Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = Penicillium nordicum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3111 KB  
Article
The Impact of Biocontrol Agents on the Metabolome of Penicillium nordicum Strains and Its Relation to Ochratoxin A Production on Dry-Cured Ham
by Eva Cebrián, Elia Roncero, João Luz, Mar Rodríguez, Marta Sousa Silva, Carlos Cordeiro and Félix Núñez
Toxins 2025, 17(5), 236; https://doi.org/10.3390/toxins17050236 - 9 May 2025
Viewed by 992
Abstract
Throughout the process of dry-cured ham, moulds such as P. nordicum, a producer of ochratoxin A (OTA), grow on its surface. The use of combined biocontrol agents (BCAs) is a promising strategy for controlling this hazard. The goal of this study is [...] Read more.
Throughout the process of dry-cured ham, moulds such as P. nordicum, a producer of ochratoxin A (OTA), grow on its surface. The use of combined biocontrol agents (BCAs) is a promising strategy for controlling this hazard. The goal of this study is to assess the effect of D. hansenii, S. xylosus, and P. chrysogenum as BCAs on the metabolome of two strains of P. nordicum and to understand the differences between both strains. Each ochratoxigenic strain was inoculated both individually and in combination with the BCAs onto ham for 30 days under the environmental conditions experienced during traditional ripening. Untargeted metabolomics was performed through mass spectrometry using a Q-Exactive Plus Orbitrap. The BCAs caused alterations in the metabolomes of both ochratoxigenic moulds, mainly in phenylalanine catabolism and the valine, leucine, and isoleucine biosynthesis pathways, although with some differences. In the absence of the BCAs, the metabolomes of both types of P. nordicum were globally changed, despite these being moulds of the same species. In conclusion, these data help us to understand the differences between OTA-producing strains in dry-cured ham and confirm the need to demonstrate the efficacy of BCAs against a wide range of toxigenic moulds before they can be used to minimise OTA contamination in the meat industry. Full article
(This article belongs to the Special Issue Occurrence, Toxicity, Metabolism, Analysis and Control of Mycotoxins)
Show Figures

Figure 1

14 pages, 1103 KB  
Article
Effect of Ozonized Water against Pathogenic Bacteria and Filamentous Fungi on Stainless Steel
by Elettra Berni, Chiara Moroni, Massimo Cigarini, Demetrio Brindani, Claudia Catelani Cardoso and Davide Imperiale
Appl. Sci. 2024, 14(18), 8392; https://doi.org/10.3390/app14188392 - 18 Sep 2024
Cited by 2 | Viewed by 3270
Abstract
Ozone is a molecule that has gained increasing interest in recent years by food industries for sanitization of food-grade surfaces. Compared to chemical sanitizers such as chlorine, hydrogen peroxide, or peracetic acid, ozone shows undeniable advantages, such as the absence of by-products that [...] Read more.
Ozone is a molecule that has gained increasing interest in recent years by food industries for sanitization of food-grade surfaces. Compared to chemical sanitizers such as chlorine, hydrogen peroxide, or peracetic acid, ozone shows undeniable advantages, such as the absence of by-products that should affect human health or the possibility of generating it when needed. Therefore, the aim of this paper was the assessment of the resistance to ozonized water of two pathogenic bacteria (Listeria monocytogenes, Salmonella) and of three airborne food-spoiling fungi (Aspergillus brasiliensis, Hyphopichia burtonii, and Penicillium nordicum) inoculated on stainless steel tiles and treated in static conditions with 1 to 6 mg L−1 (pathogens) or 8.5 mg L−1 (filamentous fungi). Ozonized water gave different results based on the tested microorganisms: pathogenic bacteria proved markedly more sensible to ozone than filamentous fungi, even if great differences were observed at inter- and intra-specific levels for both categories of microorganisms. Nevertheless, the non-linear inactivation kinetics of the studied strains made the calculation of a punctual F-value difficult, so in industrial practice, adequate tailoring of the treatments to be applied, based on the registered extrinsic factors and the industrial bio-burden, would be appropriate. Full article
(This article belongs to the Special Issue Innovative Technologies for Food Preservation and Processing)
Show Figures

