Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (45)

Search Parameters:
Keywords = Peste des petits ruminants virus (PPRV)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1135 KiB  
Article
Field-Based Characterization of Peste des Petits Ruminants in Sheep in Romania: Clinical, Pathological, and Diagnostic Perspectives
by Romică Iacobescu-Marițescu, Adriana Morar, Viorel Herman, Emil Tîrziu, János Dégi and Kálmán Imre
Vet. Sci. 2025, 12(7), 679; https://doi.org/10.3390/vetsci12070679 - 18 Jul 2025
Viewed by 330
Abstract
Peste des petits ruminants is a highly contagious transboundary viral disease that poses a serious threat to small ruminant populations worldwide. In 2024, seven outbreaks of PPR were recorded in sheep flocks from Timiș County, marking the second confirmed incursions of peste des [...] Read more.
Peste des petits ruminants is a highly contagious transboundary viral disease that poses a serious threat to small ruminant populations worldwide. In 2024, seven outbreaks of PPR were recorded in sheep flocks from Timiș County, marking the second confirmed incursions of peste des petits ruminants virus (PPRV) in Romania. This study aimed to document the clinical presentation, pathological findings, and diagnostic confirmation with these field outbreaks. Comprehensive field investigations were carried out between July and September 2024, including clinical examinations, post mortem analysis, serological screening, and molecular detection using reverse transcription polymerase chain reaction (RT-PCR). A total of 13,203 sheep were evaluated, with an overall mortality rate of 12.77%. Characteristic clinical signs included mucopurulent nasal discharge, oral erosions, respiratory distress, and diarrhea. Gross lesions observed during necropsy included hemorrhagic bronchopneumonia, bile-stained liver, catarrhal enteritis, and mucosal hemorrhages. Serological testing revealed flock-level seroprevalence rates ranging from 46.7% to 80.0%, with higher rates observed in older animals. RT-PCR confirmed PPRV infection in all affected flocks. Our findings provide strong evidence of virulent PPRV circulation in an area where the virus had not been reported before. The results highlight an urgent need to strengthen surveillance systems, enhance diagnostic capacity, and foster cross-border collaboration. These field-based insights can contribute to both national and international efforts aimed at controlling and ultimately eradicating the disease. Full article
(This article belongs to the Special Issue Viral Infections in Wild and Domestic Animals)
Show Figures

Figure 1

13 pages, 1422 KiB  
Brief Report
Detection of Lineage IV Peste Des Petits Ruminants Virus by RT-qPCR Assay via Targeting the Hemagglutinin Gene
by Jiao Xu, Qinghua Wang, Jiarong Yu, Yingli Wang, Huicong Li, Lin Li, Jingyue Bao and Zhiliang Wang
Viruses 2025, 17(7), 976; https://doi.org/10.3390/v17070976 - 12 Jul 2025
Viewed by 365
Abstract
Peste des petits ruminants virus (PPRV) has been classified into four lineages based on the nucleocapsid and fusion genes, with lineage IV strains being the most widely distributed. In Africa, recent epidemiological data revealed that PPRV lineage IV is increasingly displacing other lineages [...] Read more.
Peste des petits ruminants virus (PPRV) has been classified into four lineages based on the nucleocapsid and fusion genes, with lineage IV strains being the most widely distributed. In Africa, recent epidemiological data revealed that PPRV lineage IV is increasingly displacing other lineages in prevalence, suggesting a competitive advantage in viral transmission and adaptability. Moreover, a lineage IV strain was the only confirmed strain in Europe and Asia. In this study, a one-step Taqman quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) assay for lineage IV PPRV was established by targeting the hemagglutinin (H) gene. The results indicated that this method could detect approximately six copies of PPRV RNA, indicating high sensitivity. No cross-reactions with related viruses or other lineages of PPRV were observed. The results of a repeatability test indicated that the coefficient of variation values were low in both the inter-assay and intra-assay experimental groups. Detection of field samples indicated that all positive samples could be detected successfully using the developed method. This RT-qPCR assay provides a valuable tool to facilitate targeted surveillance and rapid differential diagnosis in regions with active circulation of PPRV lineage IV, enabling timely epidemiological investigations and strain-specific identification. Full article
Show Figures

