Effect of Lead on the Physiological Parameters and Elemental Composition of Pinus sylvestris L. and Picea abies (L.) H. Karst Seedlings
Abstract
1. Introduction
2. Materials and Methods
2.1. Growth Conditions and Pb Treatments
2.2. Pigments
2.3. MDA Analysis
2.4. Soluble Protein Quantification
2.5. Proline Analysis
2.6. AAS Determination of Elements
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alloway, B.J. Heavy Metals in Soils: Trace Metals and Metalloids in Soils and Their Bioavailability; Springer: Dordrecht, The Netherlands, 2013. [Google Scholar] [CrossRef]
- Yang, Q.; Li, Z.; Lu, X.; Duan, Q.; Huang, L.; Bi, J. A review of soil heavy metal pollution from industrial and agricultural regions in China: Pollution and risk assessment. Sci. Total Environ. 2018, 642, 690–700. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhu, Y.; Gu, H.; Lam, S.S.; Chen, X.; Sonne, C.; Peng, W. A review of phytoremediation of environmental lead (Pb) contamination. Chemosphere 2024, 342, 142691. [Google Scholar] [CrossRef] [PubMed]
- Yin, K.; Wang, Q.; Lv, M.; Chen, L. Microorganism remediation strategies towards heavy metals. Chem. Eng. J. 2019, 360, 1553–1563. [Google Scholar] [CrossRef]
- Naz, S.; Chatha, A.M.M.; Téllez-Isaías, G.; Ullah, S.; Ullah, Q.; Khan, M.Z.; Kari, Z.A. A Comprehensive Review on Metallic Trace Elements Toxicity in Fishes and Potential Remedial Measures. Water 2023, 15, 3017. [Google Scholar] [CrossRef]
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef]
- Kumar, V.; Parihar, R.D.; Sharma, A.; Bakshi, P.; Sidhu, G.P.S.; Bali, A.S.; Karaouzas, I.; Bhardwaj, R.; Thukral, A.K.; Gyasi-Agyei, Y.; et al. Global evaluation of heavy metal content in surface water bodies: A meta-analysis using heavy metal pollution indices and multivariate statistical analyses. Chemosphere 2019, 236, 124364. [Google Scholar] [CrossRef]
- Xiang, M.; Li, Y.; Yang, J.; Lei, K.; Li, Y.; Li, F.; Zheng, D.; Fang, X.; Cao, Y. Heavy metal contamination risk assessment and correlation analysis of heavy metal contents in soil and crops. Environ. Pollut. 2021, 278, 116911. [Google Scholar] [CrossRef]
- Sharma, P.; Dubey, R.S. Lead toxicity in plants. Braz. J. Plant Physiol. 2005, 17, 35–52. [Google Scholar] [CrossRef]
- Marx, S.K.; Rashid, S.; Stromsoe, N. Global-scale patterns in anthropogenic Pb contamination reconstructed from natural archives. Environ. Pollut. 2016, 213, 283–298. [Google Scholar] [CrossRef]
- Punia, M. Environmental Changes and Sustainable Development in India: Perspectives from Remote Sensing and GIS; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Yang, Y.; Wang, Y.; Liu, R.; Xue, Y.; Jiang, H.; Wang, X. Lead isotopic composition and pollution source tracing in surface soils of Beijing, China. J. Geochem. Explor. 2020, 210, 106426. [Google Scholar] [CrossRef]
- Kang, M.J.; Kim, K.H.; Szulejko, J.E.; Park, Y.H. Study on the spatial distribution and mobility of heavy metals in soils in a mining complex area. Environ. Geochem. Health 2016, 38, 665–677. [Google Scholar] [CrossRef]
- Qin, Y.; Yang, X.; Wang, Y.; Zhang, S. Assessment of heavy metal pollution and human health risk in soils from the Qilian Mountains, China. Ecotoxicol. Environ. Saf. 2023, 258, 115002. [Google Scholar] [CrossRef]
- Miśkowiec, P. The impact of the mountain barrier on the spread of heavy metal pollution on the example of Gorce Mountains, Southern Poland. Environ. Monit. Assess. 2022, 194, 663. [Google Scholar] [CrossRef] [PubMed]
