Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,823)

Search Parameters:
Keywords = Phylogeny

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 12280 KiB  
Article
Description of a New Species of Hainania Koller (Teleostei, Cypriniformes, Xenocyprididae) from Guangdong Province, Southern China
by Haotian Lei, Ziyu Gong and Xuankun Li
Diversity 2025, 17(8), 549; https://doi.org/10.3390/d17080549 (registering DOI) - 1 Aug 2025
Abstract
Hainania Koller (Teleostei, Cypriniformes, Xenocyprididae) is known as a monotypic genus of sharpbelly fish that is endemic to Hainan Island, China. We describe Ha. minzhengi sp. nov., the second species of Hainania collected from Guangdong, based on morphology and molecular evidence. [...] Read more.
Hainania Koller (Teleostei, Cypriniformes, Xenocyprididae) is known as a monotypic genus of sharpbelly fish that is endemic to Hainan Island, China. We describe Ha. minzhengi sp. nov., the second species of Hainania collected from Guangdong, based on morphology and molecular evidence. Phylogenetic relationships were inferred based on the mitochondrial cytochrome b (Cyt b) gene and cytochrome oxidase subunit 1 (COI) gene, by maximum likelihood and Bayesian methods and different partitioning schemes. Our result supports the sister group relationship between Ha. serrata and Ha. minzhengi sp. nov., but the monophyly of Pseudohemiculter or Hemiculterella was not recovered. A diagnostic key to Chinese species of Hainania and Pseudohemiculter is provided. Full article
(This article belongs to the Special Issue Evolution, Systematic and Conservation of Freshwater Fishes)
Show Figures

Figure 1

18 pages, 7210 KiB  
Article
Species Delimitation Methods Facilitate the Identification of Cryptic Species Within the Broadly Distributed Species in Homoeocerus (Tliponius) (Insecta: Hemiptera: Coreidae)
by Jingyu Liang, Shujing Wang, Jingyao Zhang, Juhong Chen, Siying Fu, Zhen Ye, Huai-Jun Xue, Yanfei Li and Wenjun Bu
Insects 2025, 16(8), 797; https://doi.org/10.3390/insects16080797 (registering DOI) - 1 Aug 2025
Viewed by 147
Abstract
Widespread species may exhibit considerable genetic variation among populations due to their extensive distribution ranges, and may even give rise to new species in remote areas. Integrative species delimitation via multiple types can provide a robust framework for accurate species identification and rapid [...] Read more.
Widespread species may exhibit considerable genetic variation among populations due to their extensive distribution ranges, and may even give rise to new species in remote areas. Integrative species delimitation via multiple types can provide a robust framework for accurate species identification and rapid discovery of cryptic diversity. The subgenus Tliponius (Hemiptera: Coreidae: Homoeocerus) has several species and three broadly distributed species across China. In this study, we selected as many geographical sample sites of widely distributed species as possible and conducted species identification based on integrated taxonomy of morphological, mitochondrial and SNP data for 28 individuals within Tliponius. Our results revealed a cryptic lineage previously subsumed under the polytypic H. unipunctatus in Yunnan Province and described as Homoeocerus (Tliponius) dianensis Liang, Li & Bu sp. nov. The presence of seven distinct species within Tliponius was supported by species delimitation and divided into two clades: (H. dilatatus + (H. marginellus + (H. unipunctatus + H. dianensis sp. nov.))) and (H. yunnanensis + (H. laevilineus + H. marginiventris). Based on our findings, extensive sampling of widespread species is highly important for the accuracy of species delimitation and the discovery of cryptic species. Full article
(This article belongs to the Special Issue Revival of a Prominent Taxonomy of Insects)
Show Figures