Figure 1

14 pages, 5706 KiB  
Article
First Incidence of Peste des Petits Ruminants Virus in Cervidae Family from State Zoo of Assam, India
by Nagendra Nath Barman, Arpita Bharali, Durlav Prasad Bora, Biswajit Dutta, Mousumi Bora, Sophia M. Gogoi, Panchami Sharma, Sankar Sarma, Parikshit Kakati, Tejas Mariswamy, Ankita Choudhury and Lukumoni Buragohain
Viruses 2024, 16(12), 1829; https://doi.org/10.3390/v16121829 - 25 Nov 2024
Cited by 1 | Viewed by 1117
Abstract
The present study aimed to investigate the episodes of per-acute mortality due to peste des petits ruminants (PPR) that resulted in the death of 30 animals of different species of cervids, namely, barking deer, four-horned antelope, hog deer, thamin, and mouse deer in [...] Read more.
The present study aimed to investigate the episodes of per-acute mortality due to peste des petits ruminants (PPR) that resulted in the death of 30 animals of different species of cervids, namely, barking deer, four-horned antelope, hog deer, thamin, and mouse deer in the State Zoo of Assam, a northeastern state of India. The affected animals showed no to limited clinical signs. However, the necropsy and histopathological findings were highly suggestive of PPR virus (PPRV) infection observed in domestic small ruminants. Representative tissue samples were screened for the presence of PPRV along with blue tongue virus (BTV) and epizootic hemorrhagic disease virus (EHDV) using RT-PCR or RT-qPCR and were found to be positive for PPRV. Considering the sudden outbreak of PPR in captive cervids, we sought to determine the role of domestic goats as the potential spillover host. To verify that, archived tissue samples of domestic goats collected during PPRV outbreaks in nearby localities and slaughtered goats used as meat for Carnivorous animals in the State Zoo were also screened and found to be positive for PPRV in RT-PCR. Phylogenetic analysis based on the Nucleocapsid (N) protein gene of PPRV from infected cervids, domestic goats, and goat meat revealed the virus to be of Lineage IV origin. Our findings provide evidence of probable spillover of PPRV from domestic goats to captive endangered cervids and circulation of Lineage IV PPRV strains among the small-ruminant population of this region. Full article
Show Figures

Figure 1

17 pages, 2679 KiB  
Article
Enhanced Recovery and Detection of Highly Infectious Animal Disease Viruses by Virus Capture Using Nanotrap® Microbiome A Particles
by Amaresh Das, Joseph Gutkoska, Yadata Tadassa and Wei Jia
Viruses 2024, 16(11), 1657; https://doi.org/10.3390/v16111657 - 23 Oct 2024
Cited by 1 | Viewed by 1541
Abstract
This study reports the use of Nanotrap® Microbiome A Particles (NMAPs) to capture and concentrate viruses from diluted suspensions to improve their recovery and sensitivity to detection by real-time PCR/RT-PCR (qPCR/RT-qPCR). Five highly infectious animal disease viruses including goatpox virus (GTPV), sheeppox [...] Read more.
This study reports the use of Nanotrap® Microbiome A Particles (NMAPs) to capture and concentrate viruses from diluted suspensions to improve their recovery and sensitivity to detection by real-time PCR/RT-PCR (qPCR/RT-qPCR). Five highly infectious animal disease viruses including goatpox virus (GTPV), sheeppox virus (SPPV), lumpy skin disease virus (LSDV), peste des petits ruminants virus (PPRV), and African swine fever virus (ASFV) were used in this study. After capture, the viruses remained viable and recoverable by virus isolation (VI) using susceptible cell lines. To assess efficacy of recovery, the viruses were serially diluted in phosphate-buffered saline (PBS) or Eagle’s Minimum Essential Medium (EMEM) and then subjected to virus capture using NMAPs. The NMAPs and the captured viruses were clarified on a magnetic stand, reconstituted in PBS or EMEM, and analyzed separately by VI and virus-specific qPCR/RT-qPCR. The PCR results showed up to a 100-fold increase in the sensitivity of detection of the viruses following virus capture compared to the untreated viruses from the same dilutions. Experimental and clinical samples were subjected to virus capture using NMAPs and analyzed by PCR to determine diagnostic sensitivity (DSe) that was comparable (100%) to that determined using untreated (-NMAPs) samples. NMAPs were also used to capture spiked viruses from EDTA whole blood (EWB). Virus capture from EWB was partially blocked, most likely by hemoglobin (HMB), which also binds NMAPs and outcompetes the viruses. The effect of HMB could be removed by either dilution (in PBS) or using HemogloBind™ (Biotech Support Group; Monmouth Junction, NJ, USA), which specifically binds and precipitates HMB. Enhanced recovery and detection of viruses using NMAPs can be applicable to other highly pathogenic animal viruses of agricultural importance. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

