Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = Pakistan coast

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3848 KiB  
Article
Assessment of Exploited Stock and Management Implications of Tiger Tooth Croaker (Otolithes ruber) in Coastal Waters of Makran, Pakistan
by Samroz Majeed, S M Nurul Amin, Asad Ullah Ali Muhammad and Sudheer Ahmed
Fishes 2025, 10(5), 238; https://doi.org/10.3390/fishes10050238 - 20 May 2025
Viewed by 1718
Abstract
Pakistan’s marine fishing industry is crucial to the country’s economy, generating employment opportunities and foreign revenue. It produces 80% of the country’s total fish production. Otolithes ruber is a commercially important fish on the Makran coast of Pakistan, contributing significantly to the region’s [...] Read more.
Pakistan’s marine fishing industry is crucial to the country’s economy, generating employment opportunities and foreign revenue. It produces 80% of the country’s total fish production. Otolithes ruber is a commercially important fish on the Makran coast of Pakistan, contributing significantly to the region’s croaker fisheries. This study is the first to apply three length-based approaches for assessing the stock status of O. ruber in the Makran coast: (1) TropFishR to estimate the mortality, growth parameters, and current exploitation status, reference points based on the yield per recruitment model, (2) the length-based Bayesian biomass method (LBB) to calculate stock biomass, and (3) the length-based spawning potential ratio (LBSPR) to estimate the spawning potential ratio. The length–weight relationship of Otolithes ruber was a positive allometric pattern (b = 3.28; R2 = 0.94). Growth parameters for Otolithes ruber were L = 55.47 cm, K = 0.50 year−1. The calculated total mortality rate (Z), natural mortality (M), and fishing mortality (F) were 2.27 year−1, 0.67 year−1, and 1.6 year−1, respectively. The exploitation rate (E) was 0.70, indicating severe overexploitation. The current length at first capture (Lc50) = 27.37 cm was lower than that at first maturity (Lm50) = 30.75 cm, indicating growth overfishing. The current spawning potential ratio (8%) was lower than the optimal value (40%), indicating recruitment overfishing. The current biomass, concerning virgin biomass B/Bo, was also 8%, resulting in a 92% stock decline. We recommend reducing the exploitation pressure by limiting the commercial catch to an optimum length range of 34.5–42.2 cm and reducing fishing pressure by 40% to ensure sustainable fishery management. Full article
Show Figures