Figure 1

11 pages, 1897 KB  
Article
Exploring a Cheese Ripening Process That Hinders Ochratoxin A Production by Penicillium nordicum and Penicillium verrucosum
by Alicia Rodríguez, Naresh Magan and Josué Delgado
Biology 2024, 13(8), 582; https://doi.org/10.3390/biology13080582 - 1 Aug 2024
Cited by 4 | Viewed by 2123
Abstract
A lack of control of the technological abiotic parameters apparent during cheese manufacture, including temperature and relative humidity, results in this dairy product being prone to mold contamination. Sometimes, inoculant molds are used to obtain the characteristic sensory properties of this type of [...] Read more.
A lack of control of the technological abiotic parameters apparent during cheese manufacture, including temperature and relative humidity, results in this dairy product being prone to mold contamination. Sometimes, inoculant molds are used to obtain the characteristic sensory properties of this type of product. However, during the maturation process, some unwanted molds can colonize the ripening cheese and produce mycotoxins. Mycotoxigenic molds such as Penicillium nordicum and Penicillium verrucosum can colonize ripened cheeses, contaminating them with ochratoxin A (OTA), a nephrotoxic 2B toxin. Thus, the presence of OTA in cheeses could represent a hazard to consumers’ health. This study has evaluated the growth and OTA production of P. nordicum and P. verrucosum on a cheese analogue under simulated ripening conditions of 10 and 15 °C and 0.96 water activity (aw). Ecophysiological, molecular, and analytical tools assessed the mold growth, gene expression, and OTA production under these environmental conditions. Both species were able to effectively colonize the cheese under these ripening conditions. However, neither species expressed the otapks and otanps biosynthetic genes or produced phenotypic OTA. Therefore, these results suggest a relatively low risk of exposure to OTA for consumers of this type of cheese product. The conditions used were thus appropriate for cheese ripening to minimize the potential for contamination with such mycotoxins. An appropriate adjustment of the technological ripening parameters during such cheese manufacture could contribute to OTA-free cheeses. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

17 pages, 1389 KB  
Article
Kojic Acid Gene Clusters and the Transcriptional Activation Mechanism of Aspergillus flavus KojR on Expression of Clustered Genes
by Perng-Kuang Chang, Leslie L. Scharfenstein, Noreen Mahoney and Qing Kong
J. Fungi 2023, 9(2), 259; https://doi.org/10.3390/jof9020259 - 15 Feb 2023
Cited by 11 | Viewed by 3415
Abstract
Kojic acid (KA) is a fungal metabolite and has a variety of applications in the cosmetics and food industries. Aspergillus oryzae is a well-known producer of KA, and its KA biosynthesis gene cluster has been identified. In this study, we showed that nearly [...] Read more.
Kojic acid (KA) is a fungal metabolite and has a variety of applications in the cosmetics and food industries. Aspergillus oryzae is a well-known producer of KA, and its KA biosynthesis gene cluster has been identified. In this study, we showed that nearly all section Flavi aspergilli except for A. avenaceus had complete KA gene clusters, and only one Penicillium species, P. nordicum, contained a partial KA gene cluster. Phylogenetic inference based on KA gene cluster sequences consistently grouped section Flavi aspergilli into clades as prior studies. The Zn(II)2Cys6 zinc cluster regulator KojR transcriptionally activated clustered genes of kojA and kojT in Aspergillus flavus. This was evidenced by the time-course expression of both genes in kojR-overexpressing strains whose kojR expression was driven by a heterologous Aspergillus nidulans gpdA promoter or a homologous A. flavus gpiA promoter. Using sequences from the kojA and kojT promoter regions of section Flavi aspergilli for motif analyses, we identified a consensus KojR-binding motif to be an 11-bp palindromic sequence of 5′-CGRCTWAGYCG-3′ (R = A/G, W = A/T, Y = C/T). A CRISPR/Cas9-mediated gene-targeting technique showed that the motif sequence, 5′-CGACTTTGCCG-3′, in the kojA promoter was critical for KA biosynthesis in A. flavus. Our findings may facilitate strain improvement and benefit future kojic acid production. Full article
(This article belongs to the Special Issue Genomics Analysis of Fungi)
Show Figures