Figure 1

29 pages, 10502 KiB  
Article
A Comparative Bioinformatic Investigation of the Rubisco Small Subunit Gene Family in True Grasses Reveals Novel Targets for Enhanced Photosynthetic Efficiency
by Brittany Clare Thornbury, Tianhua He, Yong Jia and Chengdao Li
Int. J. Mol. Sci. 2025, 26(15), 7424; https://doi.org/10.3390/ijms26157424 (registering DOI) - 1 Aug 2025
Viewed by 72
Abstract
Ribulose bisphosphate carboxylase (RuBisCO) is the primary regulator of carbon fixation in the plant kingdom. Although the large subunit (RBCL) is the site of catalysis, RuBisCO efficiency is also influenced by the sequence divergence of the small subunit (RBCS). This project compared the [...] Read more.
Ribulose bisphosphate carboxylase (RuBisCO) is the primary regulator of carbon fixation in the plant kingdom. Although the large subunit (RBCL) is the site of catalysis, RuBisCO efficiency is also influenced by the sequence divergence of the small subunit (RBCS). This project compared the RBCS gene family in C3 and C4 grasses to identify genetic targets for improved crop photosynthesis. Triticeae/Aveneae phylogeny groups exhibited a syntenic tandem duplication array averaging 326.1 Kbp on ancestral chromosomes 2 and 3, with additional copies on other chromosomes. Promoter analysis revealed a paired I-box element promoter arrangement in chromosome 5 RBCS of H. vulgare, S. cereale, and A. tauschii. The I-box pair was associated with significantly enhanced expression, suggesting functional adaptation of specific RBCS gene copies in Triticaeae. H. vulgare-derived pan-transcriptome data showed that RBCS expression was 50.32% and 28.44% higher in winter-type accessions compared to spring types for coleoptile (p < 0.05) and shoot, respectively (p < 0.01). Molecular dynamics simulations of a mutant H. vulgare Rubisco carrying a C4-like amino acid substitution (G59C) in RBCS significantly enhanced the stability of the Rubisco complex. Given the known structural efficiency of C4 Rubisco complexes, G59C could serve as an engineering target for enhanced RBCS in economically crucial crop species which, in comparison, possess less efficient Rubisco complexes. Full article
(This article belongs to the Special Issue Molecular Genetics, Genomics and Breeding in Field Crops)
Show Figures

Figure 1

19 pages, 5704 KiB  
Article
Solving the Enigma of the Identity of Laccaria laccata
by Francesco Dovana, Edoardo Scali, Clarissa Lopez Del Visco, Gabriel Moreno, Roberto Para, Bernardo Ernesto Lechner, Matteo Garbelotto and Tom W. May
J. Fungi 2025, 11(8), 575; https://doi.org/10.3390/jof11080575 (registering DOI) - 1 Aug 2025
Viewed by 158
Abstract
The taxonomy of Laccaria laccata, the type species of the genus Laccaria, has long been ambiguous due to the absence of a reference sequence and the reliance on early, morphology-based descriptions. To resolve this issue, we selected a Code-compliant lectotype for [...] Read more.
The taxonomy of Laccaria laccata, the type species of the genus Laccaria, has long been ambiguous due to the absence of a reference sequence and the reliance on early, morphology-based descriptions. To resolve this issue, we selected a Code-compliant lectotype for Agaricus laccatus—the basionym of L. laccata—from Schaeffer’s 1762 illustration cited in Fries’ sanctioning work. Given the limitations of this historical material for modern species interpretation, we also designated an epitype based on Singer’s collection C4083 (BAFC) from Femsjö, Sweden, which was previously but not effectively designated as the “lectotype” by Singer. This epitype is supported by detailed morphological descriptions, iconography, and newly generated nrITS, nrLSU, and RPB2 sequences, which have also been newly obtained from additional collections. Phylogenetic analyses consistently place the epitype of L. laccaria within a well-supported clade, herein designated as/Laccaria laccata, which includes sequences previously reported as falling within the “proxima 1 clade”. This integrative approach, combining historical typification with modern molecular and morphological data, stabilizes the nomenclature of L. laccata and provides a robust foundation for future studies of this ecologically and economically important genus of ectomycorrhizal fungi. Full article
(This article belongs to the Special Issue Fungal Diversity in Europe, 3rd Edition)
Show Figures