- Bing, H.; Zhou, J.; Wu, Y.; Luo, X.; Xiang, Z.; Sun, H.; Wang, J.; Zhu, H. Barrier effects of remote high mountain on atmospheric metal transport in the eastern Tibetan Plateau. Sci. Total Environ. 2018, 628, 687–696. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Wu, Y.; Zhang, S.; Zhao, Y.; Gao, J. Source apportionment and risk assessment of heavy metals in the forest soil: A case study of the Yanshan Mountains, China. Environ. Sci. Pollut. Res. 2024, 31, 11782–11795. [Google Scholar] [CrossRef]
- Qin, M.; Jin, Y.; Peng, T.; Zhao, B.; Hou, D. Heavy metal pollution in Mongolian-Manchurian grassland soil and effect of long-range dust transport by wind. Environ. Int. 2023, 177, 108019. [Google Scholar] [CrossRef]
- Świsłowski, P.; Kříž, J.; Rajfur, M. The use of bark in biomonitoring heavy metal pollution of forest areas on the example of selected areas in Poland. Ecol. Chem. Eng. S 2020, 27, 195–210. [Google Scholar] [CrossRef]
- Pająk, M.; Halecki, W.; Gąsiorek, M. Accumulative response of Scots pine (Pinus sylvestris L.) and silver birch (Betula pendula Roth) to heavy metals enhanced by Pb-Zn ore mining and processing plants: Explicitly spatial considerations of ordinary kriging based on a GIS approach. Chemosphere 2017, 168, 851–859. [Google Scholar] [CrossRef]
- Popović, V.; Šešlija Jovanović, D.; Miletić, Z.; Milovanović, J.; Lučić, A.; Rakonjac, L.; Miljković, D. The evaluation of hazardous element content in the needles of the Norway spruce (Picea abies L.) that originated from anthropogenic activities in the vicinity of the native habitats. Environ. Monit. Assess. 2023, 195, 109. [Google Scholar] [CrossRef]
- Andráš, P.; Turisová, I.; Buccheri, G.; de Matos, J.M.X.; Dirner, V. Comparison of heavy-metal bioaccumulation properties in Pinus sp. and Quercus sp. in selected European Cu deposits. Web Ecol. 2016, 16, 81–87. [Google Scholar] [CrossRef]
- Krupa, Z.; Baszyński, T. Some aspects of heavy metals toxicity towards photosynthetic apparatus: Direct and indirect effects on light and dark reactions. Environ. Exp. Bot. 1995, 35, 135–149. [Google Scholar] [CrossRef]
- Wójcik, M.; Tukiendorf, A. Cadmium uptake, localization and detoxification in Zea mays. Biol. Plant. 2005, 49, 237–245. [Google Scholar] [CrossRef]
- Pourrut, B.; Shahid, M.; Dumat, C.; Winterton, P.; Pinelli, E. Lead uptake, toxicity, and detoxification in plants. Rev. Environ. Contam. Toxicol. 2011, 213, 113–136. [Google Scholar] [CrossRef]
- Patra, M.; Sharma, A. Mercury toxicity in plants. Bot. Rev. 2000, 66, 379–423. [Google Scholar] [CrossRef]
- Gregušková, E.K.; Mihálik, D.; Kraic, J.; Mrkvová, M.; Sokol, J.; Gregor, P.; Rafajová, A.; Čupr, P. Genotoxic effects of transboundary pollutants in Pinus mugo in the high mountain habitats. Ecol. Indic. 2022, 140, 109009. [Google Scholar] [CrossRef]
- Chropeňová, M.; Gregušková, E.K.; Karásková, P.; Přibylová, P.; Kukučka, P.; Baráková, D.; Čupr, P. Pine needles and pollen grains of Pinus mugo Turra—A biomonitoring tool in high mountain habitats identifying environmental contamination. Ecol. Indic. 2016, 66, 132–142. [Google Scholar] [CrossRef]
- Jia, X.; Zhang, C.; Zhao, Y.; Liu, T.; He, Y. Three years of exposure to lead and elevated CO₂ affects lead accumulation and leaf defenses in Robinia pseudoacacia L. seedlings. J. Hazard. Mater. 2018, 349, 215–223. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Agrawal, M. Effects of sewage sludge amendment on heavy metal accumulation and consequent responses of Beta vulgaris plants. Chemosphere 2007, 67, 2229–2240. [Google Scholar] [CrossRef] [PubMed]
- Giller, K.E.; Witter, E.; McGrath, S.P. Microbial diversity in soil: Effects of metal contamination. Soil Biol. Biochem. 2009, 41, 1901–1915. [Google Scholar] [CrossRef]