Figure 1

13 pages, 2005 KB  
Article
Factors That Interfere in the Action of Sanitizers against Ochratoxigenic Fungi Deteriorating Dry-Cured Meat Products
by Sarah Silva, Andrieli Stefanello, Bibiana Santos, Juliana Fracari, Graziela Leães and Marina Copetti
Fermentation 2023, 9(2), 83; https://doi.org/10.3390/fermentation9020083 - 18 Jan 2023
Cited by 4 | Viewed by 2551
Abstract
This study verified the factors affecting the antifungal efficacy of sanitizers against ochratoxin A-producing fungi. The fungi Penicillium nordicum, Penicillium verrucosum, and Aspergillus westerdijkiae were exposed to three sanitizers at three concentrations: peracetic acid (0.3, 0.6, 1%), benzalkonium chloride (0.3, 1.2, [...] Read more.
This study verified the factors affecting the antifungal efficacy of sanitizers against ochratoxin A-producing fungi. The fungi Penicillium nordicum, Penicillium verrucosum, and Aspergillus westerdijkiae were exposed to three sanitizers at three concentrations: peracetic acid (0.3, 0.6, 1%), benzalkonium chloride (0.3, 1.2, 2%), and sodium hypochlorite (0.5, 0.75, 1%) at three exposure times (10, 15, and 20 min), three temperatures (10, 25, and 40 °C), and with the presence of organic matter simulating clean (0.3%) and dirty (3%) environments. All the tested conditions influenced the antifungal action of the tested sanitizers. Peracetic acid and benzalkonium chloride were the most effective sanitizers, and sodium hypochlorite was ineffective according to the parameters evaluated. The amount of organic matter reduced the antifungal ability of all sanitizers. The longer exposure time was more effective for inactivating fungi. The temperature acted differently for benzalkonium chloride, which tended to be favored at low temperatures, than for sodium hypochlorite and peracetic acid, which were more effective at higher temperatures. The knowledge of the parameters that influence the action of sanitizers on spoilage fungi is vital in decision-making related to sanitizing processes in the food industry. Full article
(This article belongs to the Special Issue Food Microbiology: Microbial Spoilers in Food)
Show Figures

Figure 1

17 pages, 8372 KB  
Article
Brazilian Table Olives: A Source of Lactic Acid Bacteria with Antimycotoxigenic and Antifungal Activity
by Luara Simões, Natália Fernandes, José Teixeira, Luís Abrunhosa and Disney Ribeiro Dias
Toxins 2023, 15(1), 71; https://doi.org/10.3390/toxins15010071 - 13 Jan 2023
Cited by 20 | Viewed by 3989
Abstract
Food and feed contamination by fungi, especially by toxigenic ones, is a global concern because it can pose serious health problems when the production of mycotoxins is involved. Lactic acid bacteria (LAB), well-known for fermenting foods, have been gaining attention for their antifungal [...] Read more.
Food and feed contamination by fungi, especially by toxigenic ones, is a global concern because it can pose serious health problems when the production of mycotoxins is involved. Lactic acid bacteria (LAB), well-known for fermenting foods, have been gaining attention for their antifungal and anti-mycotoxin properties. This work tested 14 LAB strains isolated from naturally fermented Brazilian table olives for growth inhibition of Aspergillus flavus, Aspergillus carbonarius, Penicillium nordicum, and Penicillium expansum. The strains Lacticaseibacillus paracasei subsp. paracasei CCMA 1764, Levilactobacillus brevis CCMA 1762, and Lactiplantibacillus pentosus CCMA 1768 showed the strongest antifungal activity, being more active against P. expansum. Aflatoxin B1 (AFB1), ochratoxin A (OTA), and patulin (PAT) production was reduced essentially by mycelia growth inhibition. The main organic acids detected in the cell free supernatant (CFS) were lactic and acetic acids. Tested LAB exhibited adsorption capacity against AFB1 (48–51%), OTA (28–33%), and PAT (23–24%). AFB1 was converted into aflatoxin B2a (AFB2a) by lactic and acetic acids produced by the strain CCMA 1764. A similar conversion was observed in solutions of these organic acids (0.1 M). These findings demonstrate the potential of isolated LAB strains as natural agents to control toxigenic fungi and their mycotoxins in fermented products, such as table olives. Full article
(This article belongs to the Section Mycotoxins)
Show Figures