Figure 1

36 pages, 3621 KiB  
Review
Harnessing Molecular Phylogeny and Chemometrics for Taxonomic Validation of Korean Aromatic Plants: Integrating Genomics with Practical Applications
by Adnan Amin and Seonjoo Park
Plants 2025, 14(15), 2364; https://doi.org/10.3390/plants14152364 - 1 Aug 2025
Viewed by 219
Abstract
Plant genetics and chemotaxonomic analysis are considered key parameters in understanding evolution, plant diversity and adaptation. Korean Peninsula has a unique biogeographical landscape that supports various aromatic plant species, each with considerable ecological, ethnobotanical, and pharmacological significance. This review aims to provide a [...] Read more.
Plant genetics and chemotaxonomic analysis are considered key parameters in understanding evolution, plant diversity and adaptation. Korean Peninsula has a unique biogeographical landscape that supports various aromatic plant species, each with considerable ecological, ethnobotanical, and pharmacological significance. This review aims to provide a comprehensive overview of the chemotaxonomic traits, biological activities, phylogenetic relationships and potential applications of Korean aromatic plants, highlighting their significance in more accurate identification. Chemotaxonomic investigations employing techniques such as gas chromatography mass spectrometry, high-performance liquid chromatography, and nuclear magnetic resonance spectroscopy have enabled the identification of essential oils and specialized metabolites that serve as valuable taxonomic and diagnostic markers. These chemical traits play essential roles in species delimitation and in clarifying interspecific variation. The biological activities of selected taxa are reviewed, with emphasis on antimicrobial, antioxidant, anti-inflammatory, and cytotoxic effects, supported by bioassay-guided fractionation and compound isolation. In parallel, recent advances in phylogenetic reconstruction employing DNA barcoding, internal transcribed spacer regions, and chloroplast genes such as rbcL and matK are examined for their role in clarifying taxonomic uncertainties and inferring evolutionary lineages. Overall, the search period was from year 2001 to 2025 and total of 268 records were included in the study. By integrating phytochemical profiling, pharmacological evidence, and molecular systematics, this review highlights the multifaceted significance of Korean endemic aromatic plants. The conclusion highlights the importance of multidisciplinary approaches including metabolomics and phylogenomics in advancing our understanding of species diversity, evolutionary adaptation, and potential applications. Future research directions are proposed to support conservation efforts. Full article
(This article belongs to the Special Issue Applications of Bioinformatics in Plant Science)
Show Figures

Figure 1

16 pages, 4054 KiB  
Article
Uncovering Fibrocapsa japonica (Raphidophyceae) in South America: First Taxonomic and Toxicological Insights from Argentinean Coastal Waters
by Delfina Aguiar Juárez, Inés Sunesen, Ana Flores-Leñero, Luis Norambuena, Bernd Krock, Gonzalo Fuenzalida and Jorge I. Mardones
Toxins 2025, 17(8), 386; https://doi.org/10.3390/toxins17080386 (registering DOI) - 31 Jul 2025
Viewed by 170
Abstract
Fibrocapsa japonica (Raphidophyceae) is a cosmopolitan species frequently associated with harmful algal blooms (HABs) and fish mortality events, representing a potential threat to aquaculture and coastal ecosystems. This study provides the first comprehensive morphological, phylogenetic, pigmentary, and toxicological characterization of F. japonica strains [...] Read more.
Fibrocapsa japonica (Raphidophyceae) is a cosmopolitan species frequently associated with harmful algal blooms (HABs) and fish mortality events, representing a potential threat to aquaculture and coastal ecosystems. This study provides the first comprehensive morphological, phylogenetic, pigmentary, and toxicological characterization of F. japonica strains isolated from Argentina. Light and transmission electron microscopy confirmed key diagnostic features of the species, including anterior flagella and the conspicuous group of mucocyst in the posterior region. Phylogenetic analysis based on the LSU rDNA D1–D2 region revealed monophyletic relationships with strains from geographically distant regions. Pigment analysis by HPLC identified chlorophyll-a (62.3 pg cell−1) and fucoxanthin (38.4 pg cell−1) as the main dominant pigments. Cytotoxicity assays using RTgill-W1 cells exposed for 2 h to culture supernatants and intracellular extracts showed strain-specific effects. The most toxic strain (LPCc049) reduced gill cell viability down to 53% in the supernatant exposure, while LC50 values ranged from 1.6 × 104 to 4.7 × 105 cells mL−1, depending directly on the strain and treatment type. No brevetoxins (PbTx-1, -2, -3, -6, -7, -8, -9, -10, BTX-B1 and BTX-B2) were detected by LC–MS/MS, suggesting that the cytotoxicity may be linked to the production of reactive oxygen species (ROS), polyunsaturated fatty acids (PUFAs), or hemolytic compounds, as previously hypothesized in the literature. These findings offer novel insights into the toxic potential of F. japonica in South America and underscore the need for further research to elucidate the mechanisms underlying its ichthyotoxic effect. Full article
Show Figures