- Chodak, M.; Gołębiewski, M.; Morawska-Płoskonka, J.; Kuduk, K.; Niklińska, M. Diversity of microorganisms from forest soils differently polluted with heavy metals. Appl. Soil Ecol. 2013, 64, 7–14. [Google Scholar] [CrossRef]
- Szopka, K.; Karczewska, A.; Jezierski, P.; Kabała, C. Spatial distribution of lead in the surface layers of mountain forest soils: An example from the Karkonosze National Park, Poland. Geoderma 2013, 192, 259–268. [Google Scholar] [CrossRef]
- Sipos, P.; Németh, T.; Mohai, I.; Dódony, I. Effect of soil composition on adsorption of lead as reflected by a study on a natural forest soil profile. Geoderma 2005, 124, 363–374. [Google Scholar] [CrossRef]
- Ettler, V.; Vaněk, A.; Mihaljevič, M.; Bezdička, P. Contrasting lead speciation in forest and tilled soils heavily polluted by lead metallurgy. Chemosphere 2005, 58, 1449–1459. [Google Scholar] [CrossRef] [PubMed]
- Keresztesi, Á.; Nita, I.A.; Birsan, M.V.; Bodor, Z.; Szép, R. The risk of cross-border pollution and the influence of regional climate on the rainwater chemistry in the Southern Carpathians, Romania. Environ. Sci. Pollut. Res. 2020, 27, 9382–9402. [Google Scholar] [CrossRef]
- Levin, R.; Vieira, C.L.Z.; Mordarski, D.C.; Rosenbaum, M.H. Lead seasonality in humans, animals, and the natural environment. Environ. Res. 2020, 180, 108797. [Google Scholar] [CrossRef] [PubMed]
- Cherednichenko, V.S.; Cherednichenko, A.V.; Zheksenbaeva, A.K.; Madibekov, A.S. Heavy metal deposition through precipitation in Kazakhstan. Heliyon 2021, 7, e05844. [Google Scholar] [CrossRef]
- Kalugina, O.V.; Mikhailova, T.A.; Shergina, O.V. Biochemical adaptation of Scots pine (Pinus sylvestris L.) to technogenic pollution. Contemp. Probl. Ecol. 2018, 11, 79–88. [Google Scholar] [CrossRef]
- Doichinova, V.; Zhiyanski, M.; Hursthouse, A.; Bech, J. Study on the mobility and bioavailability of PTEs in soils from urban forest parks in Sofia, Bulgaria. J. Geochem. Explor. 2014, 147, 222–228. [Google Scholar] [CrossRef]
- Angelovičová, L.; Boguská, Z.; Fazekašová, D. Physico-chemical water properties and flora diversity under the old mining load influence (Rudnansky creek, Slovakia). Pollack Period. 2015, 10, 123–131. [Google Scholar] [CrossRef]
- Brunner, I.; Luster, J.; Günthardt-Goerg, M.S.; Frey, B. Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environ. Pollut. 2008, 152, 559–568. [Google Scholar] [CrossRef]
- Caudullo, G.; Tinner, W.; de Rigo, D. Picea abies in Europe: Distribution, habitat, usage and threats. In European Atlas of Forest Tree Species; San-Miguel-Ayanz, J., de Rigo, D., Caudullo, G., Houston Durrant, T., Mauri, A., Eds.; Publications Office of the European Union: Luxembourg, 2016; pp. 114–115. [Google Scholar]
- Krakau, U.K.; Liesebach, M.; Aronen, T.; Lelu-Walter, M.A.; Schneck, V. Scots pine (Pinus sylvestris L.). In Forest Tree Breeding in Europe; Pâques, L., Ed.; Springer: Dordrecht, The Netherlands, 2013; Volume 25, pp. 281–323. [Google Scholar] [CrossRef]
- Graney, J.R.; Landis, M.S. Coupling meteorology, metal concentrations, and Pb isotopes for source attribution in archived precipitation samples. Sci. Total Environ. 2013, 448, 141–150. [Google Scholar] [CrossRef] [PubMed]
- European Parliament; Council of the European Union. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directive 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off. J. Eur. Union 2013, L226, 1–17. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32013L0039 (accessed on 2 April 2025).
