activities, suggesting potential applications in the nutraceutical and pharmaceutical fields. Full article
Show Figures

Figure 1

22 pages, 2033 KiB  
Article
The Mechanical Properties of Laminated Veneer Products from Different Stands of Douglas Fir and Norway Spruce in Germany
by Tobias Krenn, Dirk Berthold, Nina Ritter and Carsten Mai
Forests 2025, 16(7), 1040; https://doi.org/10.3390/f16071040 - 21 Jun 2025
Viewed by 282
Abstract
The relationship between silvicultural strategies, manifested in the thinning method and rotation age on sites with different water supply, and the mechanical properties of engineered wood products plywood and laminated veneer lumber has been analyzed. Sample logs from five German sites of Norway [...] Read more.
The relationship between silvicultural strategies, manifested in the thinning method and rotation age on sites with different water supply, and the mechanical properties of engineered wood products plywood and laminated veneer lumber has been analyzed. Sample logs from five German sites of Norway spruce (Picea abies (L.) Karst.) and Douglas fir (Pseudotsuga menziesii (M.) Franco) have been rotary-peeled and processed into boards with a phenol–resorcinol–formaldehyde adhesive to evaluate their performance under flexural, tensile, and compressive loads. Satisfactory coefficients of determination were reached for Norway spruce in regard to the silvicultural framework and the tree characteristics of slenderness and crown base height. Douglas fir products did not achieve comparable determination due to high variance within boards and stands but did achieve significantly better mechanical properties. Norway spruce was observed to be more responsive to thinning measures, while the effect of different thinning regimes was not evident for Douglas fir. The on-site evaluation of Douglas fir stands for veneer product quality based on silvicultural parameters and tree characteristics was shown to be inconclusive, with its naturally higher wood density being the decisive constant. Full article
(This article belongs to the Special Issue Wood Properties: Strength, Density, Hardness)
Show Figures

Figure 1

14 pages, 1594 KiB  
Article
Effect of Lead on the Physiological Parameters and Elemental Composition of Pinus sylvestris L. and Picea abies (L.) H. Karst Seedlings
by Andrea Pogányová, Djordje P. Božović, Martin Bačkor, Michal Goga, Marián Tomka and Marko S. Sabovljević
Forests 2025, 16(6), 990; https://doi.org/10.3390/f16060990 - 11 Jun 2025
Viewed by 311
Abstract
Lead (Pb) pollution poses a long-term threat to forest ecosystems, particularly in mountainous areas affected by atmospheric deposition. This study examined the physiological and biochemical responses of juvenile Pinus sylvestris L. and Picea abies (L.) H. Karst seedlings to low concentrations of lead [...] Read more.
Lead (Pb) pollution poses a long-term threat to forest ecosystems, particularly in mountainous areas affected by atmospheric deposition. This study examined the physiological and biochemical responses of juvenile Pinus sylvestris L. and Picea abies (L.) H. Karst seedlings to low concentrations of lead nitrate during early development. Treatments simulated environmentally relevant Pb exposure and focused on pigment composition, oxidative stress markers, soluble protein and proline levels, and elemental content. Both species exhibited hormetic stimulation of photosynthetic pigments at lower Pb concentrations. In P. sylvestris, this effect declined at the highest dose, whereas P. abies maintained pigment levels, suggesting stronger regulatory control. Pb exposure reduced soluble proteins and induced species-specific alterations in MDA and proline levels. Correlation analysis revealed a well-integrated stress response in P. abies, while P. sylvestris showed a more fragmented pattern. Elemental analysis confirmed Pb accumulation primarily in roots, with higher levels in P. sylvestris. Both species experienced reduced root Mg, K, and Mn, indicating ionic imbalance due to Pb2+ interference. Zn content increased in P. sylvestris but decreased in P. abies, possibly reflecting differences in uptake regulation. These species-specific responses support the hypothesis that P. abies activates more effective defense mechanisms against Pb toxicity, while P. sylvestris exhibits a stronger physiological stress response. Full article
Show Figures