Graphical abstract

18 pages, 1334 KB  
Article
Probiotic and Antifungal Attributes of Lactic Acid Bacteria Isolates from Naturally Fermented Brazilian Table Olives
by Luara Simões, Natália Fernandes, Angélica de Souza, Luiz dos Santos, Marciane Magnani, Luís Abrunhosa, José Teixeira, Rosane Freitas Schwan and Disney Ribeiro Dias
Fermentation 2022, 8(6), 277; https://doi.org/10.3390/fermentation8060277 - 14 Jun 2022
Cited by 15 | Viewed by 4735
Abstract
Research with fermented olives as a source of wild Lactic Acid Bacteria (LAB) strains with probiotic and biotechnological characteristics constitutes a promising field of work. The present study evaluated in vitro probiotic, antifungal, and antimycotoxigenic potential of LAB isolates from naturally fermented Brazilian [...] Read more.
Research with fermented olives as a source of wild Lactic Acid Bacteria (LAB) strains with probiotic and biotechnological characteristics constitutes a promising field of work. The present study evaluated in vitro probiotic, antifungal, and antimycotoxigenic potential of LAB isolates from naturally fermented Brazilian table olives. Among fourteen LAB isolates, the Levilactobacillus brevis CCMA 1762, Lactiplantibacillus pentosus CCMA 1768, and Lacticaseibacillus paracasei subsp. paracasei CCMA 1770 showed potential probiotic and antifungal properties. The isolates showed resistance to pH 2.0 (survival ≥ 84.55), bile salts (survival ≥ 99.44), and gastrointestinal tract conditions (survival ≥ 57.84%); hydrophobic cell surface (≥27%); auto-aggregation (≥81.38%); coaggregation with Escherichia coli INCQS 00181 (≥33.97%) and Salmonella Enteritidis ATCC 564 (≥53.84%); adhesion to the epithelial cell line Caco-2 (≥5.04%); antimicrobial activity against the bacteria S. Enteritidis ATCC 564 (≥6 mm), Listeria monocytogenes ATCC 19117 (≥6 mm), Staphylococcus aureus ATCC 8702 (≥3 mm), and the fungi Penicillium nordicum MUM 08.16 (inhibition ≥ 64.8%). In addition, the strains showed the ability to adsorb the mycotoxins aflatoxin B1 (≥40%) and ochratoxin A (≥34%). These results indicate that LAB strains from naturally fermented Brazilian table olives are potentially probiotic and antifungal candidates that can be used for food biopreservation. Full article
(This article belongs to the Special Issue Food Fermentation for Better Nutrition, Health and Sustainability)
Show Figures