Figure 1

23 pages, 7345 KiB  
Article
Dynamical Mechanisms of Rapid Intensification and Multiple Recurvature of Pre-Monsoonal Tropical Cyclone Mocha over the Bay of Bengal
by Prabodha Kumar Pradhan, Sushant Kumar, Lokesh Kumar Pandey, Srinivas Desamsetti, Mohan S. Thota and Raghavendra Ashrit
Meteorology 2025, 4(2), 9; https://doi.org/10.3390/meteorology4020009 - 27 Mar 2025
Viewed by 1117
Abstract
Cyclone Mocha, classified as an Extremely Severe Cyclonic Storm (ESCS), followed an unusual northeastward trajectory while exhibiting a well-defined eyewall structure. It experienced rapid intensification (RI) before making landfall along the Myanmar coast. It caused heavy rainfall (~90 mm) and gusty winds (~115 [...] Read more.
Cyclone Mocha, classified as an Extremely Severe Cyclonic Storm (ESCS), followed an unusual northeastward trajectory while exhibiting a well-defined eyewall structure. It experienced rapid intensification (RI) before making landfall along the Myanmar coast. It caused heavy rainfall (~90 mm) and gusty winds (~115 knots) over the coastal regions of Bay of Bengal Initiative for Multi-Sectoral Technical and Economic Cooperation (BIMSTEC) countries, such as the coasts of Bangladesh and Myanmar. The factors responsible for the RI of the cyclone in lower latitudes, such as sea surface temperature (SST), tropical cyclone heat potential (TCHP), vertical wind shear (VWS), and mid-tropospheric moisture content, are studied using the National Ocean and Atmospheric Administration (NOAA) SST and National Center for Medium-Range Weather Forecasting (NCMRWF) Unified Model (NCUM) global analysis. The results show that SST and TCHP values of 30 °C and 100 (KJ cm−2) over the Bay of Bengal (BoB) favored cyclogenesis. However, a VWS (ms−1) and relative humidity (RH; %) within the range of 10 ms−1 and >70% also provided a conducive environment for the low-pressure system to transform into the ESCS category. The physical mechanism of RI and recurvature of the Mocha cyclone have been investigated using forecast products and compared with Cooperative Institute for Research in the Atmosphere (CIRA) and Indian Meteorological Department (IMD) satellite observations. The key results indicate that a dry air intrusion associated with a series of troughs and ridges at a 500 hPa level due to the western disturbance (WD) during that time was very active over the northern part of India and adjoining Pakistan, which brought north-westerlies at the 200 hPa level. The existence of troughs at 500 and 200 hPa levels are significantly associated with a Rossby wave pattern over the mid-latitude that creates the baroclinic zone and favorable for the recurvature and RI of Mocha cyclone clearly represented in the NCUM analysis. Moreover the Q-vector analysis and steering flow (SF) emphasize the vertical motion and recurvature of the Mocha cyclone so as to move in a northeast direction, and this has been reasonably well represented by the NCUM model analysis and the 24, 7-, and 120 h forecasts. Additionally, a quantitative assessment of the system indicates that the model forecasts of TC tracks have an error of 50, 70, and 100 km in 24, 72, and 120 h lead times. Thus, this case study underscores the capability of the NCUM model in representing the physical mechanisms behind the recurving and RI over the BoB. Full article
Show Figures

Figure 1

12 pages, 1867 KiB  
Article
Assessment of the Fish Stock Status of the Spangled Emperor Lethrinus nebulosus Along the Coast of Balochistan, Pakistan
by Aidah Baloch, Qun Liu, Muhsan Ali Kalhoro, Aamir Mahmood Memon, Suman Barua, Xu Chen, Hasnain Raza and Yihong Ma
J. Mar. Sci. Eng. 2025, 13(3), 481; https://doi.org/10.3390/jmse13030481 - 28 Feb 2025
Viewed by 918
Abstract
The sustainable exploitation of fishery resources in Pakistan was assessed using the catch-based Monte Carlo method (CMSY) and the length-based Bayesian biomass (LBB) method to evaluate the data-limited fishery of the Spangled Emperor, Lethrinus nebulosus. CMSY relies on catch data, resilience parameters, [...] Read more.
The sustainable exploitation of fishery resources in Pakistan was assessed using the catch-based Monte Carlo method (CMSY) and the length-based Bayesian biomass (LBB) method to evaluate the data-limited fishery of the Spangled Emperor, Lethrinus nebulosus. CMSY relies on catch data, resilience parameters, and quantitative stock status metrics, while LBB exclusively uses length–frequency (LF) data for stock assessments. This study utilized twenty-two years of catch–effort and LF data from 7230 fish along the Balochistan coastline in Pakistan. The study revealed that the relative biomass of the exploited stock, with a B/BMSY ratio of 0.557, indicates significant depletion. The relative exploitation rate (F/FMSY = 2.47) confirms that the stock is being severely overfished. The discrepancy between the optimal length at first capture (Lc_opt = 43.1 cm) and the length at first capture (Lc = 38.8 cm) further proves the overexploitation of L. nebulosus. The convergence of findings from both methodologies strengthens the reliability of stock status estimates. By integrating diverse data types and analytical frameworks, this study provides valuable insights into the sustainability of L. nebulosus populations. This dual approach not only underscores the importance of varied data sources but also informs management strategies for effective fisheries conservation, contributing to a deeper understanding of resource dynamics along the Balochistan coast of Pakistan. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