- Kozak, K.; Kozioł, K.; Luks, B.; Chmiel, S.; Ruman, M.; Marć, M.; Namieśnik, J.; Polkowska, Ż. The role of atmospheric precipitation in introducing contaminants to the surface waters of the Fuglebekken catchment, Spitsbergen. Polar Res. 2015, 34, 24207. [Google Scholar] [CrossRef]
- Bohlin-Nizzetto, P.; Aas, W.; Halvorsen, H.L.; Nikiforov, V.; Pfaffhuber, K.A. Monitoring of Environmental Contaminants in Air and Precipitation: Annual Report 2020. NILU Rep. 2021. Available online: https://www.miljodirektoratet.no/globalassets/publikasjoner/m1736/m1736.pdf (accessed on 2 April 2025).
- Zhou, J.; Du, B.; Wang, Z.; Zhang, W.; Xu, L.; Fan, X.; Liu, X.; Zhou, J. Distributions and pools of lead (Pb) in a terrestrial forest ecosystem with highly elevated atmospheric Pb deposition and ecological risks to insects. Sci. Total Environ. 2019, 647, 932–941. [Google Scholar] [CrossRef] [PubMed]
- Johansson, K.; Bergbäck, B.; Tyler, G. Impact of atmospheric long range transport of lead, mercury and cadmium on the Swedish forest environment. Water Air Soil Pollut. Focus 2001, 1, 279–297. [Google Scholar] [CrossRef]
- Wellburn, A.R. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Heath, R.L.; Packer, L. Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys. 1968, 125, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Ábrahám, E.; Hourton-Cabassa, C.; Erdei, L.; Szabados, L. Methods for determination of proline in plants. In Plant Stress Tolerance: Methods and Protocols; Springer: New York, NY, USA, 2010; pp. 317–331. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing (Version 4.3.2); R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.r-project.org/ (accessed on 2 April 2025).
- Wobbrock, J.O.; Findlater, L.; Gergle, D.; Higgins, J.J. The aligned rank transform for nonparametric factorial analyses using only ANOVA procedures. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vancouver, BC, Canada, 7–12 May 2011; ACM: New York, NY, USA, 2011; pp. 143–146. [Google Scholar] [CrossRef]
- Elkin, L.; Kay, M.; Higgins, J.; Wobbrock, J. An aligned rank transform procedure for multifactor contrast tests. In Proceedings of the 34th Annual ACM Symposium on User Interface Software and Technology, Virtual Event, USA, 10–14 October 2021; Association for Computing Machinery: New York, NY, USA, 2021; pp. 754–768. [Google Scholar] [CrossRef]
- Kay, M.; Elkin, L.; Higgins, J.; Wobbrock, J. mjskay/ARTool: ARTool 0.11.0, (v0.11.0). Zenodo. 2021. Available online: https://zenodo.org/records/4721941 (accessed on 20 December 2022). [CrossRef]
- Kolde, R. pheatmap: Pretty heatmaps (R Package Version 1.0.12). 2018. Available online: https://github.com/raivokolde/pheatmap (accessed on 2 April 2025).
- Mitra, A.; Chatterjee, S.; Voronina, A.V.; Walther, C. Lead toxicity in plants: A review. In Lead in Plants and the Environment; Gupta, D., Chatterjee, S., Walther, C., Eds.; Springer: Cham, Switzerland, 2020; pp. 161–194. [Google Scholar] [CrossRef]
- Khodaverdiloo, H.; Ghorbani, D.S.; Rezapour, S. Lead and cadmium accumulation potential and toxicity threshold determined for land cress and spinach. J. Plant Prod. 2011, 5, 275–282. [Google Scholar]
