Applied Chemical Ecology of Spruce Beetle in Western North America
Abstract
1. Introduction
2. Management of Spruce Beetle
3. Semiochemical Attractants
3.1. Use of Semiochemical Attractants in Trapping for Survey, Detection, and Experimental Purposes
3.2. Use of Semiochemical Attractants in Trapping for Forecasting Levels of Spruce Mortality
3.3. Use of Semiochemical Attractants in Mass Trapping for Population Suppression
3.4. Use of Semiochemical Attractants on Trap Trees for Population Suppression
3.5. Use of Semiochemical Attractants for Snag Creation
3.6. Use of Semiochemical Attractants for Baiting Spruce for Experimental Purposes
4. Semiochemical Repellents
4.1. Use of Semiochemical Repellents for Reducing Colonization of Downed Spruce
4.2. Use of Semiochemical Repellents for Reducing Colonization and Mortality of Live Standing Spruce
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Furniss, R.L.; Carolin, V.M. Western Forest Insects; USDA For. Serv. Misc. Publ. 1339; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1977; p. 654.
- Maroja, L.A.; Bogdanowicz, S.M.; Wallin, K.F.; Raffa, K.F.; Harrison, R.G. Phylogeography of spruce beetles (Dendroctonus rufipennis Kirby) (Curculionidae: Scolytinae) in North America. Mol. Ecol. 2007, 16, 2560–2573. [Google Scholar] [CrossRef] [PubMed]
- Hebertson, E.G.; Jenkins, M.J. The influence of fallen tree timing spruce beetle brood production. West. N. Am. Nat. 2007, 67, 452–460. [Google Scholar] [CrossRef]
- Hebertson, E.G.; Jenkins, M.J. Climate factors associated with historic spruce beetle (Coleoptera: Curculionidae) outbreaks in Utah and Colorado. Environ. Entomol. 2008, 37, 281–292. [Google Scholar] [CrossRef]
- Berg, E.E.; Henry, J.D.; Fastie, C.L.; De Volder, A.D.; Matsuoka, S.M. Spruce beetle outbreaks on the Kenai Peninsula, Alaska, and Kluane National Park and Reserve, Yukon Territory: Relationship to summer temperatures and regional differences in disturbance regimes. For. Ecol. Manag. 2006, 22, 219–232. [Google Scholar] [CrossRef]
- Bentz, B.J.; Régnière, J.; Fettig, C.J.; Hansen, E.M.; Hayes, J.L.; Hicke, J.A.; Kelsey, R.G.; Negrón, J.F.; Seybold, S.J. Climate change and bark beetles of the western United States and Canada: Direct and indirect effects. BioScience 2010, 60, 602–613. [Google Scholar] [CrossRef]
- Sherriff, R.L.; Berg, E.E.; Miller, A.E. Climate variability and spruce beetle (Dendroctonus rufipennis) outbreaks in south-central and southwest Alaska. Ecology 2011, 92, 1459–1470. [Google Scholar] [CrossRef]
- Hart, S.J.; Veblen, T.T.; Eisenhart, K.S.; Jarvis, D.; Kulakowski, D. Drought induces spruce beetle (Dendroctonus rufipennis) outbreaks across northwestern Colorado. Ecology 2014, 95, 930–939. [Google Scholar] [CrossRef]
- Franceschi, V.R.; Krokene, P.; Christiansen, E.; Krekling, T. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol. 2005, 167, 353–376. [Google Scholar] [CrossRef]
- Hansen, E.M.; Bentz, B.J.; Turner, D.L. Physiological basis for flexible voltinism in the spruce beetle. Can. Entomol. 2001, 133, 805–817. [Google Scholar] [CrossRef]
- Hansen, E.M.; Bentz, B.J.; Turner, D.L. Temperature based model for predicting univoltine brood proportions in spruce beetle. Can. Entomol. 2001, 133, 827–841. [Google Scholar] [CrossRef]
- Blieker, K.P.; Brescia, S.R.; Van Hezewijk, B.J. Predicting spruce beetle voltinism and flight time in western Canada using a model developed in the United States. J. Entomol. Soc. B. C. 2024, 121, e2609. [Google Scholar]
- Jenkins, M.J.; Hebertson, E.G.; Munson, A.S. Spruce beetle biology, ecology and management in the Rocky Mountains: An addendum to spruce beetle in the Rockies. Forests 2014, 5, 21–71. [Google Scholar] [CrossRef]
- Bleiker, K.P.; Brooks, J.E. (Eds.) Spruce Beetle: A Synthesis of Biology, Ecology, and Management in Canada; Natural Resources Canada: Victoria, BC, Canada, 2021. Available online: https://publications.gc.ca/collections/collection_2021/rncan-nrcan/Fo144-12-2021-eng.pdf (accessed on 15 May 2025).