15 pages, 5944 KiB  
Article
Assessing the Carbon Footprint of the 2024 Italian K2 Expedition: A Path Towards Sustainable High-Altitude Tourism
by Antonella Senese, Anees Ahmad, Maurizio Maugeri and Guglielmina Adele Diolaiuti
Sustainability 2025, 17(1), 344; https://doi.org/10.3390/su17010344 - 5 Jan 2025
Cited by 3 | Viewed by 1587
Abstract
Often considered the most pristine natural areas, mountains are the third most important tourist destination in the world after coasts and islands, contributing significantly to the tourism sector (15–20%). Tourism is economically important for many mountain communities and is among the key drivers [...] Read more.
Often considered the most pristine natural areas, mountains are the third most important tourist destination in the world after coasts and islands, contributing significantly to the tourism sector (15–20%). Tourism is economically important for many mountain communities and is among the key drivers of economic growth in mountain regions worldwide. However, these high-altitude places are under increasing pressure from activities such as expeditions and trekking, which can contribute to the degradation of mountain ecosystems. In this study, we focused on the Italian expedition to K2 in July 2024, which celebrated the 70th anniversary of the first ascent in 1954. In particular, we assessed its environmental impact by estimating the expedition’s carbon footprint. We also discussed the different impact compared to the previous Italian expeditions. Overall, the 2024 Italian expedition to K2 had a carbon footprint of 27,654 kg CO2-eq, or 1383 kg CO2-eq per team member that flew from Italy. Air transport (i.e., the flight from Italy to Pakistan via Islamabad) was the largest source of emissions (91.7%, divided into 66.4% for passengers and 25.4% for cargo). Waste incineration was the smallest contributor (1.1%). Instead of using traditional diesel generators, the 2024 expedition used photovoltaic panels to generate electricity, eliminating further local greenhouse gas emissions. At the carbon credit price of 61.30 USD/ton of CO2 or 57.02 EUR/ton of CO2, offsetting the expedition’s emissions would cost 1695 USD or EUR 1577. This approach seems feasible and effective for mitigating the environmental impact of expeditions such as the one performed in 2024 by Italians. Full article
Show Figures

Figure 1

26 pages, 5700 KiB  
Article
Phenotypic and Molecular-Markers-Based Assessment of Jamun (Syzygium cumini) Genotypes from Pakistan
by Safeer Uddin, Muhammad Jafar Jaskani, Zhanao Deng, Rizwana Maqbool, Summar Abbas Naqvi, Saroj Parajuli, Naseem Sharif, Abdul Rahman Saleem, Steven Ledon, Sufian Ikram, Iqrar Ahmad Khan and Waqar Shafqat
Horticulturae 2024, 10(8), 879; https://doi.org/10.3390/horticulturae10080879 - 20 Aug 2024
Cited by 2 | Viewed by 2534
Abstract
Jamun plant displays enormous diversity throughout Pakistan, which necessitates its screening, evaluation, and validation to document elite genotypes having better traits for the benefit of the fruit industry and farmers. Surveys were made in natural Jamun habitats across Punjab, Pakistan, and genotypes were [...] Read more.
Jamun plant displays enormous diversity throughout Pakistan, which necessitates its screening, evaluation, and validation to document elite genotypes having better traits for the benefit of the fruit industry and farmers. Surveys were made in natural Jamun habitats across Punjab, Pakistan, and genotypes were marked based on visual diversity of trees and fruits. In total, 60 Jamun genotypes were selected for characterization based on phenotypic and genetic markers. Phenotypic characters related to trees, leaf, and flower along with fruit qualitative traits were assessed in situ. Results revealed significant diversity with high (>25%) coefficient of variance values and the first two components of correspondence analysis exhibited 41.71% variation among genotypes. A strong association was observed among traits like upright tree and round fruit shape (0.74), bluish-colored fruit and pinkish pulp (0.85), and elliptic-shaped fruit with low fruit waxiness (−0.72). Leaves of phenotypically characterized plants were brought to Wheat Biotechnology Lab., University of Agriculture, Faisalabad, Pakistan, where Jamun genotypes were investigated genetically using Random Amplified Polymorphic DNA (RAPD) and Inter Simple Sequence Repeat (ISSR) markers. A total of 132 bands were scored, of which 108 were polymorphic, corresponding to almost 81% polymorphism among collected genotypes. High polymorphism information content values were observed against RAPD (0.389) and ISSR (0.457) markers. Genotypes were compared in relation to genetic markers, which exhibited that almost 86% of genetic variability was attributed to differences among accessions, while 14% of variation was due to differences between collections of different areas. Findings of this study confirmed wide phenotypic and genetic distinctness of Jamun in Pakistan that can aid breeders for marker-assisted selection and germplasm enhancement for future crop improvement programs. Full article
Show Figures