11 pages, 3085 KiB  
Article
Partial Sequence Analysis of Commercial Peste des Petits Ruminants Vaccines Produced in Africa
by Boubacar Barry, Yebechaye Tessema, Hassen Gelaw, Cisse Rahamatou Moustapha Boukary, Baziki Jean de Dieu, Melesse Ayelet Gelagay, Ethel Chitsungo, Richard Rayson Sanga, Gbolahanmi Akinola Oladosu, Nick Nwankpa and S. Charles Bodjo
Vet. Sci. 2024, 11(10), 500; https://doi.org/10.3390/vetsci11100500 - 13 Oct 2024
Viewed by 2551
Abstract
Peste des petits ruminants virus (PPRV), which is the only member of the Morbillivirus caprinae species and belongs to the genus Morbillivirus within the Paramyxoviridae family, causes the highly contagious viral sickness “Peste des petits ruminants (PPR).” PPR is of serious economic significance [...] Read more.
Peste des petits ruminants virus (PPRV), which is the only member of the Morbillivirus caprinae species and belongs to the genus Morbillivirus within the Paramyxoviridae family, causes the highly contagious viral sickness “Peste des petits ruminants (PPR).” PPR is of serious economic significance for small ruminant production, particularly in Africa. Control of this critical disease depends highly on successful vaccination against the PPRV. An in-depth understanding of the genetic evolution of the live-attenuated PPR vaccine Nigeria 75/1 strain used in Africa is essential for the successful eradication of this disease by 2030. Therefore, this study investigated the possible genetic evolution of the PPR vaccine produced by various African laboratories compared with the master seed available at AU-PANVAC. RT-PCR was performed to amplify a segment of the hypervariable C-terminal part of the nucleoprotein (N) from commercial batches of PPR vaccine Nigeria 75/1 strain. The sequences were analyzed, and 100% nucleotide sequence identity was observed between the master seed and vaccines produced. The results of this study indicate the genetic stability of the PPR vaccine from the Nigeria 75/1 strain over decades and that the vaccine production process used by different manufacturers did not contribute to the emergence of mutations in the vaccine strain. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

8 pages, 1845 KiB  
Brief Report
Unveiling of the Co-Infection of Peste des Petits Ruminants Virus and Caprine Enterovirus in Goat Herds with Severe Diarrhea in China
by Qun Zhang, Xuebo Zheng, Fan Zhang, Xuyuan Cui, Naitian Yan, Junying Hu, Yidi Guo and Xinping Wang
Viruses 2024, 16(6), 986; https://doi.org/10.3390/v16060986 - 19 Jun 2024
Cited by 13 | Viewed by 1501
Abstract
Here, we report the discovery of two viruses associated with a disease characterized by severe diarrhea on a large-scale goat farm in Jilin province. Electron Microscopy observations revealed two kinds of virus particles with the sizes of 150–210 nm and 20–30 nm, respectively. [...] Read more.
Here, we report the discovery of two viruses associated with a disease characterized by severe diarrhea on a large-scale goat farm in Jilin province. Electron Microscopy observations revealed two kinds of virus particles with the sizes of 150–210 nm and 20–30 nm, respectively. Detection of 276 fecal specimens from the diseased herds showed the extensive infection of peste des petits ruminants virus (63.77%, 176/276) and caprine enterovirus (76.81%, 212/276), with a co-infection rate of 57.97% (160/276). These results were partially validated with RT-PCR, where all five PPRV-positive and CEV-positive specimens yielded the expected size of fragments, respectively, while no fragments were amplified from PPRV-negative and CEV-negative specimens. Moreover, corresponding PPRV and CEV fragments were amplified in PPRV and CEV double-positive specimens. Histopathological examinations revealed severe microscopic lesions such as degeneration, necrosis, and detachment of epithelial cells in the bronchioles and intestine. An immunohistochemistry assay detected PPRV antigens in bronchioles, cartilage tissue, intestine, and lymph nodes. Simultaneously, caprine enterovirus antigens were detected in lung, kidney, and intestinal tissues from the goats infected by the peste des petits ruminants virus. These results demonstrated the co-infection of peste des petits ruminants virus with caprine enterovirus in goats, revealing the tissue tropism for these two viruses, thus laying a basis for the future diagnosis, prevention, and epidemiological survey for these two virus infections. Full article
(This article belongs to the Special Issue An Update on Enterovirus Research)
Show Figures