Figure 1

15 pages, 7581 KiB  
Article
Complete Chloroplast Genome Sequence of Medicago falcata: Comparative Analyses with Other Species of Medicago
by Wei Duan, Xueli Zhang, Yuxiang Wang and Qian Li
Agronomy 2025, 15(8), 1856; https://doi.org/10.3390/agronomy15081856 - 31 Jul 2025
Viewed by 140
Abstract
Medicago falcata is one of the most important perennial forage legumes in the Medicago genus. In this study, we reported the complete chloroplast genome of two M. falcata ecotypes grown in different regions, and compared them with those of Medicago truncatula and Medicago [...] Read more.
Medicago falcata is one of the most important perennial forage legumes in the Medicago genus. In this study, we reported the complete chloroplast genome of two M. falcata ecotypes grown in different regions, and compared them with those of Medicago truncatula and Medicago sativa. We found that the M. falcata chloroplast genome lacks a typical quadripartite structure, containing 78 protein-coding genes, 30 tRNA genes, and four ribosomal RNA genes. They shared high conservation in size, genome structure, gene order, gene number and GC content with those of M. truncatula and M. sativa. High nucleotide diversity occurred in the coding gene regions of rps16, rps3, and ycf4 genes. Meanwhile, mononucleotide repeats are the most abundant repeat type, followed by the di-, tri-, tetra-, and pentanucleotides, and forward repeats were more abundant than reverse and palindrome repeats for all these three Medicago species. Phylogenetic analyses using both coding sequences and complete chloroplast genomes revealed that M. falcata shares the closest phylogenetic relationship with M. hybrida and M. sativa. This study provided valuable information for further studies on the genetic relationship of the Medicago genus. Full article
Show Figures

Figure 1

16 pages, 3027 KiB  
Article
Molecular and Morphological Evidence Reveals Four New Neocosmospora Species from Dragon Trees in Yunnan Province, China
by Mei Jia, Qi Fan, Zu-Shun Yang, Yuan-Bing Wang, Xing-Hong Wang and Wen-Bo Zeng
J. Fungi 2025, 11(8), 571; https://doi.org/10.3390/jof11080571 (registering DOI) - 31 Jul 2025
Viewed by 166
Abstract
Neocosmospora (Nectriaceae) is a globally distributed fungal genus, traditionally recognized as a group of plant pathogens, with most members known to cause severe plant diseases. However, recent studies have demonstrated that many of these fungi can also colonize plants endophytically, with [...] Read more.
Neocosmospora (Nectriaceae) is a globally distributed fungal genus, traditionally recognized as a group of plant pathogens, with most members known to cause severe plant diseases. However, recent studies have demonstrated that many of these fungi can also colonize plants endophytically, with certain strains capable of promoting plant growth and stimulating the production of secondary metabolites. In this study, 13 strains of Neocosmospora were isolated from the stems and leaves of Dracaena cambodiana and D. lourei in Yunnan Province, China. To clarify the taxonomic placement of these strains, morphological examination and multi-gene (ITS, nrLSU, tef1, rpb1, and rpb2) phylogenetic analyses were performed. Based on morphological and phylogenetic evidence, four new species are introduced and described here: N. hypertrophia, N. kunmingense, N. rugosa, and N. simplicillium. This study expands our understanding of the fungal diversity associated with Dracaena, provides essential data for the taxonomy of Neocosmospora, and serves as a resource for the future development and utilization of Neocosmospora endophytes. Full article
(This article belongs to the Section Fungal Evolution, Biodiversity and Systematics)
Show Figures