Figure 1

15 pages, 727 KiB  
Article
Victims of a Human Tragedy or “Objects” of Migrant Smuggling? Media Framing of Greece’s Deadliest Migrant Shipwreck in Pylos’ Dark Waters
by Panagiota (Naya) Kalfeli, Christina Angeli and Christos Frangonikolopoulos
Journal. Media 2024, 5(2), 537-551; https://doi.org/10.3390/journalmedia5020036 - 8 May 2024
Cited by 2 | Viewed by 2430
Abstract
Refugee and migration crises has been an integral part of the continuous and successive crises that the world has been experiencing. Media has played a crucial role in shaping public opinion over migration and asylum-seeking. Within this context, this paper aims to discuss [...] Read more.
Refugee and migration crises has been an integral part of the continuous and successive crises that the world has been experiencing. Media has played a crucial role in shaping public opinion over migration and asylum-seeking. Within this context, this paper aims to discuss Greek media coverage of the migrant shipwreck off the Greek coast of Pylos, in June 2023, in which more than 600 people mostly from Syria, Egypt, and Pakistan are thought to have drowned. Based on data from a quantitative content analysis and a sample of news stories stemming from the online version of five Greek news media outlets, representing diverse political spaces, a broader set of criteria for content analysis, including the absence of refugee and migrant voice in media content, dehumanization, absence of solutions and context, among many others, was used in order to explore how the Greek media framed what has been labeled as one of the deadliest migrant shipwrecks in the Mediterranean. Results revealed (i) frames of dehumanization, (ii) insufficient reporting of injustice and discrimination stemming from (state) structures and practices, and an (iii) overemphasis on migrant smuggling. Full article
Show Figures

Figure 1

17 pages, 4087 KiB  
Article
Investigation of Waves Generated by Tropical Cyclone Kyarr in the Arabian Sea: An Application of ERA5 Reanalysis Wind Data
by Aliasghar Golshani, Masoud Banan-Dallalian, Mehrdad Shokatian-Beiragh, Majid Samiee-Zenoozian and Shahab Sadeghi-Esfahlani
Atmosphere 2022, 13(11), 1914; https://doi.org/10.3390/atmos13111914 - 17 Nov 2022
Cited by 12 | Viewed by 4849
Abstract
In this study, the wave conditions in the Arabian Sea induced by tropical cyclone Kyarr (2019) have been simulated by employing the 3rd generation wave model MIKE 21 SW. The model was run from 24 October to 1 November 2019, a total of [...] Read more.
In this study, the wave conditions in the Arabian Sea induced by tropical cyclone Kyarr (2019) have been simulated by employing the 3rd generation wave model MIKE 21 SW. The model was run from 24 October to 1 November 2019, a total of 8 days. The MIKE 21 SW model was forced by reanalyzed ERA5 wind data from the European Centre for Medium-Range Weather Forecasts (ECMWF). The results are compared with buoy data from the Indian National Centre for Ocean Information Services (INCOIS), which is located at 67.44° E, 18.50° N. In addition, the satellite altimeter data (CryoSat-2, SARAL and Jason-3 satellite altimeter data) was utilized for validation. Three wave parameters are considered for the validation: the significant wave height; the peak wave period; and the mean wave direction. The validation results showed that the significant wave height, the peak wave period, and the mean wave direction could be reasonably predicted by the model with reanalysis wind data as input. The maximum significant wave height reached to 10.7 m (with an associated peak wave period of 12.5 s) on 28 October 2019 at 23:00:00 in the middle of the Arabian Sea. For coastal areas, the significant wave height along the Iran and Pakistan (north Arabian Sea) coasts increased to a range of 1.4–2.8 m when tropical cyclone Kyarr moved northward. This wave height along with elevated sea level may cause severe coastal erosion and nearshore inland flooding. Impacts of cyclones on coastal zones critical facilities and infrastructure can be reduced by timely and suitable action before the event, so coastal managers should understand the effect of cyclones and their destructive consequences. The validated model developed in this study may be utilized as input data of evaluating the risk to life and infrastructure in this area. Full article
Show Figures

