Species Delimitation Methods Facilitate the Identification of Cryptic Species Within the Broadly Distributed Species in Homoeocerus (Tliponius) (Insecta: Hemiptera: Coreidae) †
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Acquisition and DNA Extraction
2.2. Morphological Identification
2.3. Molecular Data Acquisition
2.3.1. Mitochondrial Datasets and Sequence Analyses
2.3.2. ddRAD-Seq Library Preparation, Sequencing, and Data Processing
2.4. Phylogenetic Inference and Divergence Time Estimation
2.5. Molecular Species Delimitation
3. Results
3.1. Information Contained in the Dataset and the Phylogenetic Partitioning Model
3.2. Molecular Species Delimitation
3.2.1. Species Delimitation Based on Mitochondrial Data
3.2.2. Population Genetics Analysis Based on SNP Data
3.3. Validation by Morphological Re-Examination
3.4. Phylogenesis and Divergence Time
3.5. Comparison of the Mitogenome of Tliponius
4. Discussion
5. Taxonomy
- 1.
- Corium with a small black spot in the center ………………………………………………………………………………………………………………………… 2
- -
- Corium without a spot in the center …………………………………………………………………………………………………………………………………… 6
- 2.
- Abdomen distinctly expanded laterally in the middle and posterior parts; antennal segments II and III distinctly triangular and significantly flattened; no distinct longitudinal black stripes behind the compound eyes on both sides of the head …………………………………H. (T.) dilatatus Horvath, 1879
- -
- Abdomen slightly expanded laterally or not expanded in the middle and posterior parts; antennal segments II and III cylindrical, or triangular but not flattened …………………………………………………………………………………………………………………………………………………………………… 3
- 3.
- Antennal segment I slightly triangular, with small black granules; connexivum with dense small black spots; setae on the 3rd and 4th abdominal ventral segments without black margins ……………………………………………………………………………………………………………………………… 4
- -
- Antennal segment I not triangular, granules not black; connexivum light-colored, without black punctures; setae on the 3rd and 4th abdominal ventral segments with distinct black margins …………………………………………………………………………………………………………………………………… 5
- 4.
- Antennal segments II and III concolorous with segment I, yellowish-brown; black spots on the abdominal ventral surface small and sparse; female with extending posterior margin of abdominal sternite VII forming curved inward angles; male with basal angle of paramere obtuse …………… H. (T.) unipunctatus (Thunberg, 1783)
- -
- Antennal segments II and III darker and reddish compared to segment I, segment II blackish; black spots on the abdominal ventral surface larger and denser; female with extending posterior margin of abdominal sternite VII forming angles without distinct inward curvature; male with basal angle of paramere sharp ……………………………………………………………………………………………………………… H. (T.) dianensis Liang, Li & Bu sp. nov.
- 5.
- Antennae longer, segment II equal to or slightly shorter than the width of the pronotum …………………… H. (T.) marginellus (Herrich-Schaeffer, 1840)
- -
- Antennae shorter, segment II about 3/5 the width of the pronotum ……………………………………………………………… H. (T.) pallidulus Blöte, 1936
- 6.
- Abdominal spiracles without black margins ………………………………………………………………………………………………………………………… 7
- -
- Abdominal spiracles with black margins ……………………………………………………………………………………………………………………………… 8
- 7.
- Head and pronotum with black margins; antennal segments II and III with black tips; lateral angles of the pronotum not prominent ……………. H. (T.) sinicus Walker, 1871
- -
- Head and pronotum without black margins; antennal segments II and III not black-tipped; lateral angles of the pronotum prominent, approximately right-angled and upturned ………………………………………………………………………………………………………………… H. (T.) insignis Hsiao, 1963
- 8.
- Connexivum with 2 or 3 black spots on each segment; a narrow brown longitudinal band in the middle of the abdominal ventral surface (Plate IX c) ………………………………………………………………………………………………………………………………………… H. (T.) marginiventris Dohrn, 1860
- -
- Connexivum without black spots; no brown longitudinal band in the middle of the abdominal ventral surface ……………………………………………………………………………………………………………………………………………………………………………… 9
- 9.
- Head and abdominal ventral surface with dense black punctures; rostrum with the II segment longer than the III segment ……………… H. (T.) yunnanensis Hsiao, 1962
- -
- Head and abdominal ventral surface relatively smooth, with dense black punctures; rostrum with the II segment shorter than the III segment ……………………………………………………………………………………………………………………………………………………………………………… 10
- 10.