Figure 1

7 pages, 838 KiB  
Communication
First Report of the Emergence of Peste des Petits Ruminants Lineage IV Virus in Senegal
by Aminata Ba, Gaye Laye Diop, Mbengué Ndiaye, Michel Dione and Modou Moustapha Lo
Viruses 2024, 16(2), 305; https://doi.org/10.3390/v16020305 - 17 Feb 2024
Cited by 3 | Viewed by 1767
Abstract
Peste des petits ruminants (PPR) is a highly contagious viral disease and one of the deadliest affecting wild goats, sheep, and small ruminants; however, goats are generally more sensitive. The causative agent is the Peste des Petits Ruminants virus (PPRV), which is a [...] Read more.
Peste des petits ruminants (PPR) is a highly contagious viral disease and one of the deadliest affecting wild goats, sheep, and small ruminants; however, goats are generally more sensitive. The causative agent is the Peste des Petits Ruminants virus (PPRV), which is a single-stranded RNA virus of negative polarity belonging to the Paramyxoviridae family. In February 2020, an active outbreak of PPR was reported in a herd of a transhumant farmer in the village of Gainth Pathé (department of Kounguel, Kaffrine region, Senegal). Of the ten swabs collected from the goats, eight returned a positive result through a quantitative real-time PCR. The sample that yielded the strongest signal from the quantitative real-time PCR was further analyzed with a conventional PCR amplification and direct amplicon sequencing. A phylogenetic analysis showed that the sequence of the PPR virus obtained belonged to lineage IV. These results confirm those found in the countries bordering Senegal and reinforce the hypothesis of the importance of animal mobility between these neighboring countries in the control of PPRV. In perspective, following the discovery of this lineage IV in Senegal, a study on its dispersion is underway throughout the national territory. The results that will emerge from this study, associated with detailed data on animal movements and epidemiological data, will provide appropriate and effective information to improve PPR surveillance and control strategies with a view to its eradication. Full article
Show Figures

Figure 1

11 pages, 2218 KiB  
Brief Report
Molecular Epidemiology of Peste Des Petits Ruminants Virus in West Africa: Is Lineage IV Replacing Lineage II in Burkina Faso?
by Abel S. Biguezoton, Guy Sidwatta Ilboudo, Barbara Wieland, Rahinata W-Y. Sawadogo, Fairou F. Dah, Cheick A. K. Sidibe, Adrien Zoungrana, Edward Okoth and Michel Dione
Viruses 2024, 16(2), 244; https://doi.org/10.3390/v16020244 - 3 Feb 2024
Cited by 4 | Viewed by 1806
Abstract
This study aimed at investigating the genetic lineages of peste des petits ruminants virus (PPRV) currently circulating in Burkina Faso. As part of PPR surveillance in 2021 and 2022, suspected outbreaks in different regions were investigated. A risk map was produced to determine [...] Read more.
This study aimed at investigating the genetic lineages of peste des petits ruminants virus (PPRV) currently circulating in Burkina Faso. As part of PPR surveillance in 2021 and 2022, suspected outbreaks in different regions were investigated. A risk map was produced to determine high-risk areas for PPR transmission. Based on alerts, samples were obtained from three regions and all sampled localities were confirmed to fall within PPR high risk areas. We collected swab samples from the eyes, mouth, and nose of sick goats. Some tissue samples were also collected from dead animals suspected to be infected by PPRV. In total, samples from 28 goats were analysed. Virus confirmation was performed with RT-PCR amplification targeting the nucleocapsid (N) gene. Partial N gene sequencing (350 bp) was carried out using the RT-PCR products of positives samples to characterise the circulating lineages. Eleven sequences, including ten new sequences, have been obtained. Our study identified the presence of the PPRV lineage IV in the three studied regions in Burkina Faso with a genetic heterogeneity recorded for the sequences analysed. Previously published data and results of this study suggest that PPRV lineage IV seems to be replacing lineage II in Burkina Faso. Full article
Show Figures