Figure 1

21 pages, 9716 KiB  
Article
Vertical Ground Displacements and Its Impact on Erosion along the Karachi Coastline, Pakistan
by Shamsa Kanwal, Xiaoli Ding, Songbo Wu and Muhammad Sajjad
Remote Sens. 2022, 14(9), 2054; https://doi.org/10.3390/rs14092054 - 25 Apr 2022
Cited by 13 | Viewed by 6515
Abstract
This study employed remote sensing (optical and synthetic aperture radar) and data analysis techniques to quantify vertical ground displacements and assess their contribution to coastline erosion. To provide evidence from Pakistan, we selected the coast of Karachi—a mega-city located along the dynamic coastline [...] Read more.
This study employed remote sensing (optical and synthetic aperture radar) and data analysis techniques to quantify vertical ground displacements and assess their contribution to coastline erosion. To provide evidence from Pakistan, we selected the coast of Karachi—a mega-city located along the dynamic coastline of the Indus River Delta—which has been experiencing severe coastal erosion during the last few decades. Observations from the C-band Envisat/ASAR and Sentinel-1A sensors over the 2004–2010 and 2014–2016 periods, respectively, enabled us to study vertical ground displacements in the study area, providing a long-term assessment during 2004–2016. Results suggest that some areas along the Karachi coastline are subsiding at comparable rates to or even much higher than the relative sea-level rise (SLR, ~1.9 mm/yr), which may amplify the rates of relative SLR in coming years, along with accelerating coastal erosion. Various parts of the study area along the coast are unstable and undergoing displacement. Landsat images from 1989 to 2018 (10-year temporal resolution) were further used to examine the state of coastline erosion using three statistical approaches (i.e., End Point Rate (EPR), Linear Regression Rate (LRR), and Least Median of Squares (LMS)). While the erosion underlaid the majority of the eastern sections of the study area, the ground displacements were spatially heterogeneous across the study area and along the coastline. Erosion rates of ~2.4 m/yr spatially corresponded with ground displacement rates of up to ~−1.4 cm/yr, but not all the coastline segments with high annual mean erosion rates were associated with local mean subsidence. The causes of ground displacements and coastline erosion were analyzed, and results were interpreted by integrating spatial ancillary information. Results indicate that rapid urbanization, construction on reclaimed land, coastline erosion favoring seawater intrusion, failed drainage/sewerage networks, and soil liquefaction are contributing to the site-specific variations in the land displacement in Karachi. Full article
(This article belongs to the Special Issue Advances in Remote Sensing of the Inland and Coastal Water Zones)
Show Figures