- Werner, R.A. Toxicity and repellency of 4-allylanisole and monoterpenes from white spruce and tamarack to the spruce beetle and eastern larch beetle (Coleoptera: Scolytidae). Environ. Entomol. 1995, 24, 372–379. [Google Scholar] [CrossRef]
- Davis, T.S. Toxicity of two Engelmann spruce (Pinaceae) monoterpene chemotypes from the southern Rocky Mountains to North American spruce beetle (Coleoptera: Scolytidae). Can. Entomol. 2020, 152, 790–796. [Google Scholar] [CrossRef]
- Sullivan, B.T. Composition of attractant semiochemicals of North American species of Dendroctonus bark beetles: A review. Forests 2024, 15, 642. [Google Scholar] [CrossRef]
- Gries, G.; Pierce, H.D.; Lindgren, B.S.; Borden, J.H. New techniques for capturing and analyzing semiochemicals for scolytid beetles (Coleoptera, Scolytidae). J. Econ. Entomol. 1988, 81, 1715–1720. [Google Scholar] [CrossRef]
- Isitt, R.L.; Bleiker, K.P.; Pureswaran, D.S.; Hillier, N.K.; Huber, D.P. Local, geographical, and contextual variation in the aggregation pheromone blend of the spruce beetle, Dendroctonus rufipennis (Coleoptera: Curculionidae). J. Chem. Ecol. 2020, 46, 497–507. [Google Scholar] [CrossRef]
- Dyer, E.D.A.; Chapman, J.A. Attack by spruce beetle, induced by frontalin or billets with burrowing females. Bimon. Res. Notes 1971, 27, 10–11. [Google Scholar]
- Ryall, K.; Silk, P.; Thurston, G.; Scarr, T.; de Groot, P. Elucidating pheromone and host volatile components attractive to the spruce beetle, Dendroctonus rufipennis (Coleoptera: Curculionidae), in eastern Canada. Can. Entomol. 2013, 145, 406–415. [Google Scholar] [CrossRef]
- Isitt, R.L.; Bleiker, K.P.; Pureswaran, D.S.; Hillier, N.K.; Huber, D.P. The effect of feeding and mate presence on the pheromone production of the spruce beetle (Coleoptera: Curculionidae). Environ. Entomol. 2018, 47, 1293–1299. [Google Scholar] [CrossRef]
- Vité, J.; Pitman, G.; Fentiman, A.; Kinzer, G. 3-Methyl-2-cyclohexen-1-ol isolated from Dendroctonus. Naturwissenschaften 1972, 59, 469. [Google Scholar] [CrossRef] [PubMed]
- Borden, J.H.; Gries, G.; Chong, L.J.; Werner, R.A.; Holsten, E.H.; Wieser, H.; Dixon, E.A.; Cerezke, H.F. Regionally-specific bioactivity of two new pheromones for Dendroctonus rufipennis (Kirby) (Col., Scolytidae). J. Appl. Entomol. 1996, 120, 321–326. [Google Scholar] [CrossRef]
- Setter, R.R.; Borden, J.H. Bioactivity and efficacy of MCOL and seudenol as potential attractive bait components for Dendroctonus rufipennis (Coleoptera: Scolytidae). Can. Entomol. 1999, 131, 251–257. [Google Scholar] [CrossRef]
- Ross, D.W.; Daterman, G.E.; Munson, A.S. Spruce beetle (Coleoptera: Scolytidae) response to traps baited with selected semiochemicals in Utah. West. N. Am. Nat. 2005, 65, 123–126. [Google Scholar]