Figure 1

12 pages, 1332 KiB  
Article
The Live Attenuated Vaccine Strain “ARRIAH” Completely Protects Goats from a Virulent Lineage IV Field Strain of Peste Des Petits Ruminants Virus
by Olga Byadovskaya, Kseniya Shalina, Pavel Prutnikov, Irina Shumilova, Nikita Tenitilov, Alexei Konstantinov, Nataliya Moroz, Ilya Chvala and Alexander Sprygin
Vaccines 2024, 12(2), 110; https://doi.org/10.3390/vaccines12020110 - 23 Jan 2024
Viewed by 2383
Abstract
Peste des petits ruminants (PPR) is a transboundary viral disease that affects small ruminants, such as goats and sheep, in Africa, the Middle East, and Asia, causing substantial damage to livelihoods and disrupting livestock trade. Although Russia is PPR virus (PPRV)-free, controlling PPRV [...] Read more.
Peste des petits ruminants (PPR) is a transboundary viral disease that affects small ruminants, such as goats and sheep, in Africa, the Middle East, and Asia, causing substantial damage to livelihoods and disrupting livestock trade. Although Russia is PPR virus (PPRV)-free, controlling PPRV in neighboring countries is the top national priority. Recent PPR outbreaks in Mongolia and other countries in the Middle East caused by a lineage IV virus represent a risk of transboundary emergence in neighboring countries, including China, Kazakhstan, and Russia. In the present study, we assessed the potency and safety of the ARRIAH live attenuated PPRV vaccine (lineage II) in Zaannen and Nubian goat breeds by challenging them with a virulent lineage IV Mongolia/2021 isolate. For comparison, two commercial vaccines of Nigeria75/1 strain were used. The ARRIAH-vaccinated animals showed an increase in body temperature of 1–1.5 °C above the physiological norm, similar to the animals vaccinated with Nigeria75/1 vaccines. In all vaccinated groups, the average rectal temperature never exceeded 39.4–39.7 °C throughout the infection period, and no clinical signs of the disease were observed, demonstrating vaccine efficacy and safety in the current experimental setting. However, the control group (mock vaccinated) challenged with Mongolia/2021 PPRV exhibited moderate-to-severe clinical signs. Overall, the findings of the present study demonstrate that the ARRIAH vaccine strain has a promising protective phenotype compared with Nigeria75/1 vaccines, suggesting its potential as an effective alternative for curbing and controlling PPR in affected countries. Although the ARRIAH vaccine against PPR is not currently endorsed by the World Organization for Animal Health due to its incomplete safety and potency profile, this study is the first step to provide experimentally validated data on the ARRIAH vaccine. Full article
Show Figures