Figure 1

19 pages, 5918 KiB  
Article
Distinct Patterns of Co-Evolution Among Protist Symbionts of Neoisoptera Termites
by Serena G. Aguilar, Jordyn Shevat, Daniel E. Jasso-Selles, Kali L. Swichtenberg, Carlos D. Vecco-Giove, Jan Šobotník, David Sillam-Dussès, Francesca De Martini and Gillian H. Gile
Diversity 2025, 17(8), 537; https://doi.org/10.3390/d17080537 (registering DOI) - 31 Jul 2025
Viewed by 208
Abstract
Obligate symbionts often exhibit some degree of co-speciation with their hosts. One prominent example is the symbiosis between termites and their wood-feeding hindgut protists. This symbiosis is mutually obligate, vertically inherited by anal feeding, and it predates the emergence of termites from their [...] Read more.
Obligate symbionts often exhibit some degree of co-speciation with their hosts. One prominent example is the symbiosis between termites and their wood-feeding hindgut protists. This symbiosis is mutually obligate, vertically inherited by anal feeding, and it predates the emergence of termites from their cockroach ancestors. Termites and their symbiotic protists might therefore be expected to have congruent phylogenies, but symbiont loss, transfer, and independent diversification can impact the coevolutionary history to varying degrees. Here, we have characterized the symbiotic protist communities of eight Neoisoptera species from three families in order to gauge the phylogenetic congruence between each lineage of protists and their hosts. Using microscopy and 18S rRNA gene sequencing of individually isolated protist cells, we identified protists belonging to the Parabasalia genera Pseudotrichonympha, Holomastigotoides, Cononympha, and Cthulhu. Pseudotrichonympha were present in all of the investigated termites, with a strong pattern of codiversification with hosts, consistent with previous studies. The phylogeny of Holomastigotoides indicates several instances of diversification that occurred independently of the hosts’ diversification, along with lineage-specific symbiont loss. Cononympha occurs only in Heterotermitidae and Psammotermes. Surprisingly, the small flagellate Cthulhu is widespread and exhibits cophylogeny with its hosts. This study demonstrates that different symbiont lineages can show different coevolutionary patterns, even within the same host. Full article
(This article belongs to the Special Issue Diversity and Ecology of Termites)
Show Figures