- Gries, G.; Borden, J.H.; Gries, R.; Lafontaine, J.P.; Dixon, E.A.; Wieser, K.; Whitehead, A.T. 4-Methylene-6,6-dimethyibicyclo [3.l.1]hept-2-ene (verbenene): A new aggregation pheromone of the scolytid bark beetle Dendroctonus rufipennis. Naturwissenschaften 1992, 79, 367–368. [Google Scholar] [CrossRef]
- Werner, R.A. Research on the use of semiochemicals to manage spruce beetles in Alaska. In Proceedings of the Symposium on Management of Western Bark Beetles with Pheromones: Research and Development, Kailua-Kona, Hawaii, 22–25 June 1992; Shea, P.J., Ed.; Gen. Tech. Rep. PSW-GTR-150; U.S. Department of Agriculture, Forest Service: Albany, CA, USA, 1994; pp. 15–21. [Google Scholar] [CrossRef]
- Hansen, E.M.; Bentz, B.J.; Munson, A.S.; Vandygriff, J.C.; Turner, D.L. Evaluation of funnel traps for estimating tree mortality and associated population phase of spruce beetle in Utah. Can. J. For. Res. 2006, 36, 2574–2584. [Google Scholar] [CrossRef]
- Werner, R.A.; Holsten, E.H. Dispersal of the Spruce Beetle, Dendroctonus rufipennis, and the Engraver Beetle, Ips perturbatus, in Alaska; Res. Pap. PNW-RP-501; U.S. Department of Agriculture, Forest Service: Portland, OR, USA, 1997. [CrossRef]
- Lindgren, B.S. A multiple funnel trap for scolytid beetles (Coleoptera). Can. Entomol. 1983, 115, 299–302. [Google Scholar] [CrossRef]
- Lindgren, B.S. Attraction of Douglas-fir beetle, spruce beetle and a bark beetle predator (Coleoptera: Scolytidae and Cleridae) to enantiomers of frontalin. J. Entomol. Soc. B. C. 1992, 89, 13–17. [Google Scholar]
- Poland, T.M.; Borden, J.H. Attraction of a bark beetle predator, Thanasimus undatulus (Coleoptera: Cleridae), to pheromones of the spruce beetle and two secondary bark beetles (Coleoptera: Scolytidae). J. Entomol. Soc. B. C. 1997, 94, 35–41. [Google Scholar]
- Bentz, B.J.; Munson, A.S. Spruce beetle population suppression in northern Utah. West. J. Appl. For. 2000, 15, 122–128. [Google Scholar] [CrossRef]
- Fettig, C.J.; McKelvey, S.R.; Dabney, C.P.; Huber, D.P.W.; Lait, C.G.; Fowler, D.L.; Borden, J.H. Efficacy of “Verbenone Plus” for protecting ponderosa pine trees and stands from Dendroctonus brevicomis (Coleoptera: Curculionidae) attack in British Columbia and California. J. Econ. Entomol. 2012, 105, 668–1680. [Google Scholar] [CrossRef] [PubMed]
- Hansen, E.M.; Munson, A.S.; Blackford, D.C.; Graves, A.D.; Coleman, T.W.; Baggett, L.S. 3-Methylcyclohex-2-en-1-one for area and individual tree protection against spruce beetle (Coleoptera: Curculionidae: Scolytinae) attack in the southern Rocky Mountains. J. Econ. Entomol. 2017, 110, 2140–2148. [Google Scholar] [CrossRef]
- Hansen, E.M.; Munson, A.S.; Wakarchuk, D.; Blackford, D.C.; Graves, A.D.; Stephens, S.S.; Moan, J.E. Advances in semiochemical repellents to mitigate host mortality from the spruce beetle (Coleoptera: Curculionidae). J. Econ. Entomol. 2019, 112, 2253–2261. [Google Scholar] [CrossRef] [PubMed]