- Body smaller and narrower; pro-, meso-, and metathoracic sides with 1, 2, and 1 distinct black spots respectively …………………………… H. (T.) laevilineus Stål, 1873
- -
- Body slightly larger and wider; only meso- and metathoracic sides with 1 distinct black spot each ………………………………………………………… 11
- 11.
- Posterior margin of the head black; a complete smooth stripe from the center of the pronotum to the scutellum ………………………… H. (T.) shokaensis Matsumura, 1913
- -
- Posterior margin of the head concolorous; a short longitudinal line at the anterior center of the pronotum, only discernible in the front …………………………………………………………………………………………………………………..…………………………… H. (T.) cingalensis Stål, 1860
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mayr, E. The role of systematics in biology. Science 1968, 159, 595–599. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.F.; Wang, S.J.; Zhou, J.Y.; Gao, C.Q.; Zheng, C.G.; Xue, H.J.; Bu, W.J. Integrative taxonomy of the stalk-eyed bug genus Chauliops (Heteroptera: Malcidae: Chauliopinae) reveals orogeny-driven speciation. J. Syst. Evol. 2022, 61, 932–947. [Google Scholar] [CrossRef]
- Chambers, E.A.; Hillis, D.M. The multispecies coalescent over-splits species in the case of geographically widespread taxa. Syst. Biol. 2020, 69, 184–193. [Google Scholar] [CrossRef]
- Zhang, D.Z.; She, H.S.; Wang, S.Y.; Wang, H.T.; Li, S.; Cheng, Y.L.; Song, G.; Jia, C.X.; Qu, Y.H.; Rheindt, F.E.; et al. Phylogenetic conflict between species tree and maternally inherited gene trees in a Clade of Emberiza Buntings (Aves: Emberizidae). Syst. Biol. 2024, 73, 279–289. [Google Scholar] [CrossRef]
- Chan, K.; Mulcahy, D.; Anuar, S. The artefactual branch effect and phylogenetic conflict: Species delimitation with gene flow in Mangrove Pit Vipers (Trimeresurus purpureomaculatus-erythrurus Complex). Syst. Biol. 2023, 72, 1209–1219. [Google Scholar] [CrossRef]
- Li, Y.F.; Wang, S.J.; Chen, J.H.; Zhou, J.Y.; Bu, W.J. Two new stick insect species of Sosibia Stål (Phasmatodea: Lonchodidae: Necrosciinae) from China and the first report on mitochondrial genomes of this genus. Arch. Insect Biochem. Physiol. 2022, 111, e21901. [Google Scholar] [CrossRef]
- Noguerales, V.; Cordero, P.J.; Ortego, J. Integrating genomic and phenotypic data to evaluate alternative phylogenetic and species delimitation hypotheses in a recent evolutionary radiation of grasshoppers. Mol. Ecol. 2018, 27, 1229–1244. [Google Scholar] [CrossRef]
- Chan, K.O.; Alexander, A.M.; Grismer, L.L.; Su, Y.C.; Grismer, J.L.; Quah, E.S.H.; Brown, R.M. Species delimitation with gene flow: A methodological comparison and population genomics approach to elucidate cryptic species boundaries in Malaysian Torrent Frogs. Mol. Ecol. 2017, 26, 5435–5450. [Google Scholar] [CrossRef]
- Wei, X.P.; Zhang, X.C. Phylogeography of the widespread fern Lemmaphyllum in East Asia: Species differentiation and population dynamics in response to change in climate and geography. J. Syst. Evol. 2022, 60, 411–432. [Google Scholar] [CrossRef]
- Amini, S.R.; Adams, M.; Hammer, M.P.; Briggs, G.; Donaldson, J.A.; Ebner, B.C.; Unmack, P.J. Cryptic species, biogeography, and patterns of introgression in the fish genus Mogurnda (Eleotridae) from the Australian wet tropics: A purple patch for purple-spots. Mol. Phylogenet. Evol. 2025, 207, 108344. [Google Scholar] [CrossRef] [PubMed]
- Boiko, S. The local-scale populations reveal cryptic processes occurring in the general population of Schizophyllum commune fungus. Sci. Rep. 2025, 15, 17183. [Google Scholar] [CrossRef] [PubMed]
- Kolbasov, G.A.; Tsao, Y.F.; Chan, B.K.K. Unveiling a hitherto monotypic crustacean coral endoparasite: Diversity and morphology of the genus Zibrowia Grygier, 1995 (Thecostraca: Ascothoracida) through integrative taxonomy. Mar. Biodivers. 2025, 55, 41. [Google Scholar] [CrossRef]
- Sung, R.M.; Tsao, Y.F.; Nakano, T.; Chan, B.K.K. An integrative taxonomy approach in studying the biodiversity of intertidal limpets in Taiwan. Mar. Biodivers. 2025, 55, 45. [Google Scholar] [CrossRef]