Figure 1

4 pages, 1498 KiB  
Proceeding Paper
Harnessing Ocean Energy from Coastal and Offshore Pakistan
by Shahid Amjad
Eng. Proc. 2021, 12(1), 78; https://doi.org/10.3390/engproc2021012078 - 10 Jan 2022
Cited by 2 | Viewed by 4652
Abstract
There is potential for harnessing renewable energy from coastal waves and tides, from the coastal and offshore areas of Pakistan. The Sindh coast is a complex creek network located in the 170 km of the Indus deltaic area. The flood and ebb of [...] Read more.
There is potential for harnessing renewable energy from coastal waves and tides, from the coastal and offshore areas of Pakistan. The Sindh coast is a complex creek network located in the 170 km of the Indus deltaic area. The flood and ebb of tides in and out of these creeks have a high velocity of 0.2–0.5 m/s. NIO Pakistan has conducted preliminary feasibility surveys for energy extraction from the Indus deltaic creek system. The 17 major creeks have the capacity to produce estimated energy of approximately 1100 MW. The seawater ingresses inland at some places up to 80 km due to the tidal fluctuation, which is favorable for energy extraction from tidal currents in coastal Sindh. In total, 71% of our Planet Earth is covered by the oceans. The oceans are massive collectors of solar radiation received from the sun. The oceans store the potential energy that is received in the form of incident radiation from the sun that generates thermal energy. A 10 °C temperature difference can be harnessed between the surface and bottom water, using a working fluid. The thermal difference absorbed by the oceans can be converted into electricity through ocean thermal energy conversion (OTEC). The ocean tidal and wave energy has advantages over energy produced using different fossil fuels; there are also several benefits of using renewable sources of ocean energy. Viability of ocean energy in Pakistan is discussed in this paper. Full article
(This article belongs to the Proceedings of The 1st International Conference on Energy, Power and Environment)
Show Figures

Figure 1

23 pages, 16909 KiB  
Article
Remote Sensing of Narrowing Barrier Islands along the Coast of Pakistan over Past 30 Years
by Shamsa Kanwal, Xiaoli Ding, Muhammad Sajjad, Majid Nazeer and Ibrahim Zia
J. Mar. Sci. Eng. 2021, 9(3), 295; https://doi.org/10.3390/jmse9030295 - 8 Mar 2021
Cited by 3 | Viewed by 3749
Abstract
Barrier islands (BIs) are the first line of defense against the sea/wave actions in coastal areas, and assessing their stability is crucial in the context of effective coastal planning. Therefore, this study evaluates the spatial–temporal shoreline changes of the BIs in Pakistan over [...] Read more.
Barrier islands (BIs) are the first line of defense against the sea/wave actions in coastal areas, and assessing their stability is crucial in the context of effective coastal planning. Therefore, this study evaluates the spatial–temporal shoreline changes of the BIs in Pakistan over the past three decades (1989–2018). Satellite data from Landsat missions are used to delineate the shorelines of 19 BIs in Pakistan. After delineating the shorelines from satellite observations, two well-known statistical methods (i.e., end point rate (EPR) and linear regression rate (LRR)) are used to capture the localized changes in the BIs. The results ascertain that nearly all of the BIs have experienced noteworthy erosion during the past three decades. While the mean erosion over all the BIs during the study period is estimated to be >6 m/y, significant spatial heterogeneities among the individual BIs exist. The interdecadal comparison indicates that the highest mean erosion of the BIs occurred during the period 1989–1999 (13.03 ± 0.62 m/y), which gradually reduced over the preceding decades (i.e., 7.76 ± 0.62 m/y during the period 1999–2009 and 3.8 ± 0.7 m/y during the period 2009–2018). Nevertheless, ~65% of the total BIs experienced high erosion (>2 m/y), ~15% experienced moderate (<2 m/y), and ~20% experienced low erosion (<1 m/y) during the period 1989-2018. This situation implies that while ~65% of these BIs need immediate interventions from the concerned authorities, the 15% BIs with moderate erosion might experience high erosion in the wake of rising sea levels and decreasing sediment influx in the near future without proper measures. This depletion of the BIs might not only affect Pakistan but also have regional consequences due to their various services. Full article
(This article belongs to the Special Issue Remote Sensing Advancements in Sustaining Coastal Zones)
Show Figures