- Audley, J.P.; Fettig, C.J.; Moan, J.E.; Moan, J.; Swenson, S.; Munson, A.S.; Mortenson, L.A.; Blackford, B.C.; Graham, E.E.; Mafra-Neto, A. Developing semiochemical repellents for protecting Picea from Dendroctonus rufipennis (Coleoptera: Curculionidae) in Alaska and Utah, USA. J. Econ. Entomol. 2024, 117, 1022–1031. [Google Scholar] [CrossRef]
- Negrón, J.F.; Popp, J.B. Can spruce beetle (Dendroctonus rufipennis Kirby) pheromone trap catches or stand conditions predict Engelmann spruce (Picea engelmannii Parry ex Engelm.) tree mortality in Colorado? Agric. For. Entomol. 2018, 20, 162–169. [Google Scholar] [CrossRef]
- Hansen, E.M.; Vandygriff, J.C.; Cain, R.J.; Wakarchuk, D. Comparison of naturally and synthetically baited spruce beetle trapping systems in the central Rocky Mountains. J. Econ. Entomol. 2006, 99, 373–382. [Google Scholar] [CrossRef]
- Buffam, P.E. Spruce beetle suppression in trap trees treated with cacodylic acid. J. Econ. Entomol. 1971, 64, 958–960. [Google Scholar] [CrossRef]
- Lister, C.K.; Schmid, J.M.; Minnemeyer, C.D.; Frye, R.H. Refinement of the lethal trap tree method for spruce beetle control. J. Econ. Entomol. 1976, 69, 415–418. [Google Scholar] [CrossRef]
- Dyer, E.D.A.; Safranyik, L. Assessment of the impact of pheromone baited trees on a spruce beetle population (Coleoptera: Scolytidae). Can. Entomol. 1977, 109, 77–80. [Google Scholar] [CrossRef]
- Negrón, J.F.; Cain, R.; Cadenhead, A.; Waugh, B. A Test of Lethal Trap Trees for Control of Spruce Beetles; USDA For. Serv. Res. Note RMRS-RN-83; U.S. Department of Agriculture, Forest Service: Fort Collins, CO, USA, 2019. [CrossRef]
- Shore, T.L.; Hall, P.M.; Maher, T.F. Grid baiting of spruce stands with frontalin for pre-harvest containment of the spruce beetle, Dendroctonus rufipennis (Kirby) (Col., Scolytidae). J. Appl. Entomol. 1990, 109, 315–319. [Google Scholar] [CrossRef]
- Rudinsky, J.A.; Sartwell, C.; Graves, T.M.; Morgan, M.E. Granular formulation of methylcyclohexeone: An antiaggregative pheromone of the Douglas-fir and spruce bark beetles (Col., Scolytidae). Z. Angew. Entomol. 1974, 75, 254–263. [Google Scholar] [CrossRef]
- Pureswaran, D.S.; Gries, R.; Borden, J.H. Antennal responses of four species of tree-killing bark beetles to volatiles collected from beetles, and their host and nonhost conifers. Chemoecology 2004, 14, 59–66. [Google Scholar] [CrossRef]
- Poland, T.M.; Borden, J.H. Disruption of secondary attraction of the spruce beetle, Dendroctonus rufipennis, by pheromones of two sympatric species. J. Chem. Ecol. 1998, 24, 151–166. [Google Scholar] [CrossRef]
- Camacho, A.D.; Pierce, H.D.; Borden, J.H. Aggregation pheromones in Dryocoetes affaber (Mann.) (Coleoptera: Scolytidae): Stereoisomerism and species specificity. J. Chem. Ecol. 1994, 20, 111–124. [Google Scholar] [CrossRef]
- Pureswaran, D.S.; Borden, J.H. New repellent semiochemicals for three species of Dendroctonus (Coleoptera: Scolytidae). Chemoecology 2004, 14, 67–75. [Google Scholar] [CrossRef]