Figure 1

16 pages, 3477 KiB  
Article
An Integrated Ecological Niche Modelling Framework for Risk Mapping of Peste des Petits Ruminants Virus Exposure in African Buffalo (Syncerus caffer) in the Greater Serengeti-Mara Ecosystem
by Laura Carrera-Faja, Chris Yesson, Bryony A. Jones, Camilla T. O. Benfield and Richard A. Kock
Pathogens 2023, 12(12), 1423; https://doi.org/10.3390/pathogens12121423 - 7 Dec 2023
Cited by 2 | Viewed by 2120
Abstract
Peste des petits ruminants (PPR) is a highly contagious viral disease of small ruminants that threatens livelihoods and food security in developing countries and, in some cases, wild ungulate species conservation. The Greater Serengeti-Mara Ecosystem (GSME) encompasses one of the major wildlife populations [...] Read more.
Peste des petits ruminants (PPR) is a highly contagious viral disease of small ruminants that threatens livelihoods and food security in developing countries and, in some cases, wild ungulate species conservation. The Greater Serengeti-Mara Ecosystem (GSME) encompasses one of the major wildlife populations of PPR virus (PPRV)-susceptible species left on earth, although no clinical disease has been reported so far. This study aimed to gain further knowledge about PPRV circulation in the GSME by identifying which factors predict PPRV seropositivity in African buffalo (Syncerus caffer). Following an ecological niche modeling framework to map host-pathogen distribution, two models of PPRV exposure and buffalo habitat suitability were performed using serological data and buffalo censuses. Western Maasai Mara National Reserve and Western Serengeti National Park were identified as high-risk areas for PPRV exposure in buffalo. Variables related to wildlife-livestock interaction contributed to the higher risk of PPRV seropositivity in buffalo, providing supportive evidence that buffalo acquire the virus through contact with infected livestock. These findings can guide the design of cost-effective PPRV surveillance using buffalo as a sentinel species at the identified high-risk locations. As more intensive studies have been carried out in Eastern GSME, this study highlights the need for investigating PPRV dynamics in Western GSME. Full article
(This article belongs to the Section Epidemiology of Infectious Diseases)
Show Figures

Figure 1

13 pages, 3733 KiB  
Article
Assessment of Peste des Petits Ruminants Antibodies in Vaccinated Pregnant Ewes of Kazakh Breed Fine-Fleeced and Determination of the Decreasing Trend of Maternal Immunity in Their Lambs
by Zhanat Amanova, Sholpan Turyskeldy, Zhanat Kondybaeva, Zhanna Sametova, Abdurakhman Usembai, Aslan Kerimbayev and Yerbol Bulatov
Viruses 2023, 15(10), 2054; https://doi.org/10.3390/v15102054 - 6 Oct 2023
Viewed by 1909
Abstract
In this article, we first assessed peste des petits ruminants (PPR) antibodies in vaccinated pregnant ewes of Kazakh breed fine-fleeced immunized with the PPR vaccine and the duration of maternal immunity in their lambs. Ewes in the last trimester of pregnancy and gestation [...] Read more.
In this article, we first assessed peste des petits ruminants (PPR) antibodies in vaccinated pregnant ewes of Kazakh breed fine-fleeced immunized with the PPR vaccine and the duration of maternal immunity in their lambs. Ewes in the last trimester of pregnancy and gestation were immunized with a vaccine from the Nigeria 75/1 strain of the PPR virus (PPRV) produced by the Research Institute of Biological Safety Problems (RIBSP), Kazakhstan. Serum samples from lambs born from vaccinated and unvaccinated ewes were collected a week after birth and at intervals of 7 days for 18 weeks after birth. Serum samples collected from lambs were tested for PPR antibodies using competitive ELISA and virus neutralization test (VNT). Maternal antibodies (MAs) in lambs born from vaccinated ewes were detected for up to 18 weeks, with a tendency to decrease starting at week 14, and by the end of the experiment receded below the protective level (<1:8). In the blood serum of a 14-week-old lamb with MAs (1:8), post vaccination with a field dose (103 TCID50) of the vaccine against PPR, the titers of protective antibodies against PPRV increased to 1:16 on day 14 post vaccination, and the lamb was protected from infection with the field PPRV. A lamb of the same age with MAs in the 1:8 titer was 100% protected from infection with the field PPRV. Therefore, it is recommended that lambs of the Kazakh fine-wool breed be immunized from the age of 14 weeks or older to avoid a period of susceptibility. Full article
Show Figures