Graphical abstract

20 pages, 8056 KiB  
Article
Stochastic Analysis of Tsunami Hazard of the 1945 Makran Subduction Zone Mw 8.1–8.3 Earthquakes
by Payam Momeni, Katsuichiro Goda, Mohammad Heidarzadeh and Jinhui Qin
Geosciences 2020, 10(11), 452; https://doi.org/10.3390/geosciences10110452 - 11 Nov 2020
Cited by 12 | Viewed by 3916
Abstract
Historical records of major earthquakes in the northwestern Indian Ocean along the Makran Subduction Zone (MSZ) indicate high potential tsunami hazards for coastal regions of Pakistan, Iran, Oman, and western India. There are fast-growing and populous cities and ports that are economically important, [...] Read more.
Historical records of major earthquakes in the northwestern Indian Ocean along the Makran Subduction Zone (MSZ) indicate high potential tsunami hazards for coastal regions of Pakistan, Iran, Oman, and western India. There are fast-growing and populous cities and ports that are economically important, such as Chabahar (Iran), Gwadar (Pakistan), Muscat (Oman), and Mumbai (India). In this study, we assess the tsunami hazard of the 1945 MSZ event (fatalities ≈300 people) using stochastic earthquake rupture models of Mw 8.1–8.3 by considering uncertainties related to rupture geometry and slip heterogeneity. To quantify the uncertainty of earthquake source characteristics in tsunami hazard analysis, 1000 stochastic tsunami scenarios are generated via a stochastic source modeling approach. There are main objectives of this study: (1) developing stochastic earthquake slip models for the MSZ, (2) comparing results of the simulation with the existing observations of the 1945 event, and (3) evaluating the effect of uncertain fault geometry and earthquake slip based on simulated near-shore wave profiles. The 1945 Makran earthquake is focused upon by comparing model predictions with existing observations, consisting of far-field tsunami waveforms recorded on tide gauges in Karachi and Mumbai and coseismic deformation along the Pakistani coast. The results identify the source model that matches the existing observations of the 1945 Makran event best among the stochastic sources. The length, width, mean slip, and maximum slip of the identified source model are 270 km, 130 km, 2.9 m, and 19.3 m, respectively. Moreover, the sensitivity of the maximum tsunami heights along the coastline to the location of a large-slip area is highlighted. The maximum heights of the tsunami and coseismic deformation results at Ormara are in the range of 0.3–7.0 m and −2.7 to 1.1 m, respectively, for the 1000 stochastic source models. Full article
(This article belongs to the Special Issue Interdisciplinary Geosciences Perspectives of Tsunami Volume 3)
Show Figures

Graphical abstract

17 pages, 1441 KiB  
Article
Risk Assessment of Heavy Metals in Selected Marine Fish Species of Gadani Shipbreaking Area and Pakistan
by Allauddin Kakar, Malik Tahir Hayat, Arshad Mahmood Abbasi, Arshid Pervez, Qaisar Mahmood, Umar Farooq, Tahir Ali Akbar, Shafaqat Ali, Muhammad Rizwan, Hamed A. El-Serehy and Mohamed M. Abdel-Daim
Animals 2020, 10(10), 1738; https://doi.org/10.3390/ani10101738 - 24 Sep 2020
Cited by 21 | Viewed by 5764
Abstract
Gadani shipbreaking area, located on the coastline of Pakistan, is an important fish production area. In this study, levels of four metals (Ni, Pb, Cd, and Mn) in 148 muscle and gill samples of seven fish species (Small-scale terapon, Torpedo scade, Sicklefish, Saddle [...] Read more.
Gadani shipbreaking area, located on the coastline of Pakistan, is an important fish production area. In this study, levels of four metals (Ni, Pb, Cd, and Mn) in 148 muscle and gill samples of seven fish species (Small-scale terapon, Torpedo scade, Sicklefish, Saddle grunt, Gold silk seabream, Indian mackerel, Spotted sickle fish) and seawater samples, taken from 9 sampling sites in the shipbreaking area, were determined. In addition, multiple approaches were used to assess human health risks from fish consumption. Trace metal concentration in seawater ranged from 0.05 to 1.96 mg/L in shipbreaking vicinity and 0.03 to 0.97 mg/L in the reference site (Miani Hor). However, metal accumulations in fish species ranged from 1.33 to 5.26 μg/g. Among trace metals, the level of Pb in all fish species was highest, followed by Ni, Mn, and Cd. The bioaccumulation factors (BAFs) for both gills and muscles displayed the order: Mn > Cd > Ni > Pb. Estimated daily intake (EDI) values were below the tolerable daily intake (TDI). Based on target hazard quotient (THQ), the investigated fish species were safe regarding Pb and Mn (THQ < 1), while they may cause potential risk regarding Cd and Ni (THQ > 1). After comparison with maximum permissible limits, heavy metal concentration in the edible muscle tissues of all the analyzed fish species from the Gadani coast were found safe for human consumption. Full article
(This article belongs to the Collection Effects of Pollutants on Fish)
Show Figures