Figure 1

18 pages, 11501 KiB  
Article
Comparative Chloroplast Genomics, Phylogenomics, and Divergence Times of Sassafras (Lauraceae)
by Zhiyuan Li, Yunyan Zhang, David Y. P. Tng, Qixun Chen, Yahong Wang, Yongjing Tian, Jingbo Zhou and Zhongsheng Wang
Int. J. Mol. Sci. 2025, 26(15), 7357; https://doi.org/10.3390/ijms26157357 - 30 Jul 2025
Viewed by 194
Abstract
In the traditional classification system of the Lauraceae family based on morphology and anatomy, the phylogenetic position of the genus Sassafras has long been controversial. Chloroplast (cp) evolution of Sassafras has not yet been illuminated. In this study, we first sequenced and assembled [...] Read more.
In the traditional classification system of the Lauraceae family based on morphology and anatomy, the phylogenetic position of the genus Sassafras has long been controversial. Chloroplast (cp) evolution of Sassafras has not yet been illuminated. In this study, we first sequenced and assembled the complete cp genomes of Sassafras, and conducted the comparative cp genomics, phylogenomics, and divergence time estimation of this ecological and economic important genus. The whole length of cp genomes of the 10 Sassafras ranged from 151,970 bp to 154,011 bp with typical quadripartite structure, conserved gene arrangements and contents. Variations in length of cp were observed in the inverted repeat regions (IRs) and a relatively high usage frequency of codons ending with T/A was detected. Four hypervariable intergenic regions (ccsA-ndhD, trnH-psbA, rps15-ycf1, and petA-psbJ) and 672 cp microsatellites were identified for Sassafras. Phylogenetic analysis based on 106 cp genomes from 30 genera within the Lauraceae family demonstrated that Sassafras constituted a monophyletic clade and grouped a sister branch with the Cinnamomum sect. Camphora within the tribe Cinnamomeae. Divergence time between S. albidum and its East Asian siblings was estimated at the Middle Miocene (16.98 Mya), S. tzumu diverged from S. randaiense at the Pleistocene epoch (3.63 Mya). Combined with fossil evidence, our results further revealed the crucial role of the Bering Land Bridge and glacial refugia in the speciation and differentiation of Sassafras. Overall, our study clarified the evolution pattern of Sassafras cp genomes and elucidated the phylogenetic position and divergence time framework of Sassafras. Full article
(This article belongs to the Section Molecular Plant Sciences)
Show Figures

Figure 1

13 pages, 3231 KiB  
Article
Comparative Analyses Reveal Mitogenome Characteristics of Halictidae and Novel Rearrangement (Hymenoptera: Apoidea: Anthophila)
by Dan Zhang and Zeqing Niu
Animals 2025, 15(15), 2234; https://doi.org/10.3390/ani15152234 - 30 Jul 2025
Viewed by 200
Abstract
Halictidae, as a major pollinator family in bees, has significant ecological value. However, the insufficient molecular data for this group has limited our understanding of the evolutionary history of this group. Herein, we newly sequenced and assembled four mitogenomes of Halictidae, including three [...] Read more.
Halictidae, as a major pollinator family in bees, has significant ecological value. However, the insufficient molecular data for this group has limited our understanding of the evolutionary history of this group. Herein, we newly sequenced and assembled four mitogenomes of Halictidae, including three species of Nomiinae and one species of Rophitinae. We analyzed the characters of the newly obtained mitogenomes, including nucleotide composition, sequence length, and gene rearrangements. The length of the newly sequenced mitogenomes ranged from 16,492 to 21,192 bp, and all newly obtained mitogenomes contained 22 tRNAs, 13 protein-coding genes, two rRNAs, and one control region. Their AT content (%) ranged from 82.55 to 86.44. Relative synonymous codon usage analysis showed that UUU, UUA, and AUU were the preferred codons. The relative synonymous codon usage > 2 of mostly newly sequenced species was as follows: UUA > UCA > CGA. All newly obtained mitogenomes show gene rearrangement; we found five gene rearrangement patterns in total. Notably, ND4-trnP-ND4L-trnT was the first reported gene rearrangement pattern in bees. In addition, we reconstructed the phylogenetic relationships of Halictidae based on 10 species (eight ingroups and two outgroups), using Bayesian Inference and Maximum Likelihood approaches. Phylogenetic analysis showed that Rophitinae was the basal group within Halictidae. Full article
Show Figures