Figure 1

21 pages, 5495 KiB  
Article
Nucleocapsid Protein (N) of Peste des petits ruminants Virus (PPRV) Interacts with Cellular Phosphatidylinositol-3-Kinase (PI3K) Complex-I and Induces Autophagy
by Yash Chaudhary, Juhi Jain, Sharad Kumar Gaur, Prabhakar Tembhurne, Shanmugam Chandrasekar, Muthuchelvan Dhanavelu, Sharvan Sehrawat and Rajeev Kaul
Viruses 2023, 15(9), 1805; https://doi.org/10.3390/v15091805 - 24 Aug 2023
Cited by 7 | Viewed by 3029
Abstract
Autophagy is an essential and highly conserved catabolic process in cells, which is important in the battle against intracellular pathogens. Viruses have evolved several ways to alter the host defense mechanisms. PPRV infection is known to modulate the components of a host cell’s [...] Read more.
Autophagy is an essential and highly conserved catabolic process in cells, which is important in the battle against intracellular pathogens. Viruses have evolved several ways to alter the host defense mechanisms. PPRV infection is known to modulate the components of a host cell’s defense system, resulting in enhanced autophagy. In this study, we demonstrate that the N protein of PPRV interacts with the core components of the class III phosphatidylinositol-3-kinase (PI3K) complex-I and results in the induction of autophagy in the host cell over, thereby expressing this viral protein. Our data shows the interaction between PPRV-N protein and different core components of the autophagy pathway, i.e., VPS34, VPS15, BECN1 and ATG14L. The PPRV-N protein can specifically interact with VPS34 of the PI3K complex-I and colocalize with the proteins of PI3K complex-I in the same sub-cellular compartment, that is, in the cytoplasm. These interactions do not affect the intracellular localization of the different host proteins. The autophagy-related genes were transcriptionally modulated in PPRV-N-expressing cells. The expression of LC3B and SQSTM1/p62 was also modulated in PPRV-N-expressing cells, indicating the induction of autophagic activity. The formation of typical autophagosomes with double membranes was visualized by transmission electron microscopy in PPRV-N-expressing cells. Taken together, our findings provide evidence for the critical role of the N protein of the PPR virus in the induction of autophagy, which is likely to be mediated by PI3K complex-I of the host. Full article
Show Figures

Figure 1

13 pages, 2339 KiB  
Article
Investigation of Potency and Safety of Live-Attenuated Peste des Petits Ruminant Virus Vaccine in Goats by Detection of Cellular and Humoral Immune Response
by Milovan Milovanović, Klaas Dietze, Ulrich Wernery and Bernd Hoffmann
Viruses 2023, 15(6), 1325; https://doi.org/10.3390/v15061325 - 5 Jun 2023
Cited by 3 | Viewed by 2278
Abstract
The peste des petits ruminant (PPR) virus is a transboundary virus found in small domestic ruminants that causes high morbidity and mortality in naive herds. PPR can be effectively controlled and eradicated by vaccinating small domestic ruminants with a live-attenuated peste des petits [...] Read more.
The peste des petits ruminant (PPR) virus is a transboundary virus found in small domestic ruminants that causes high morbidity and mortality in naive herds. PPR can be effectively controlled and eradicated by vaccinating small domestic ruminants with a live-attenuated peste des petits ruminant virus (PPRV) vaccine, which provides long-lasting immunity. We studied the potency and safety of a live-attenuated vaccine in goats by detecting their cellular and humoral immune responses. Six goats were subcutaneously vaccinated with a live-attenuated PPRV vaccine according to the manufacturer’s instructions, and two goats were kept in contact. Following vaccination, the goats were monitored daily, and we recorded their body temperature and clinical score. Heparinized blood and serum were collected for a serological analysis, and swab samples and EDTA blood were collected to detect the PPRV genome. The safety of the used PPRV vaccine was confirmed by the absence of PPR-related clinical signs, a negative pen-side test, a low virus genome load as detected with RT-qPCR on the vaccinated goats, and the lack horizontal transmission between the in-contact goats. The strong humoral and cellular immune responses detected in the vaccinated goats showed that the live-attenuated PPRV vaccine has a strong potency in goats. Therefore, live-attenuated vaccines against PPR can be used to control and eradicate PRR. Full article
Show Figures