- Cunha, A.R.D.; Ambrósio, A.D.S.; Wolowski, M.; Westin, T.B.; Govêa, K.P.; Carvalho, M.; Barbosa, S. Negative effects on photosynthesis and chloroplast pigments exposed to lead and aluminum: A meta-analysis. Cerne 2020, 26, 232–237. [Google Scholar] [CrossRef]
- Jia, M.; Li, W.; Wang, Z.; Lu, C.; Wang, J. Effects of Pb on photosynthesis and antioxidant system in model plants: A comparative study. Ecotoxicol. Environ. Saf. 2022, 239, 113649. [Google Scholar] [CrossRef]
- Erofeeva, M. Hormesis and adaptive responses to low-dose stress factors in woody plants. Environ. Res. 2023, 216, 114473. [Google Scholar] [CrossRef]
- Małkowski, E.; Sitko, K.; Szopiński, M.; Gieroń, Ż.; Pogrzeba, M.; Kalaji, H.M.; Zieleźnik-Rusinowska, P. Hormesis in plants: The role of oxidative stress, auxins and photosynthesis in corn treated with Cd or Pb. Int. J. Mol. Sci. 2020, 21, 2099. [Google Scholar] [CrossRef]
- Sengar, R.S.; Gautam, M.; Garg, S.K.; Chaudhary, R.; Sengar, K. Effect of lead on seed germination, seedling growth, chlorophyll content and nitrate reductase activity in mung bean (Vigna radiata). Res. J. Phytochem. 2008, 2, 61–68. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.M. Nitric oxide reduces oxidative stress induced by paraquat in the leaves of Phaseolus vulgaris. Biol. Plant. 2010, 54, 104–109. [Google Scholar] [CrossRef]
- Belousov, M.V.; Mashkina, O.S.; Popov, V.N. Cytogenetic response of Scots pine (Pinus sylvestris Linnaeus, 1753) (Pinaceae) to heavy metals. Comp. Cytogenet. 2012, 6, 93. [Google Scholar] [CrossRef] [PubMed]
- Belousov, M.V.; Zemlyanukhina, O.A. Nitrate lead influence on cytogenetic and some biochemical parameters of scotch pine seedlings. Vestn. Tambov. Univ. Ser. Nat. Tech. Sci. 2011, 16, 1321–1324. [Google Scholar]
- Staszak, A.M.; Małecka, A.; Ciereszko, I.; Ratajczak, E. Differences in stress defence mechanisms in germinating seeds of Pinus sylvestris exposed to various lead chemical forms. PLoS ONE 2020, 15, e0238448. [Google Scholar] [CrossRef]
- Khan, M.N.; Khan, Z.; Mobin, M.; Abbas, Z.K.; Alamri, S.A.; Alyemeni, M.N. Assessment of lead induced oxidative stress and alteration in antioxidant defense system in rice (Oryza sativa L.) genotypes. Sci. Rep. 2021, 11, 4532. [Google Scholar] [CrossRef]
- Wiszniewska, A.; Muszyńska, E.; Kołton, A.; Kamińska, I.; Hanus-Fajerska, E. In vitro acclimation to prolonged metallic stress is associated with modulation of antioxidant responses in a woody shrub Daphne jasminea. Plant Cell Tissue Organ Cult. 2019, 139, 339–357. [Google Scholar] [CrossRef]
- Maddah, A.; Moraghebi, F. The accumulation of heavy metals in Scots pine (Pinus sylvestris) grown on contaminated soils and their effect on biomass and growth. Environ. Monit. Assess. 2013, 185, 251–258. [Google Scholar] [CrossRef]
- Alaqouri, H.A.A.; Genc, C.O.; Aricak, B.; Kuzmina, N.; Menshikov, S.; Cetin, M. The possibility of using Scots pine needles as biomonitor in determination of heavy metal accumulation. Environ. Sci. Pollut. Res. 2020, 27, 20273–20280. [Google Scholar] [CrossRef] [PubMed]