Figure 1

14 pages, 4240 KiB  
Article
Exploring Fungal Communities in the Needles of Marginal Conifer Tree Populations
by Jelena Lazarević and Audrius Menkis
Forests 2025, 16(6), 968; https://doi.org/10.3390/f16060968 - 7 Jun 2025
Viewed by 516
Abstract
In Montenegro, coniferous forests play a key ecological role in maintaining ecosystem stability. Root-associated mycorrhizal fungi and saprotrophic fungi inhabiting forest soils are well known for their roles in nutrient cycling, organic matter decomposition, and supporting host tree health. In contrast, the fungal [...] Read more.
In Montenegro, coniferous forests play a key ecological role in maintaining ecosystem stability. Root-associated mycorrhizal fungi and saprotrophic fungi inhabiting forest soils are well known for their roles in nutrient cycling, organic matter decomposition, and supporting host tree health. In contrast, the fungal communities residing within conifer needles, despite potentially important ecological functions, remain largely underexplored, particularly in natural and marginal forest ecosystems such as those in the Balkans. This study aimed to investigate the diversity and community composition of needle-associated fungi in three native conifers: Picea abies and Abies alba (at the edge of their native range), and the endemic Pinus heldreichii, from different mountainous regions in Montenegro. High-throughput sequencing was conducted to assess fungal diversity and community composition. Dothideomycetes dominated fungal communities in all three tree species, followed by Leotiomycetes and Tremellomycetes. Multivariate analysis revealed distinct fungal communities in P. heldreichii, whereas fungal communities in A. alba and P. abies were partially overlapping. Functional classification showed a dominance of saprotrophic, pathogenic, and endophytic fungi, with P. heldreichii exhibiting the highest proportion of saprotrophs, while A. alba and P. abies showed a considerable proportion of pathogens. The findings highlight strong host specificity, biogeographical influences, and the ecological importance of fungal communities in coniferous forests. This study provides new insights into the diversity and functional roles of needle-associated fungi, emphasizing the need for conservation efforts to maintain microbial biodiversity in native forests of Montenegro. Full article
(This article belongs to the Special Issue Recent Scientific Developments in Forest Pathology)
Show Figures

Figure 1

10 pages, 1273 KiB  
Article
Effects of Bioturbation by Earthworms on Litter Flammability in Young and Mature Afforested Stands
by Aneta Martinovská, Ondřej Mudrák and Jan Frouz
Fire 2025, 8(6), 225; https://doi.org/10.3390/fire8060225 - 6 Jun 2025
Viewed by 488
Abstract
The quantity, quality, and accumulation rate of plant litter play a key role in forest floor flammability and, by extension, fire regimes. The varying foliage properties of different tree species also determine litter’s decomposition and its accumulation on the forest floor. The removal [...] Read more.
The quantity, quality, and accumulation rate of plant litter play a key role in forest floor flammability and, by extension, fire regimes. The varying foliage properties of different tree species also determine litter’s decomposition and its accumulation on the forest floor. The removal of litter by soil fauna, i.e., bioturbation, depends on both the dominant tree species and the successional stage of the forest stand. This research involved laboratory mesocosm experiments aiming to determine the effects of litter quality and earthworm activity on the flammability of the forest floor material at different successional ages. The mesocosms simulated the planting of four tree species (the broadleaf species Alnus glutinosa (L.) Gaertn. (Black alder) and Quercus robur L. (English oak) and the conifers Picea omorika (Pančić) Purk. (Serbian spruce) and Pinus nigra J.F. Arnold (Austrian pine)) at a reclamation site near Sokolov (NW Czechia). The mesocosms contained litter from these different tree species, placed directly on overburden soil (immature soil) or on well-developed Oe and A layers (mature soil), inoculated or not inoculated with earthworms, and incubated for 4 months. The surface material in the mesocosms was then subjected to simulated burn events, and the fire path and soil temperature changes were recorded. Burn testing showed that litter type (tree species) and soil maturity significantly influenced flammability. Pine had longer burning times and burning paths and higher post-burn temperatures than those of the other tree species. The immature soil with earthworms had significantly shorter burning times, whereas in the mature soil, earthworms had no effect. We conclude that earthworms have a significant, immediate effect on the litter flammability of immature soils. Full article
Show Figures

Figure 1

Back to TopTop