- Borden, J.H. Management of bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) with semiochemicals: Letter to a prospective graduate student. Can. Entomol. 2021, 153, 13–18. [Google Scholar] [CrossRef]
- Kline, L.N.; Schmitz, R.F.; Rudinsky, J.A.; Furniss, M.M. Repression of spruce beetle (Coleoptera) attraction by methylcyclohexenone in Idaho. Can. Entomol. 1974, 106, 485–491. [Google Scholar] [CrossRef]
- Lindgren, S.; McGregor, M.D.; Oakes, R.D.; Meyer, H.E. Suppression of spruce beetle attacks by MCH released from bubble caps. West. J. Appl. For. 1989, 4, 49–52. [Google Scholar] [CrossRef]
- Werner, R.A.; Holsten, E.H. Use of Semiochemicals of Secondary Bark Beetles to Disrupt Spruce Beetle Attraction and Survival in Alaska; PNW-RP-541; U.S. Department of Agriculture, Forest Service: Portland, OR, USA, 2002. [CrossRef]
- Holsten, E.H.; Shea, P.J.; Borys, R.R. MCH release in a novel pheromone dispenser prevents spruce beetle, Dendroctonus rufipennis (Coleoptera: Scolytidae), attacks in south-central Alaska. J. Econ. Entomol. 2003, 96, 31–34. [Google Scholar] [CrossRef]
- Ross, D.W.; Daterman, G.E.; Munson, A.S. Evaluation of the antiaggregation pheromone, 3-methylcyclohex-2-en-1-one (MCH), to protect live spruce from spruce beetle (Coleoptera: Scolytidae) infestation in southern Utah. J. Entomol. Soc. B. C. 2004, 101, 145–146. [Google Scholar]
- Hansen, E.M.; Munson, A.S.; Blackford, D.C.; Wakarchuk, D.; Baggett, L.S. Lethal trap trees and semiochemical repellents as area host protection strategies for spruce beetle (Coleoptera: Curculionidae, Scolytinae) in Utah. J. Econ. Entomol. 2016, 109, 2137–2144. [Google Scholar] [CrossRef] [PubMed]
- Audley, J.P.; Fettig, C.J.; Munson, A.S.; Blackford, D.C.; Mortenson, L.A.; Mafra-Neto, A. MCH-based semiochemical repellents for protecting Engelmann spruce from Dendroctonus rufipennis (Coleoptera: Curculionidae). J. Econ. Entomol. 2022, 115, 87–192. [Google Scholar] [CrossRef] [PubMed]
- Audley, J.P.; Fettig, C.J.; Moan, J.E.; Moan, J.; Swenson, S.; Mortenson, L.A.; Mafra-Neto, A. Semiochemical interruption of Dendroctonus rufipennis (Coleoptera: Curculionidae) in Alaska and Colorado, U.S. J. Econ. Entomol. 2025. [Google Scholar] [CrossRef]
- Dymerski, A.D.; Anhold, J.A.; Munson, A.S. Spruce beetle (Dendroctonus rufipennis) outbreak in Engelmann spruce (Picea engelmannii) in central Utah, 1986–1998. West. N. Am. Nat. 2001, 61, 11–18. [Google Scholar]
- Fettig, C.J.; Munson, A.S.; Reinke, M.; Mafra-Neto, A. A novel semiochemical tool for protecting lodgepole pine from mortality attributed to mountain pine beetle (Coleoptera: Curculionidae). J. Econ. Entomol. 2015, 108, 173–182. [Google Scholar] [CrossRef]
- Foote, G.G.; Fettig, C.J.; Ross, D.W.; Runyon, J.B.; Coleman, T.W.; Gaylord, M.L.; Graves, A.D.; McMillin, J.D.; Mortenson, L.A.; Mafra-Neto, A. A biodegradable formulation of MCH (3-methylcyclohex-2-en-1-one) for protecting Pseudotsuga menziesii from Dendroctonus pseudotsugae (Coleoptera: Curculionidae) colonization. J. Econ. Entomol. 2020, 113, 1858–1863. [Google Scholar] [CrossRef]