Figure 1

15 pages, 2327 KiB  
Article
The Novel Disease Vicia unijuga Caused by Colletotrichum tofieldiae in China: Implications for Host Growth, Photosynthesis, and Nutritional Quality
by Tong-Tong Wang, Hang Li and Yan-Zhong Li
J. Fungi 2025, 11(8), 567; https://doi.org/10.3390/jof11080567 - 29 Jul 2025
Viewed by 190
Abstract
Vicia unijuga, an important forage legume on China’s Qinghai–Tibetan Plateau, exhibited dark-brown sunken lesions on their stems at the Qingyang Experimental Station of Lanzhou University. The fungus isolated from the diseased tissues was identified as Colletotrichum tofieldiae via a multi-locus phylogeny (ITS- [...] Read more.
Vicia unijuga, an important forage legume on China’s Qinghai–Tibetan Plateau, exhibited dark-brown sunken lesions on their stems at the Qingyang Experimental Station of Lanzhou University. The fungus isolated from the diseased tissues was identified as Colletotrichum tofieldiae via a multi-locus phylogeny (ITS-ACT-Tub2-CHS-1-GADPH-HIS3). The pathogenicity was confirmed by Koch’s postulates. The inoculated plants showed significantly reduced (p < 0.05) growth parameters (height, root length, and biomass), photosynthetic indices (net rate, transpiration, and stomatal conductance), and nutritional quality (crude protein, crude fat, crude ash, and crude fiber) compared to the controls. C. tofieldiae additionally infected six legume species (V. sativa, Medicago sativa, Onobrychis viciifolia, Astragalus adsurgens, Trifolium pratense, and T. repens). Optimal in vitro growth occurred on oatmeal agar (mycelium) and cornmeal agar (spores), with D-sucrose and D-peptone as the best carbon and nitrogen sources. This first report of C. tofieldiae causing V. unijuga anthracnose advances the understanding of legume anthracnose pathogens. Full article
Show Figures

Figure 1

24 pages, 5785 KiB  
Article
Phylogenetic Reassessment of Murinae Inferred from the Mitogenome of the Monotypic Genus Dacnomys Endemic to Southeast Asia: New Insights into Genetic Diversity Erosion
by Zhongsong Wang, Di Zhao, Wenyu Song and Wenge Dong
Biology 2025, 14(8), 948; https://doi.org/10.3390/biology14080948 - 28 Jul 2025
Viewed by 288
Abstract
The Millard’s rat (Dacnomys millardi), a threatened murid endemic to Southeast Asian montane rainforests and the sole member of its monotypic genus, faces escalating endangered risks as a Near Threatened species in China’s Biodiversity Red List. This ecologically specialized rodent exhibits [...] Read more.
The Millard’s rat (Dacnomys millardi), a threatened murid endemic to Southeast Asian montane rainforests and the sole member of its monotypic genus, faces escalating endangered risks as a Near Threatened species in China’s Biodiversity Red List. This ecologically specialized rodent exhibits diagnostic morphological adaptations—hypertrophied upper molars and cryptic pelage—that underpin niche differentiation in undisturbed tropical/subtropical forests. Despite its evolutionary distinctiveness, the conservation prioritization given to Dacnomys is hindered due to a deficiency of data and unresolved phylogenetic relationships. Here, we integrated morphological analyses with the first complete mitogenome (16,289 bp in size; no structural rearrangements) of D. millardi to validate its phylogenetic placement within the subfamily Murinae and provide novel insights into genetic diversity erosion. Bayesian and maximum likelihood phylogenies robustly supported Dacnomys as sister to Leopoldamys (PP = 1.0; BS = 100%), with an early Pliocene divergence (~4.8 Mya, 95% HPD: 3.65–5.47 Mya). Additionally, based on its basal phylogenetic position within Murinae, we propose reclassifying Micromys from Rattini to the tribe Micromyini. Codon usage bias analyses revealed pervasive purifying selection (Ka/Ks < 1), constraining mitogenome evolution. Genetic diversity analyses showed low genetic variation (CYTB: π = 0.0135 ± 0.0023; COX1: π = 0.0101 ± 0.0025) in fragmented populations. We propose three new insights into this genetic diversity erosion. (1) Evolutionary constraints: genome-wide evolutionary conservation and shallow evolutionary history (~4.8 Mya) limited mutation accumulation. (2) Anthropogenic pressures: deforestation-driven fragmentation of habitats (>20,000 km2/year loss since 2000) has reduced effective population size, exacerbating genetic drift. (3) Ecological specialization: long-term adaptation to stable niches favored genomic optimization over adaptive flexibility. These findings necessitate suitable conservation action by enforcing protection of core habitats to prevent deforestation-driven population collapses and advocating IUCN reclassification of D. millardi from Data Deficient to Near Threatened. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

