ijms-logo

Journal Browser

Journal Browser

Molecular Genetics, Genomics and Breeding in Field Crops

A special issue of International Journal of Molecular Sciences (ISSN 1422-0067). This special issue belongs to the section "Molecular Plant Sciences".

Deadline for manuscript submissions: closed (31 July 2025) | Viewed by 120

Special Issue Editor


E-Mail Website
Guest Editor
Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
Interests: molecular genetics; development biology; molecular breeding; computation breeding; artificial intelligence; soybean
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

As the global population continues to grow, the challenges faced by our ecological environment intensify. Ensuring a stable and sufficient food supply has become imperative for the survival and development of humanity. Field crops serve as the primary source of food, and advancements in genetics, molecular genetics, and breeding are essential when addressing food security. This Special Issue focuses on cutting-edge research achievements in the genetics and breeding of field crops.

Scope and Topics

We invite contributions that reflect the latest trends in field crop genetics and molecular breeding. Relevant topics include, but are not limited to, the following:

Gene function exploration and expression regulation;

Molecular breeding;

Epigenetic regulation;

Gene editing technologies;

Genomic diversity analysis;

Germplasm innovation technologies.

We particularly encourage research that integrates emerging technologies such as artificial intelligence, big data, and machine learning with genetics and breeding.

Call for Submissions

We warmly welcome submissions from researchers, whether they are new discoveries in basic research or innovative breakthroughs in applied technologies. Let us collaborate to advance agricultural science and contribute to global food security and sustainable agricultural development.

Prof. Dr. Xianzhong Feng
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. International Journal of Molecular Sciences is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. There is an Article Processing Charge (APC) for publication in this open access journal. For details about the APC please see here. Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • field crop
  • genomics
  • molecular genetics
  • breeding technologies
  • germplasm utilization

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Research

29 pages, 10502 KiB  
Article
A Comparative Bioinformatic Investigation of the Rubisco Small Subunit Gene Family in True Grasses Reveals Novel Targets for Enhanced Photosynthetic Efficiency
by Brittany Clare Thornbury, Tianhua He, Yong Jia and Chengdao Li
Int. J. Mol. Sci. 2025, 26(15), 7424; https://doi.org/10.3390/ijms26157424 (registering DOI) - 1 Aug 2025
Abstract
Ribulose bisphosphate carboxylase (RuBisCO) is the primary regulator of carbon fixation in the plant kingdom. Although the large subunit (RBCL) is the site of catalysis, RuBisCO efficiency is also influenced by the sequence divergence of the small subunit (RBCS). This project compared the [...] Read more.
Ribulose bisphosphate carboxylase (RuBisCO) is the primary regulator of carbon fixation in the plant kingdom. Although the large subunit (RBCL) is the site of catalysis, RuBisCO efficiency is also influenced by the sequence divergence of the small subunit (RBCS). This project compared the RBCS gene family in C3 and C4 grasses to identify genetic targets for improved crop photosynthesis. Triticeae/Aveneae phylogeny groups exhibited a syntenic tandem duplication array averaging 326.1 Kbp on ancestral chromosomes 2 and 3, with additional copies on other chromosomes. Promoter analysis revealed a paired I-box element promoter arrangement in chromosome 5 RBCS of H. vulgare, S. cereale, and A. tauschii. The I-box pair was associated with significantly enhanced expression, suggesting functional adaptation of specific RBCS gene copies in Triticaeae. H. vulgare-derived pan-transcriptome data showed that RBCS expression was 50.32% and 28.44% higher in winter-type accessions compared to spring types for coleoptile (p < 0.05) and shoot, respectively (p < 0.01). Molecular dynamics simulations of a mutant H. vulgare Rubisco carrying a C4-like amino acid substitution (G59C) in RBCS significantly enhanced the stability of the Rubisco complex. Given the known structural efficiency of C4 Rubisco complexes, G59C could serve as an engineering target for enhanced RBCS in economically crucial crop species which, in comparison, possess less efficient Rubisco complexes. Full article
(This article belongs to the Special Issue Molecular Genetics, Genomics and Breeding in Field Crops)
Show Figures

Figure 1

Back to TopTop