- Ross, D.W. 3-Methylcyclohex-2-en-1-one and the Douglas-fir beetle (Coleoptera: Curculionidae): History of successful bark beetle pheromone treatments. Can. Entomol. 2021, 153, 62–78. [Google Scholar] [CrossRef]
- SERA (Syracuse Environmental Research Associates Inc.). 3-Methylcyclohexen-1-one (MCH)—Human Health and Ecological Risk Assessment: Final Report. 1998. Available online: https://www.fs.usda.gov/foresthealth/pesticide/pdfs/091602_mch.pdf (accessed on 15 May 2025).
- Gupta, M. Olfacto-gustatory response of Apis florea F. to some repellent ketones. Zool. Jb. Physiol. 1989, 93, 105–111. [Google Scholar]
- Foote, G.G.; Runyon, J.B.; Fettig, C.J.; Foote, N.E.; Ross, D.W. Wild bee response to application of the Douglas-fir beetle anti-aggregation pheromone, 3-methylcyclohex-2-en-1-one. J. Econ. Entomol. 2021, 114, 2121–2126. [Google Scholar] [CrossRef]
Compound | Emitter | Application |
---|---|---|
Attractants Aggregation pheromones | ||
Frontalin | D. rufipennis | Baits |
MCOL | D. rufipennis | Baits |
Seudenol | D. rufipennis | Baits |
Host compounds | ||
Terpenes | Picea spp. and others | Baits |
Inhibitors | ||
Antiaggregation pheromone | ||
MCH | D. rufipennis | Repellent for tree protection |
Nonhost compounds | ||
Acetophenone | Common plant volatile, several Dendroctonus spp. | Used in combination with other repellents for tree protection (experimental use only) |
β-caryophyllene | Common plant volatile | Used in combination with other repellents for tree protection (experimental use only) |
linalool | Common plant volatile | Used in combination with other repellents for tree protection (experimental use only) |
(E)-2-Hexen-1-ol (Z)-2-Hexen-1-ol (Z)-3-hexanol | Green leaf volatiles | Used in combination with other repellents for tree protection (experimental use only) |
AKB | ||
linalool β-caryophyllene (Z)-3-hexanol | Described above | Repellent for tree protection (experimental use only) |
PLUS | ||
Acetophenone E-2-hexen-1-ol Z-2-hexen-1-ol | Described above | Repellent for tree protection (experimental use only) |
Publication | Type of Study | Location | Host | Repellent Treatments 1 | Doses | Release Rates/ Device 4 | Total Release/d 5 | Inhibitory Effect 6 |
---|---|---|---|---|---|---|---|---|
Holsten et al. [55] | Areawide (0.2 ha) | AK | P. x lutzii | MCH (Med-e-Cell device 2) | 125/ha | 2.6 mg/d | 325 mg/ha | Reduction in number of attacked spruce. |
Ross et al. [56] | Areawide (1 ha) | UT | P. engelmannii | MCH | 180/ha | 7 or 9 mg/d (varied by device) | 1480 mg/ha | NS |
Hansen et al. [57] | Areawide (0.79 ha) | UT | P. engelmannii | MCH + isophorone + sulcatone | 40/ha of each repellent | 12 mg/d, 6.5 mg/d, and 35 mg/d, respectively | 2140 mg/ha | Reduction in the probability of mass attacked spruce. |