Figure 1

14 pages, 1380 KB  
Article
Development of a Methodology for Estimating the Ergosterol in Meat Product-Borne Toxigenic Moulds to Evaluate Antifungal Agents
by Micaela Álvarez, Alicia Rodríguez, Elena Bermúdez, Elia Roncero and María J. Andrade
Foods 2021, 10(2), 438; https://doi.org/10.3390/foods10020438 - 17 Feb 2021
Cited by 10 | Viewed by 3355
Abstract
Antifungal agents are commonly used in the meat industry to prevent the growth of unwanted moulds, such as toxigenic ones, on dry-cured meat products. For enhancing the application of antifungals, their mode of action must be evaluated. Their effect on the mould ergosterol [...] Read more.
Antifungal agents are commonly used in the meat industry to prevent the growth of unwanted moulds, such as toxigenic ones, on dry-cured meat products. For enhancing the application of antifungals, their mode of action must be evaluated. Their effect on the mould ergosterol content is one of the most studied ones, since it is the target site of some commercialised antifungals or of those that are in development. The aim of this study was to develop a methodology for determining how the antifungal agents used in the meat industry work. A method for analysing ergosterol was firstly developed using high-performance liquid chromatography with fluorescence detection coupled to a diode array detector (HPLC-FLD/DAD). The chromatographically optimised conditions (gradient and mobile phases) allowed us to reduce the time per analysis with respect to previously published methods up to 22 min. Withing the six checked extraction methods, method 5, showing the best mean recovery values (99.51%), the shortest retention time (15.8 min), and the lowest standard deviation values (9.92) and working temperature (60 °C), was selected. The limit of detection and limit of quantification were 0.03 and 0.1 µg/mL, respectively. All the validation parameters corroborated the method’s suitability. Finally, its feasibility for evaluating the effect of a commercial antifungal preparation (AP) and different herbs that are frequently added to meat products on the ergosterol content of several toxigenic moulds was studied. Differences at the strain level were obtained in the presence of AP. Moreover, the addition of herbs significantly reduced the ergosterol content in Penicillium nordicum up to 83.91%. The developed methodology is thus suitable for screening the antifungals’ role in altering mould ergosterol biosynthesis before their application in real meat products. Full article
(This article belongs to the Special Issue Meat Quality and Safety and Microbial Analysis)
Show Figures

Graphical abstract

16 pages, 528 KB  
Article
Effect of a Debaryomyces hansenii and Lactobacillus buchneri Starter Culture on Aspergillus westerdijkiae Ochratoxin A Production and Growth during the Manufacture of Short Seasoned Dry-Cured Ham
by Lucilla Iacumin, Martina Arnoldi and Giuseppe Comi
Microorganisms 2020, 8(10), 1623; https://doi.org/10.3390/microorganisms8101623 - 21 Oct 2020
Cited by 28 | Viewed by 3699
Abstract
Recently, specific dry-cured hams have started to be produced in San Daniele and Parma areas. The ingredients are similar to protected denomination of origin (PDO) produced in San Daniele or Parma areas, and include pork leg, coming from pigs bred in the Italian [...] Read more.
Recently, specific dry-cured hams have started to be produced in San Daniele and Parma areas. The ingredients are similar to protected denomination of origin (PDO) produced in San Daniele or Parma areas, and include pork leg, coming from pigs bred in the Italian peninsula, salt and spices. However, these specific new products cannot be marked as a PDO, either San Daniele or Parma dry cured ham, because they are seasoned for 6 months, and the mark PDO is given only to products seasoned over 13 months. Consequently, these products are called short-seasoned dry-cured ham (SSDCH) and are not branded PDO. During their seasoning period, particularly from the first drying until the end of the seasoning period, many molds, including Eurotium spp. and Penicillium spp., can grow on the surface and work together with other molds and tissue enzymes to produce a unique aroma. Both of these strains typically predominate over other molds. However, molds producing ochratoxins, such as Aspergillus ochraceus and Penicillium nordicum, can simultaneously grow and produce ochratoxin A (OTA). Consequently, these dry-cured hams may represent a potential health risk for consumers. Recently, Aspergillus westerdijkiae has been isolated from SSDCHs, which could represent a potential problem for consumers. Therefore, the aim of this study was to inhibit A. westerdijkiae using Debaryomyces hansenii or Lactobacillus buchneri or a mix of both microorganisms. Six D. hansenii and six L. buchneri strains were tested in vitro for their ability to inhibit A. westerdijkiae. The strains D. hansenii (DIAL)1 and L. buchneri (Lb)4 demonstrated the highest inhibitory activity and were selected for in situ tests. The strains were inoculated or co-inoculated on fresh pork legs for SSDCH production with OTA-producing A. westerdijkiae prior to the first drying and seasoning. At the end of seasoning (six months), OTA was not detected in the SSDCH treated with both microorganisms and their combination. Because both strains did not adversely affect the SSDCH odor or flavor, the combination of these strains are proposed for use as starters to inhibit OTA-producing A. westerdijkiae. Full article
(This article belongs to the Special Issue Food Spoilage Microorganisms: Ecology and Control)
Show Figures