- Wang, S.J. Taxonomy, Phylogeny and Phylogeography of the Genus Malcus Stål, 1859 (Hemiptera: Malcidae). Ph.D. Thesis, Nankai University, Tianjin, China, 2020. [Google Scholar]
- Latif, R.; Roohi Aminjan, A.; Malek, M.; Shekhovtsov, S.V.; Poluboyarova, T.V.; Briones, M.J.I. Integrative study of various populations of Aporrectodea rosea (Savigny, 1826) based on morphological and molecular analyses (Oligochaeta: Lumbricidae). Mol. Biol. Rep. 2025, 52, 423. [Google Scholar] [CrossRef]
- Sawada, N.; Fuke, Y.; Miura, O. Integrative taxonomy of Semisulcospira kurodai (Mollusca, Semisulcospiridae) with insights into its geographic variation and description of three new species from Japan. Syst. Biodivers. 2025, 23, 2436684. [Google Scholar] [CrossRef]
- Sinaiko, G.; Dietrich, C.H. Untangling the Beet Leafhopper (Hemiptera: Cicadellidae) species complex: A case study in integrative taxonomy. Insect Syst. Divers. 2025, 9, 4. [Google Scholar] [CrossRef]
- Hsiao, C. Handbook for Identification of Chinese Stink Bugs; Science Press: Beijing, China, 1977; Volume 1. [Google Scholar]
- Zhang, S. Economic Insect Fauna of China: Hemiptera; Science Press: Beijing, China, 1985; Volume 31, pp. 124–125. [Google Scholar]
- Dolling, W.R. Family COREIDAE Leach,1815. In Catalogue of the Heteroptera of the Palaearctic Region; Aukema, B., Rieger, C., Eds.; The Netherlands Entomological Society: Leiden, The Netherlands, 2006; Volume 5, pp. 84–86. [Google Scholar]
- Signoret, V.A. Hémiptères recueillis en Chine par M. Collin de Plancy. Ann. Soc. Entomol. Fr. 1881, 6, xli–xlvii. [Google Scholar]
- Hsiao, T.-Y. A preliminary study on Chinese Homoeocerus Burmeister (Hemiptera: Coreidae). Acta Entomol. Sin. 1962, 11, 66–69. [Google Scholar]
- Meng, G.L.; Li, Y.Y.; Yang, C.T.; Liu, S.L. MitoZ: A toolkit for animal mitochondrial genome assembly, annotation and visualization. Nucleic Acids Res. 2019, 47, e63. [Google Scholar] [CrossRef]
- Peng, Y.; Leung, H.C.M.; Yiu, S.M.; Chin, F.Y.L. IDBA-UD: A de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012, 28, 1420–1428. [Google Scholar] [CrossRef]
- Hahn, C.; Bachmann, L.; Chevreux, B. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Res. 2013, 41, e129. [Google Scholar] [CrossRef]
- Kearse, M.; Moir, R.; Wilson, A.; Stones-Havas, S.; Cheung, M.; Sturrock, S.; Buxton, S.; Cooper, A.; Markowitz, S.; Duran, C.; et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 2012, 28, 1647–1649. [Google Scholar] [CrossRef]
- Bernt, M.; Donath, A.; Juehling, F.; Externbrink, F.; Florentz, C.; Fritzsch, G.; Puetz, J.; Middendorf, M.; Stadler, P.F. MITOS: Improved de novo metazoan mitochondrial genome annotation. Mol. Phylogenet. Evol. 2013, 69, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Peterson, B.K.; Weber, J.N.; Kay, E.H.; Fisher, H.S.; Hoekstra, H.E. Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species. PLoS ONE 2012, 7, e37135. [Google Scholar] [CrossRef] [PubMed]
- Eaton, D.A.R.; Overcast, I. ipyrad: Interactive assembly and analysis of RADseq datasets. Bioinformatics 2020, 36, 2592–2594. [Google Scholar] [CrossRef]
- Lanfear, R.; Frandsen, P.B.; Wright, A.M.; Senfeld, T.; Calcott, B. PartitionFinder 2: New Methods for Selecting Partitioned Models of Evolution for Molecular and Morphological Phylogenetic Analyses. Mol. Biol. Evol. 2017, 34, 772–773. [Google Scholar] [CrossRef]
- Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Hohna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space. Syst. Biol. 2012, 61, 539–542. [Google Scholar] [CrossRef]
- Minh, B.Q.; Schmidt, H.A.; Chernomor, O.; Schrempf, D.; Woodhams, M.D.; von Haeseler, A.; Lanfear, R. IQ-TREE 2: New Models and Efficient Methods for Phylogenetic Inference in the Genomic Era. Mol. Biol. Evol. 2020, 37, 1530–1534. [Google Scholar] [CrossRef]
- Rambaut, A. FigTree, v1.3.1; Institute of Evolutionary Biology, University of Edinburgh: Edinburgh, UK, 2009. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 6 February 2023).