17 pages, 3168 KiB  
Article
Amphibian Egg Jelly as a Biocompatible Material: Physicochemical Characterization and Selective Cytotoxicity Against Melanoma Cells
by Behlul Koc-Bilican, Tugce Karaduman-Yesildal, Selay Tornaci, Demet Cansaran-Duman, Ebru Toksoy Oner, Serkan Gül and Murat Kaya
Polymers 2025, 17(15), 2046; https://doi.org/10.3390/polym17152046 - 27 Jul 2025
Viewed by 340
Abstract
Extensive research on amphibians has focused on areas such as morphological and molecular taxonomy, ecology, embryology, and molecular phylogeny. However, the structure and biotechnological potential of egg jelly—which plays a protective and nutritive role for embryos—have remained largely unexplored. This study presents, for [...] Read more.
Extensive research on amphibians has focused on areas such as morphological and molecular taxonomy, ecology, embryology, and molecular phylogeny. However, the structure and biotechnological potential of egg jelly—which plays a protective and nutritive role for embryos—have remained largely unexplored. This study presents, for the first time, a detailed physicochemical analysis of the egg jelly of Pelophylax ridibundus, an amphibian species, using Fourier Transform Infrared Spectroscopy, Thermogravimetric Analyzer, X-ray Diffraction, and elemental analysis. The carbohydrate content was determined via High-Performance Liquid Chromatography analysis, and the protein content was identified using Liquid Chromatography-Tandem Mass Spectrometry analysis. Additionally, it was revealed that this jelly exhibits a significant cytotoxic effect on melanoma cells (viability < 30%) while showing no cytotoxicity on healthy dermal fibroblast cells (viability > 70%). Consequently, this non-toxic, biologically derived, and cultivable material is proposed as a promising candidate for cancer applications, paving the way for further research in the field. Full article
(This article belongs to the Special Issue Bio-Inspired Polymers: Synthesis, Properties and Applications)
Show Figures

Figure 1

10 pages, 1002 KiB  
Article
Enhanced Sequence Evolution Rates Correlate with Significant Rearrangements in Coccoid Mitochondrial Genomes
by Lijuan Zhang, Junpeng Ji, Yuqiang Xi and Nan Song
Diversity 2025, 17(8), 515; https://doi.org/10.3390/d17080515 - 25 Jul 2025
Viewed by 210
Abstract
Scale insects, which belong to the superfamily Coccoidea within the order Hemiptera, encompass more than 8000 species worldwide. The adult females of these species are characterized by their immobility, and often lack wings and legs. Scale insects feed on plant tissues and can [...] Read more.
Scale insects, which belong to the superfamily Coccoidea within the order Hemiptera, encompass more than 8000 species worldwide. The adult females of these species are characterized by their immobility, and often lack wings and legs. Scale insects feed on plant tissues and can cause significant agricultural damage as pests. This study presents the sequencing of five coccoid mitogenomes, revealing detailed annotations and comparisons with other Hemiptera. The sequencing yielded between 73 million and over 121 million reads, allowing for the reconstruction of mitogenomes ranging from 12,821 to 14,446 nucleotides. Notably, a high A + T content was observed across the newly sequenced mitogenomes. Gene rearrangements were identified in all five newly sequenced mitogenomes, with the evolutionary rate analysis indicating that Coccoidea exhibit the highest Ka and Ka/Ks values among the hemipterans. In a phylogenetic context, the mitogenomes of representative species from Coccoidea and Aleyrodoidea exhibit more frequent mitochondrial gene rearrangements than those of other hemipteran groups. The analysis suggests that the frequent mitochondrial gene rearrangements observed in the coccoid species are associated with accelerated nucleotide substitution rates, supporting a connection between genetic evolution and structural variation in mitogenomes. Full article
(This article belongs to the Section Phylogeny and Evolution)
Show Figures

Figure 1

Back to TopTop