Figure 1

15 pages, 3004 KB  
Article
The Influence of NaCl and Glucose Content on Growth and Ochratoxin A Production by Aspergillus ochraceus, Aspergillus carbonarius and Penicillium nordicum
by Yan Wang, Hao Yan, Jing Neng, Jian Gao, Bolei Yang and Yang Liu
Toxins 2020, 12(8), 515; https://doi.org/10.3390/toxins12080515 - 12 Aug 2020
Cited by 29 | Viewed by 4690
Abstract
Ochratoxin A (OTA) is a nephrotoxic mycotoxin, which deserves particular attention for its widespread contamination of a variety of food and feed. Aspergillus ochraceus, Aspergillus carbonarius, and Penicillium nordicum are an important source of OTA in three different kinds of food [...] Read more.
Ochratoxin A (OTA) is a nephrotoxic mycotoxin, which deserves particular attention for its widespread contamination of a variety of food and feed. Aspergillus ochraceus, Aspergillus carbonarius, and Penicillium nordicum are an important source of OTA in three different kinds of food commodities, including cereals, grape and dried fruit products, and dry-cured meat products. Deeper knowledge of OTA production and mycelium growth related to the high-sugar or NaCl-rich environments was gained in this manuscript. A. ochraceus and P. nordicum were likely to have greater growth rates in medium supplied with certain concentrations of NaCl (0–80 g/L), and the colony diameter was the largest at the salt content of 40 g/L. P. nordicum was more suitable to grow in NaCl-riched medium, the OTA production was increased to 316 ppb from 77 ppb when 20 g/L NaCl was added. The capability of OTA production was inhibited when salt content was 40 g/L and 60 g/L in A. ochraceus and P. nordicum, respectively. As the glucose content increased to 250 g/L, the capacity of mycelium growth and sporulation was increased significantly in A. ochraceus and A. carbonarius. A. carbonarius was more suitable to grow in high-sugar grape products. OTA production was significantly promoted with an added 100 g/L glucose in A. carbonarius. OTA production was inhibited when glucose content was 150 g/L and in 200 g/L in A. ochraceus and A. carbonarius, respectively. NaCl and glucose have an effect on fungal growth and OTA production, and the activation of biosynthetic genes of OtaA. These results would allow designing new strategies to prevent OTA accumulation on sugar or NaCl-riched foodstuffs and achieve the objective to manufacture cereals, dried vine fruits and dry-cured ham, free of OTA. Full article
(This article belongs to the Collection Ochratoxins-Collection)
Show Figures

Figure 1

16 pages, 1699 KB  
Article
Selection and Evaluation of Staphylococcus xylosus as a Biocontrol Agent against Toxigenic Moulds in a Dry-Cured Ham Model System
by Eva Cebrián, Félix Núñez, Fernando J. Gálvez, Josué Delgado, Elena Bermúdez and Mar Rodríguez
Microorganisms 2020, 8(6), 793; https://doi.org/10.3390/microorganisms8060793 - 26 May 2020
Cited by 31 | Viewed by 3852
Abstract
Toxigenic moulds can develop on the surface of dry-cured meat products during ripening due to their ecological conditions, which constitutes a risk for consumers. A promising strategy to control this hazard is the use of antifungal microorganisms usually found in these foods. However, [...] Read more.
Toxigenic moulds can develop on the surface of dry-cured meat products during ripening due to their ecological conditions, which constitutes a risk for consumers. A promising strategy to control this hazard is the use of antifungal microorganisms usually found in these foods. However, to date, the effectiveness of gram-positive catalase-positive cocci (GCC+) has not been explored. The aim of this work was to select GCC+ isolates with antifungal activity to study its effectiveness in a dry-cured ham model system at the environmental conditions reached during the ripening. Forty-five strains of GCC+ were evaluated and the isolate Staphylococcus xylosus Sx8 was selected to assess its efficacy at two different concentrations (106 and 104 cfu/mL) against Penicillium nordicum, Aspergillus flavus, Aspergillus parasiticus, and Penicillium griseofulvum at 15, 20, and 25 °C. The results showed that the inoculation of 106 cfu/mL of S. xylosus completely inhibited the growth of most fungi. In addition, in the presence of this strain at 104 cfu/mL, a significant reduction in fungal growth and mycotoxins production was observed at the three temperatures studied. In conclusion, S. xylosus Sx8 possesses great potential as a biological agent to control toxigenic moulds in dry-cured meat products. Full article
(This article belongs to the Special Issue Bioprotection in Meat and Meat Products)
Show Figures