- Yang, Z.H. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 2007, 24, 1586–1591. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Song, B.; Zhang, X. Miocene Insects and Spiders from Shanwang; Science Press: Beijing, China, 1994; p. 68. [Google Scholar]
- Puillandre, N.; Lambert, A.; Brouillet, S.; Achaz, G. ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Mol. Ecol. 2012, 21, 1864–1877. [Google Scholar] [CrossRef]
- Puillandre, N.; Brouillet, S.; Achaz, G. ASAP: Assemble species by automatic partitioning. Mol. Ecol. Resour. 2021, 21, 609–620. [Google Scholar] [CrossRef]
- Pons, J.; Barraclough, T.G.; Gomez-Zurita, J.; Cardoso, A.; Duran, D.P.; Hazell, S.; Kamoun, S.; Sumlin, W.D.; Vogler, A.P. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 2006, 55, 595–609. [Google Scholar] [CrossRef] [PubMed]
- Fujisawa, T.; Barraclough, T.G. Delimiting species using single-locus data and the generalized mixed yule coalescent approach: A revised method and evaluation on simulated data sets. Syst. Biol. 2013, 62, 707–724. [Google Scholar] [CrossRef]
- Bouckaert, R.; Vaughan, T.G.; Barido-Sottani, J.; Duchene, S.; Fourment, M.; Gavryushkina, A.; Heled, J.; Jones, G.; Kuehnert, D.; De Maio, N.; et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2019, 15, e1006650. [Google Scholar] [CrossRef] [PubMed]
- Falush, D.; Stephens, M.; Pritchard, J.K. Inference of population structure using multilocus genotype data: Linked loci and correlated allele frequencies. Genetics 2003, 164, 1567–1587. [Google Scholar] [CrossRef] [PubMed]
- Jakobsson, M.; Rosenberg, N.A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23, 1801–1806. [Google Scholar] [CrossRef]
- Rosenberg, N.A. DISTRUCT: A program for the graphical display of population structure. Mol. Ecol. Notes 2004, 4, 137–138. [Google Scholar] [CrossRef]
- Huson, D.H.; Bryant, D. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 2006, 23, 254–267. [Google Scholar] [CrossRef]
- Luo, A.R.; Ling, C.; Ho, S.Y.W.; Zhu, C.D. Comparison of methods for molecular species delimitation across a range of speciation scenarios. Syst. Biol. 2018, 67, 830–846. [Google Scholar] [CrossRef]
- Chen, J.H.; Jiang, K.; Qi, T.Y.; Li, Y.F.; Liu, H.X.; Xue, H.J.; Ye, Z.; Wang, S.J.; Bu, W.J. Integrative taxonomy, phylogenetics and historical biogeography of subgenus Aeschyntelus Stål, 1872 (Hemiptera: Heteroptera: Rhopalidae). Mol. Phylogenet. Evol. 2024, 198, 108121. [Google Scholar] [CrossRef] [PubMed]
- Fu, P.C.; Guo, Q.Q.; Chang, D.; Gao, Q.B.; Sun, S.S. Cryptic diversity and rampant hybridization in annual gentians on the Qinghai-Tibet Plateau revealed by population genomic analysis. Plant Divers. 2024, 46, 194–205. [Google Scholar] [CrossRef]
- Liu, Q.; Lyu, B.; Xie, X.H.; Zeng, Y.M.; Guo, P. Genomic evidence sheds new light on phylogeny of Rhabdophis nuchalis (sensu lato) complex (Serpentes: Natricidae). Mol. Phylogenet. Evol. 2023, 189, 107893. [Google Scholar] [CrossRef]
- Rana, S.K.; Rana, H.K.; Landis, J.B.; Kuang, T.H.; Chen, J.T.; Wang, H.C.; Deng, T.; Davis, C.C.; Sun, H. Pleistocene glaciation advances the cryptic speciation of Stellera chamaejasme L. in a major biodiversity hotspot. J. Integr. Plant Biol. 2024, 66, 1192–1205. [Google Scholar] [CrossRef]