- Hayat, S.; Hayat, Q.; Alyemeni, M.N.; Wani, A.S.; Pichtel, J.; Ahmad, A. Role of proline under changing environments: A review. Plant Signal. Behav. 2012, 7, 1456–1466. [Google Scholar] [CrossRef]
- Krzesłowska, M. The cell wall in plant cell response to trace metals: Polysaccharide remodeling and its role in defense strategy. Acta Physiol. Plant. 2011, 33, 35–51. [Google Scholar] [CrossRef]
- Godbold, D.L.; Kettner, C. Lead influences root growth and mineral nutrition of Picea abies seedlings. J. Plant Physiol. 1991, 139, 95–99. [Google Scholar] [CrossRef]
- Varga, A.; Záray, G.; Fodor, F.; Cseh, E. Study of interaction of iron and lead during their uptake process in wheat roots by total-reflection X-ray fluorescence spectrometry. Spectrochim. Acta B 1997, 52, 1027–1032. [Google Scholar] [CrossRef]
- Gupta, M.; Dwivedi, V.; Kumar, S.; Patel, A.; Niazi, P.; Yadav, V.K. Lead toxicity in plants: Mechanistic insights into toxicity, physiological responses of plants and mitigation strategies. Plant Signal. Behav. 2024, 19, 2365576. [Google Scholar] [CrossRef]
- Shen, J.; Song, L.; Müller, K.; Hu, Y.; Song, Y.; Yu, W.; Wang, H.; Wu, J. Magnesium alleviates adverse effects of lead on growth, photosynthesis, and ultrastructural alterations of Torreya grandis seedlings. Front. Plant Sci. 2016, 7, 1819. [Google Scholar] [CrossRef]
- Lamhamdi, M.; El Galiou, O.; Bakrim, A.; Novoa-Muñoz, J.C.; Arias-Estévez, M.; Aarab, A.; Lafont, R. Effect of lead stress on mineral content and growth of wheat (Triticum aestivum) and spinach (Spinacia oleracea) seedlings. Saudi J. Biol. Sci. 2013, 20, 29–36. [Google Scholar] [CrossRef]
- Mleczek, M.; Budka, A.; Gąsecka, M.; Budzyńska, S.; Drzewiecka, K.; Magdziak, Z.; Rutkowski, P.; Goliński, P.; Niedzielski, P. Copper, lead and zinc interactions during phytoextraction using Acer platanoides L.—A pot trial. Environ. Sci. Pollut. Res. 2023, 30, 27191–27207. [Google Scholar] [CrossRef] [PubMed]
- He, P.P.; Lv, X.Z.; Wang, G.Y. Effects of Se and Zn supplementation on the antagonism against Pb and Cd in vegetables. Environ. Int. 2004, 30, 167–172. [Google Scholar] [CrossRef] [PubMed]
- Musielińska, R.; Kowol, J.; Kwapuliński, J.; Rochel, R. Antagonism between lead and zinc ions in plants. Arch. Environ. Prot. 2016, 42, 54–61. [Google Scholar] [CrossRef]
- Hassan, M.U.; Nawaz, M.; Mahmood, A.; Shah, A.A.; Shah, A.N.; Muhammad, F.; Batool, M.; Rasheed, A.; Jaremko, M.; Abdelsalam, N.R.; et al. The role of zinc to mitigate heavy metals toxicity in crops. Front. Environ. Sci. 2022, 10, 990223. [Google Scholar] [CrossRef]
- Claus, J.; Bohmann, A.; Chavarría-Krauser, A. Zinc uptake and radial transport in roots of Arabidopsis thaliana: A modelling approach to understand accumulation. Ann. Bot. 2013, 112, 369–380. [Google Scholar] [CrossRef]
Species | Tissue | Pb(NO3)2 | Pb | Cu | Fe | K | Mg | Mn | Na | Zn |
---|---|---|---|---|---|---|---|---|---|---|
Picea abies | Roots | 0 | <LOD = 3.49 | 38.79 ± 0.57 | 234.55 ± 0.67 | 14,523.44 ± 0.71 | 5052.59 ± 0.85 | 58.86 ± 0.73 | 4004.57 ± 0.06 | 136.96 ± 0.26 |
0.5 | 8.37 ± 2.39 | 15.93 ± 0.59 | 374.60 ± 1.05 | 6282.36 ± 1.39 | 4904.22 ±1.22 | 35.48 ± 0.94 | 4277.96 ± 0.34 | 45.76 ± 0.86 | ||