Figure 1

14 pages, 1485 KB  
Article
Modelling Fungal Growth, Mycotoxin Production and Release in Grana Cheese
by Marco Camardo Leggieri, Amedeo Pietri and Paola Battilani
Microorganisms 2020, 8(1), 69; https://doi.org/10.3390/microorganisms8010069 - 2 Jan 2020
Cited by 20 | Viewed by 5040
Abstract
No information is available in the literature about the influence of temperature (T) on Penicillium and Aspergillus spp. growth and mycotoxin production on cheese rinds. The aim of this work was to: (i) study fungal ecology on cheese in terms of T requirements, [...] Read more.
No information is available in the literature about the influence of temperature (T) on Penicillium and Aspergillus spp. growth and mycotoxin production on cheese rinds. The aim of this work was to: (i) study fungal ecology on cheese in terms of T requirements, focusing on the partitioning of mycotoxins between the rind and mycelium; and (ii) validate predictive models previously developed by in vitro trials. Grana cheese rind blocks were inoculated with A. versicolor, P. crustosum, P. nordicum, P. roqueforti, and P. verrucosum, incubated at different T regimes (10–30 °C, step 5 °C) and after 14 days the production of mycotoxins (ochratoxin A (OTA); sterigmatocystin (STC); roquefortine C (ROQ-C), mycophenolic acid (MPA), Pr toxin (PR-Tox), citrinin (CIT), cyclopiazonic acid (CPA)) was quantified. All the fungi grew optimally around 15–25 °C and produced the expected mycotoxins (except MPA, Pr-Tox, and CIT). The majority of the mycotoxins produced remained in the mycelium (~90%) in three out of five fungal species (P. crustosum, P. nordicum, and P. roqueforti); the opposite occurred for A. versicolor and P. verrucosum with 71% and 58% of STC and OTA detected in cheese rind, respectively. Available predictive models fitted fungal growth on the cheese rind well, but validation was not possible for mycotoxins because they were produced in a very narrow T range. Full article
(This article belongs to the Special Issue The Route of Mycotoxins from Farm to Fork)
Show Figures

Graphical abstract

13 pages, 586 KB  
Article
Efficacy of the Combined Protective Cultures of Penicillium chrysogenum and Debaryomyces hansenii for the Control of Ochratoxin A Hazard in Dry-Cured Ham
by Eva Cebrián, Mar Rodríguez, Belén Peromingo, Elena Bermúdez and Félix Núñez
Toxins 2019, 11(12), 710; https://doi.org/10.3390/toxins11120710 - 5 Dec 2019
Cited by 42 | Viewed by 4211
Abstract
The ecological conditions during the ripening of dry-cured ham favour the development of moulds on its surface, being frequently the presence of Penicillium nordicum, a producer of ochratoxin A (OTA). Biocontrol using moulds and yeasts usually found in dry-cured ham is a [...] Read more.
The ecological conditions during the ripening of dry-cured ham favour the development of moulds on its surface, being frequently the presence of Penicillium nordicum, a producer of ochratoxin A (OTA). Biocontrol using moulds and yeasts usually found in dry-cured ham is a promising strategy to minimize this hazard. The aim of this work is to evaluate the effect of previously selected Debaryomyces hansenii and Penicillium chrysogenum strains on growth, OTA production, and relative expression of genes involved in the OTA biosynthesis by P. nordicum. P. nordicum was inoculated against the protective cultures individually and combined on dry-cured ham for 21 days at 20 °C. None of the treatments reduced the growth of P. nordicum, but all of them decreased OTA concentration. The lower production of OTA could be related to significant repression of the relative expression of otapksPN and otanpsPN genes of P. nordicum. The efficacy of the combined protective cultures was tested in 24 dry-cured hams in industrial ripening (an 8 month-long production). OTA was detected in nine of the 12 dry-cured hams in the batch inoculated only with P. nordicum. However, in the batch inoculated with both P. nordicum and the combined protective culture, a considerable reduction of OTA contamination was observed. In conclusion, although the efficacy of individual use P. chrysogenum is great, the combination with D. hansenii enhances its antifungal activity and could be proposed as a mixed protective culture to control the hazard of the presence of OTA in dry-cured ham. Full article
(This article belongs to the Special Issue Novel Approaches to Minimising Mycotoxin Contamination)
Show Figures