Figure 1

6 pages, 1068 KiB  
Communication
The Spread of Peste Des Petits Ruminants Virus Lineage IV in West Africa
by Emmanuel Couacy-Hymann, Kouramoudou Berete, Theophilus Odoom, Lamouni Habibata Zerbo, Koffi Yao Mathurin, Valère Kouame Kouakou, Mohamed Idriss Doumbouya, Aminata Balde, Patrick Tetteh Ababio, Lalidia Bruno Ouoba, Dominique Guigma, Adama Dji-tombo Drobo, Mariétou Guitti, Sherry Ama Mawuko Johnson, David Livingstone Mawuko Blavo, Giovanni Cattoli, Charles E. Lamien and William G. Dundon
Animals 2023, 13(7), 1268; https://doi.org/10.3390/ani13071268 - 6 Apr 2023
Cited by 10 | Viewed by 2449
Abstract
Monitoring the transboundary spread of peste des petits ruminants (PPR) virus is an essential part of the global efforts towards the eradication of PPR by 2030. There is growing evidence that Lineage IV is becoming the predominant viral lineage, replacing Lineage I and [...] Read more.
Monitoring the transboundary spread of peste des petits ruminants (PPR) virus is an essential part of the global efforts towards the eradication of PPR by 2030. There is growing evidence that Lineage IV is becoming the predominant viral lineage, replacing Lineage I and II in West Africa. As part of a regional investigation, samples collected in Burkina Faso, Côte d’Ivoire, Guinea and Ghana were screened for the presence of PPRV. A segment of the nucleoprotein gene from positive samples was sequenced, and phylogenetic analysis revealed the co-circulation of Lineage II and IV in Burkina Faso, Côte d’Ivoire and Guinea, and the identification of Lineage IV in Ghana. These data will be of importance to local and regional authorities involved in the management of PPRV spread. Full article
(This article belongs to the Collection Diseases of Small Ruminants)
Show Figures

Figure 1

15 pages, 3034 KiB  
Article
A Clinical, Pathological, Epidemiological and Molecular Investigation of Recent Outbreaks of Peste des Petits Ruminants Virus in Domestic and Wild Small Ruminants in the Abu Dhabi Emirate, United Arab Emirates
by Hassan Zackaria Ali Ishag, Abdelnasir Mohammed Adam Terab, Yassir Mohammed Eltahir, El Tigani Ahmed El Tigani-Asil, Nasereldien Altaib Hussein Khalil, Esamt Faisal Malik Gasim, Mohd Farouk Yuosf, Saeed Mohamed Saeed Al Yammahi, Asma Mohammed Amer Al Mansoori, Salama Suhail Mohammed Al Muhairi, Zulaikha Mohamed Abdel Hameed Al Hammadi, Asma Abdi Mohamed Shah, Majd Mohamed Azmi Naser Alherbawi, Mervat Mari Hassan Al Nuaimat, Oum Keltoum Bensalah and Abdelmalik Ibrahim Khalafalla
Vet. Sci. 2023, 10(1), 56; https://doi.org/10.3390/vetsci10010056 - 13 Jan 2023
Cited by 4 | Viewed by 3817
Abstract
(1) Background: Peste des petits ruminants (PPR) is a highly contagious animal disease affecting small ruminants, leading to significant economic losses. There has been little published data on PPR virus (PPRV) infection in the United Arab Emirates (UAE); (2) Methods: four outbreaks reported [...] Read more.
(1) Background: Peste des petits ruminants (PPR) is a highly contagious animal disease affecting small ruminants, leading to significant economic losses. There has been little published data on PPR virus (PPRV) infection in the United Arab Emirates (UAE); (2) Methods: four outbreaks reported in goats and Dama gazelle in 2021 were investigated using pathological and molecular testing; (3) Results: The infected animals showed symptoms of dyspnea, oculo-nasal secretions, cough, and diarrhea. Necropsy findings were almost similar in all examined animals and compliant to the classical forms of the disease. Phylogenetic analysis based on N gene and F gene partial sequences revealed a circulation of PPRV Asian lineage IV in the UAE, and these sequences clustered close to the sequences of PPRV from United Arab Emirates, Pakistan, Tajikistan and Iran; (4) Conclusions: PPRV Asian lineage IV is currently circulating in the UAE. To the best of our knowledge, this is a first study describing PPRV in domestic small ruminant in the UAE. Full article
Show Figures

Figure 1

Back to TopTop