- Wang, Y.L.; Wang, N.N.; Zhang, Y.; Tsaur, S.C.; Chen, H.W. Cryptic diversity in the subgenus Oxyphortica (Diptera, Drosophilidae, Stegana). PeerJ 2021, 9, e12347. [Google Scholar] [CrossRef]
- Clark, M.K.; Houseman, G.A.; Royden, L.H.; Whipple, K.X.; Burchfiel, B.C.; Zhang, X.; Tang, W. Late Cenozoic uplift of southeastern Tibet. Geology 2005, 33, 525–528. [Google Scholar] [CrossRef]
- Deng, T.; Wu, F.; Wang, S.; Su, T.; Zhou, Z. Major turnover of biotas across the Oligocene/Miocene boundary on the Tibetan Plateau. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2021, 567, 110241. [Google Scholar] [CrossRef]
- Hu, G.L.; Gao, K.; Wang, J.S.; Hebert, P.D.N.; Hua, B.Z. Molecular phylogeny and species delimitation of the genus Dicerapanorpa (Mecoptera: Panorpidae). Zool. J. Linn. Soc. 2019, 187, 1173–1195. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Jin, W.T.; Wei, X.X.; Wang, X.Q. Cryptic speciation in the Chinese white pine (Pinus armandii): Implications for the high species diversity of conifers in the Hengduan Mountains, a global biodiversity hotspot. Mol. Phylogenet. Evol. 2019, 138, 114–125. [Google Scholar] [CrossRef] [PubMed]
- Tu, Y.Z.; Li, X.K.; Hayashi, F.; Zhang, F.; Yang, D.; Condamine, F.L.; Liu, X.Y. Non-adaptive radiation promotes phenotypic diversification and convergent evolution of Aposematic Mimicry in a highly diverse genus of Megaloptera. Syst. Biol. 2025, 74, syaf030. [Google Scholar] [CrossRef]
- Xue, T.T.; Yu, J.H.; Gadagkar, S.R.; Qin, F.; Zhang, X.X.; An, M.T.; Yu, S.X. Phylogeny and biogeography of Impatiens sect. Racemosae (Balsaminaceae) based on nrDNA and plastome sequences, emphasizing diversification in the Himalaya and the Hengduan Mountains. Taxon, 2025; advance online publication. [Google Scholar] [CrossRef]
- Distant, W.L. Rhynchotal notes.- Vlll. Heteroptera: Fam. Coreidae. Ann. Mag. Nat. Hist. 1901, 7, 6–22. [Google Scholar] [CrossRef]
- Esaki, T. Notulae Cimicum Japonicorum (Ill). Kontyu 1929, 3, 225–231. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, J.; Wang, S.; Zhang, J.; Chen, J.; Fu, S.; Ye, Z.; Xue, H.-J.; Li, Y.; Bu, W. Species Delimitation Methods Facilitate the Identification of Cryptic Species Within the Broadly Distributed Species in Homoeocerus (Tliponius) (Insecta: Hemiptera: Coreidae). Insects 2025, 16, 797. https://doi.org/10.3390/insects16080797
Liang J, Wang S, Zhang J, Chen J, Fu S, Ye Z, Xue H-J, Li Y, Bu W. Species Delimitation Methods Facilitate the Identification of Cryptic Species Within the Broadly Distributed Species in Homoeocerus (Tliponius) (Insecta: Hemiptera: Coreidae). Insects. 2025; 16(8):797. https://doi.org/10.3390/insects16080797
Chicago/Turabian StyleLiang, Jingyu, Shujing Wang, Jingyao Zhang, Juhong Chen, Siying Fu, Zhen Ye, Huai-Jun Xue, Yanfei Li, and Wenjun Bu. 2025. "Species Delimitation Methods Facilitate the Identification of Cryptic Species Within the Broadly Distributed Species in Homoeocerus (Tliponius) (Insecta: Hemiptera: Coreidae)" Insects 16, no. 8: 797. https://doi.org/10.3390/insects16080797
APA StyleLiang, J., Wang, S., Zhang, J., Chen, J., Fu, S., Ye, Z., Xue, H.-J., Li, Y., & Bu, W. (2025). Species Delimitation Methods Facilitate the Identification of Cryptic Species Within the Broadly Distributed Species in Homoeocerus (Tliponius) (Insecta: Hemiptera: Coreidae). Insects, 16(8), 797. https://doi.org/10.3390/insects16080797