Hansen et al. [36] | Areawide (0.64 ha) | NM, UT | P. engelmannii | MCH | 20/ha, 40/ha or 80/ha | 12.0 mg/d | 240, 480, or 960 mg/ha | Reductions in the probability of severe attacks; no differences among doses. |
Hansen et al. [36] | Individual tree | NM, UT | P. engelmannii | MCH, AKB 3, and MCH + AKB | 1/tree of each repellent, according to treatment | 12.0 mg/d and undetermined (AKB) | Unknown | Reductions in the probability of mass attacks. Spruce treated with MCH or AKB were more likely to be mass attacked than those treated with MCH + AKB. |
Hansen et al. [37], Experiment 2017 | Individual tree | CO, UT | P. engelmannii | MCH + AKB | 1/tree of each repellent | 12.0 mg/d and 65 mg/d, respectively | 77 mg/tree | Reductions in the probability of severe attacks on treated spruce and on spruce within 10 m of treated spruce. |
Hansen et al. [37], Experiment 2018 | Individual tree | AK | P. glauca | MCH, MCH + AKB, MCH + AKB + sulcatone, double-dose MCH + AKB | 1/tree of each repellent, according to treatment except for 2 times for double dose | 12 mg/d (MCH), 65 mg/d (AKB), 35 mg/d (sulcatone) | 12–154 mg/tree, depending on treatment | NS in regard to treated trees, but reductions in the probability of severe attacks on spruce within 10 m of treated spruce. |
Hansen et al. [37], Experiment 2018 | Individual tree | CO, NM, UT, WY | P. engelmannii | MCH + AKB, MCH + AKB + sulcatone, double-dose MCH + AKB | 1/tree of each repellent, according to treatment except for 2 times for double dose | 12 mg/d (MCH), 65 mg/d (AKB), 35 mg/d (sulcatone) | 77–154 mg/tree, depending on treatment | Reductions in the probability of severe attacks on treated spruce and on spruce within 10 m of treated spruce. |
Hansen et al. [37] | Areawide (0.64 ha) | CO, UT | P. engelmannii | MCH + AKB | 30/ha of each | 12 mg/d and 65 mg/d, respectively | 2310 mg/ha | Reductions in the probability of severe attacks. |
Audley et al. [58] | Individual tree | WY | P. engelmannii | 3.5 g MCH (SPLAT MCH, SPLAT3.5), SPLAT3.5 + AKB, SPLAT3.5 + PLUS 3, 7 g MCH (SPLAT MCH, SPLAT7), SPLAT7 + AKB, and SPLAT7 + PLUS | SPLAT3.5 = two 17.5 g dollops/tree, SPLAT7 = four 17.5 g dollops/tree, 1/tree of other repellents | SPLAT3.5 (147 mg/d), SPLAT7 (294 mg/d), AKB (60 mg/d), acetophenone (103 mg/d), GLV (20 mg/d) | 147–417 mg/tree, depending on treatment | Reductions in mortality of treated spruce and of spruce within 11.3 m of treated spruce; no differences among treatments. |
Audley et al. [38] | Individual tree | AK | P. x lutzii | 7 g MCH (SPLAT MCH, SPLAT7) + AKB, SPLAT7 + PLUS, SPLAT7 + octenol, and SPLAT7 + octenol + PLUS + AKB | SPLAT7 = four 17.5 g dollops/tree, 1/tree of other repellents | SPLAT7 (294 mg/d), AKB (60 mg/d), acetophenone (103 mg/d), GLV (20 mg/d), octenol (58 mg/d) | 354–535 mg/tree, depending on treatment | Reductions in mortality of treated spruce and of spruce within 11.3 m of treated spruce; no differences among treatments. |