1 | 28.16 ± 2.39 | 20.36 ± 1.29 | 570.59 ± 2.28 | 7069.70 ± 1.52 | 4134.04 ± 1.30 | 37.46 ± 0.63 | 4401.02 ± 0.38 | 61.48 ± 0.36 | ||
2 | 69.83 ± 1.16 | 18.94 ± 2.11 | 322.29 ± 2.07 | 6962.75 ± 0.77 | 4599.52 ± 0.98 | 23.12 ± 0.67 | 4107.79 ± 0.65 | 88.47 ± 0.97 | ||
Shoots | 0 | <LOD = 2.30 | 20.90 ± 1.00 | 161.18 ± 5.06 | 10,830.89 ± 2.70 | 4561.15 ± 3.00 | 654.21 ± 0.32 | 1541.12 ± 0.40 | 114.00 ± 0.22 | |
0.5 | <LOD = 2.93 | 6.94 ± 4.75 | 60.51 ± 6.49 | 5926.68 ± 2.66 | 4959.92 ± 2.21 | 229.73 ± 1.28 | 2944.83 ± 0.40 | 81.84 ± 0.08 | ||
1 | <LOD = 2.98 | 8.55 ± 1.56 | 107.00 ± 3.71 | 6459.11 ± 3.40 | 4368.03 ± 3.45 | 280.80 ± 0.40 | 3029.08 ± 0.23 | 82.92 ± 0.26 | ||
2 | <LOD = 3.14 | 7.81 ± 2.08 | 63.61 ± 1.02 | 5882.56 ± 1.54 | 4963.27 ± 2.02 | 245.15 ± 0.63 | 4020.92 ± 0.61 | 60.52 ± 0.03 | ||
Pinus sylvestris | Roots | 0 | <LOD = 2.56 | 39.22 ± 0.91 | 163.91 ± 4.10 | 11,049.32 ± 1.89 | 4859.56 ± 2.48 | 43.58 ± 0.85 | 4184.89 ± 0.17 | 99.40 ± 0.20 |
0.5 | 21.39 ± 2.01 | 19.58 ± 1.44 | 382.99 ± 5.09 | 8102.72 ± 3.36 | 3794.21 ± 3.49 | 14.85 ± 0.51 | 5609.98 ± 0.11 | 85.28 ± 1.06 | ||
1 | 47.73 ± 3.94 | 21.26 ± 1.38 | 431.07 ± 0.92 | 8995.49 ± 1.64 | 4243.87 ± 1.27 | 20.06 ± 0.62 | 7941.17 ± 0.70 | 109.86 ± 0.62 | ||
2 | 153.33 ± 1.15 | 19.21 ± 3.55 | 211.28 ± 2.80 | 5586.62 ± 1.88 | 5377.81 ± 0.79 | 12.70 ± 1.48 | 10,104.37 ± 0.39 | 195.59 ± 0.59 | ||
Shoots | 0 | <LOD = 3.35 | 15.45 ± 0.37 | 215.28 ± 1.28 | 792.46 ± 0.81 | 6942.64 ± 0.59 | 40.57 ± 0.42 | 3482.70 ± 0.23 | 149.10 ± 0.02 | |
0.5 | <LOD = 3.49 | 3.41 ± 4.53 | 30.58 ± 8.26 | 8094.84 ± 2.12 | 4456.62 ± 2.10 | 80.20 ± 0.87 | 2900.29 ± 0.08 | 76.50 ± 0.50 | ||
1 | <LOD = 3.78 | 5.38 ± 7.23 | 39.11 ± 10.58 | 8690.26 ± 1.93 | 5102.89 ± 2.50 | 135.50 ± 0.48 | 4529.69 ± 0.30 | 97.63 ± 0.33 | ||
2 | <LOD = 3.75 | 6.38 ± 1.91 | 63.50 ± 5.90 | 5342.98 ± 3.18 | 5434.18 ± 3.61 | 181.88 ± 0.34 | 4573.15 ± 0.33 | 95.07 ± 0.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pogányová, A.; Božović, D.P.; Bačkor, M.; Goga, M.; Tomka, M.; Sabovljević, M.S. Effect of Lead on the Physiological Parameters and Elemental Composition of Pinus sylvestris L. and Picea abies (L.) H. Karst Seedlings. Forests 2025, 16, 990. https://doi.org/10.3390/f16060990
Pogányová A, Božović DP, Bačkor M, Goga M, Tomka M, Sabovljević MS. Effect of Lead on the Physiological Parameters and Elemental Composition of Pinus sylvestris L. and Picea abies (L.) H. Karst Seedlings. Forests. 2025; 16(6):990. https://doi.org/10.3390/f16060990
Chicago/Turabian StylePogányová, Andrea, Djordje P. Božović, Martin Bačkor, Michal Goga, Marián Tomka, and Marko S. Sabovljević. 2025. "Effect of Lead on the Physiological Parameters and Elemental Composition of Pinus sylvestris L. and Picea abies (L.) H. Karst Seedlings" Forests 16, no. 6: 990. https://doi.org/10.3390/f16060990
APA StylePogányová, A., Božović, D. P., Bačkor, M., Goga, M., Tomka, M., & Sabovljević, M. S. (2025). Effect of Lead on the Physiological Parameters and Elemental Composition of Pinus sylvestris L. and Picea abies (L.) H. Karst Seedlings. Forests, 16(6), 990. https://doi.org/10.3390/f16060990