Figure 1

12 pages, 2871 KB  
Article
Aflatoxins and A. flavus Reduction in Loaf Bread through the Use of Natural Ingredients
by Juan M. Quiles, Raquel Torrijos, Fernando B. Luciano, Jordi Mañes and Giuseppe Meca
Molecules 2018, 23(7), 1638; https://doi.org/10.3390/molecules23071638 - 4 Jul 2018
Cited by 14 | Viewed by 6301
Abstract
In this study, the antifungal activity of yellow mustard (YMF) and oriental mustard (OMF) meal extracts against 14 strains of fungi was tested on a solid medium. The results obtained with the YMF were next confirmed in liquid medium determining the minimum inhibitory [...] Read more.
In this study, the antifungal activity of yellow mustard (YMF) and oriental mustard (OMF) meal extracts against 14 strains of fungi was tested on a solid medium. The results obtained with the YMF were next confirmed in liquid medium determining the minimum inhibitory concentration (MIC) and the minimum fungicide concentration (MFC). Finally, the use of YMF as a natural preservative to extend the useful life of bread was evaluated. Breads with different concentrations of YMF (2, 4, 6 and 8 g/kg) were prepared and contaminated with Aspergillus flavus ISPA 8111 and Penicillium nordicum CECT 2320. For 10 days the formation of mycelium was observed, and after that the fungal growth and the mycotoxins production was determined. The results obtained with the YMF were compared with breads treated with the commercial additive sodium propionate (E-281). The results showed a significant reduction of the fungal population using 6 g/kg and 8 g/kg of YMF in bread contaminated with A. flavus and with P. nordicum and an extensions of the breads shelf life of 7 and 5 days, respectively, in comparison with the control experiment. A reduction of 78% of AFB1 was observed using 6 g/kg of YMF while no AFB1 production was detected employing 8 g/kg of YMF in bread preparation. Full article
Show Figures

Figure 1

5 pages, 214 KB  
Comment
Comments on “Screening and Identification of Novel Ochratoxin A-Producing Fungi from Grapes. Toxins 2016, 8, 333”—In Reporting Ochratoxin A Production from Strains of Aspergillus, Penicillium and Talaromyces
by Giancarlo Perrone, Antonio F. Logrieco and Jens C. Frisvad
Toxins 2017, 9(2), 65; https://doi.org/10.3390/toxins9020065 - 14 Feb 2017
Cited by 11 | Viewed by 5064
Abstract
Recently a species in the genus Talaromyces, a uniseriate species of Aspergillus section Nigri and an isolate each of two widespread species, Penicillium rubens and P. commune, were reported to produce ochratoxin A. This claim was based on insufficient biological and [...] Read more.
Recently a species in the genus Talaromyces, a uniseriate species of Aspergillus section Nigri and an isolate each of two widespread species, Penicillium rubens and P. commune, were reported to produce ochratoxin A. This claim was based on insufficient biological and chemical data. We propose a list of criteria that need to be met before an unexpected mycotoxin producer is reported. There have only been convincing data on ochratoxin A production for Penicillium verrucosum, P. nordicum, P. thymicola, all from Penicillium series Verrucosa, and from species in three sections of Aspergillus: section Circumdati, section Nigri and section Flavi. Full article
(This article belongs to the Collection Ochratoxins-Collection)
Back to TopTop