Audley et al. [38] | Individual tree | UT | P. engelmannii | 7 g MCH (SPLAT MCH, SPLAT7) + AKB, SPLAT7 + PLUS, SPLAT7 + octenol, and SPLAT7 + GLVs | SPLAT7 = four 17.5 g dollops/tree, 1/tree of other repellents | SPLAT7 (294 mg/d), AKB (60 mg/d), acetophenone (103 mg/d), GLV (20 mg/d), octenol (58 mg/d) | 354–417 mg/tree, depending on treatment | Only SPLAT MCH + AKB and SPLAT MCH + octenol reduced mortality of treated spruce. Effects on nearby spruce were not determined. |
Audley et al. [59] | Individual tree | AK | P. x lutzii | 1 g, 3 g, and 7 g MCH (SPLAT MCH and bubblecaps) | SPLAT 1 g = one 10 g dollops/tree, SPLAT 3 g = three 10 g dollops/tree, SPLAT 7 g = four 17.5 g dollops/tree, 1, 3, or 7 bubblecaps/tree | SPLAT 10 g dollops (14 mg/d), SPLAT 17.5 g dollop (46 mg/d), and 1 bubblecap (17 mg/d) | 14–184 mg/tree, depending on treatment | Reductions in mortality of treated spruce. Effects on nearby spruce were not determined. |
Audley et al. [59] | Individual tree | AK | P. x lutzii | 3.5 g MCH (SPLAT MCH, SPLAT3.5), SPLAT3.5 + AKB, SPLAT3.5 + PLUS, 7 g MCH (SPLAT MCH, SPLAT7), SPLAT7 + AKB, and SPLAT7 + PLUS | SPLAT3.5 = two 17.5 g dollops/tree, SPLAT7 = four 17.5 g dollops/tree, 1/tree of other repellents | SPLAT3.5 (147 mg/d), SPLAT7 (294 mg/d), AKB (60 mg/d), acetophenone (103 mg/d), GLV (20 mg/d) | 147–417 mg/tree, depending on treatment | Reductions in mortality of treated spruce and of spruce within 11.3 m of treated spruce; no differences among treatments. |
Audley et al. [59] | Individual tree | CO | P. engelmannii | 3.5 g MCH (SPLAT MCH, SPLAT3.5), SPLAT3.5 + AKB, SPLAT3.5 + PLUS, 7 g MCH (SPLAT MCH, SPLAT7), SPLAT7 + AKB, and SPLAT7 + PLUS | SPLAT3.5 = two 17.5 g dollops/tree, SPLAT7 = four 17.5 g dollops/tree, 1/tree of other repellents | SPLAT3.5 (147 mg/d), SPLAT7 (294 mg/d), AKB (60 mg/d), acetophenone (103 mg/d), GLV (20 mg/d) | 147–417 mg/tree, depending on treatment | Reductions in mortality of treated spruce and of spruce within 11.3 m of treated spruce; no differences among treatments. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fettig, C.J.; Audley, J.P.; Munson, A.S. Applied Chemical Ecology of Spruce Beetle in Western North America. Forests 2025, 16, 1103. https://doi.org/10.3390/f16071103
Fettig CJ, Audley JP, Munson AS. Applied Chemical Ecology of Spruce Beetle in Western North America. Forests. 2025; 16(7):1103. https://doi.org/10.3390/f16071103
Chicago/Turabian StyleFettig, Christopher J., Jackson P. Audley, and Allen Steven Munson. 2025. "Applied Chemical Ecology of Spruce Beetle in Western North America" Forests 16, no. 7: 1103. https://doi.org/10.3390/f16071103
APA StyleFettig, C. J., Audley, J. P., & Munson, A. S. (2025). Applied Chemical Ecology of Spruce Beetle in Western North America. Forests, 16(7), 1103. https://doi.org/10.3390/f16071103