Figure 1

34 pages, 17674 KiB  
Article
Impact of Sloshing on Fossil Fuel Loss during Transport
by Hafsa Mir, Tahir Abdul Hussain Ratlamwala, Ghulam Hussain, Mohammed Alkahtani and Mustufa Haider Abidi
Energies 2020, 13(10), 2625; https://doi.org/10.3390/en13102625 - 21 May 2020
Cited by 4 | Viewed by 3188
Abstract
This study attempts to uncover the most common issue of fuel shortage faced by the oil and transportation industry worldwide. In Pakistan, petroleum is transported to the northern areas from the south coast. Currently, this is done using road tankers as a pipeline [...] Read more.
This study attempts to uncover the most common issue of fuel shortage faced by the oil and transportation industry worldwide. In Pakistan, petroleum is transported to the northern areas from the south coast. Currently, this is done using road tankers as a pipeline is still under construction. However, even after the pipeline becomes operative, road tankers would still be used for intra-city transport. Findings from this study can be used to determine the inter-city transport losses faced by oil companies. This study determines the hydrocarbons lost to the environment during inter-city road transport of petroleum. It takes nearly 2–3 days to complete a one-way trip with the fully loaded tank. Much work has been reported worldwide on hydrocarbon emissions, but nearly all of it has been done either for storage tanks/vessels or fuel tanks in rails/cars. The aim of this study was to investigate the actual amount of fuel lost to the environment due to the sloshing of liquid. Also, the results were expected to help in determining the extent of hazardous emissions resulting from road transport of petroleum. Hence, measures could be taken by the concerned authorities to mitigate the emissions if they exceeded the acceptable range. The sloshing was not found to contribute much in terms of vapor loss. Valve location was found to be important as no loss was obtained from the third compartment because the valve is to the right in this chamber. A negligible amount of fuel was lost from the first and second compartments per application of the brakes. Over a whole trip of 2–3 days, if the tanker braked 500 times, a total of 9–10 L would be lost to the environment. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

12 pages, 3459 KiB  
Article
Complex Extreme Sea Levels Prediction Analysis: Karachi Coast Case Study
by Faisal Ahmed Khan, Tariq Masood Ali Khan, Ali Najah Ahmed, Haitham Abdulmohsin Afan, Mohsen Sherif, Ahmed Sefelnasr and Ahmed El-Shafie
Entropy 2020, 22(5), 549; https://doi.org/10.3390/e22050549 - 14 May 2020
Cited by 13 | Viewed by 5027
Abstract
In this study, the analysis of the extreme sea level was carried out by using 10 years (2007–2016) of hourly tide gauge data of Karachi port station along the Pakistan coast. Observations revealed that the magnitudes of the tides usually exceeded the storm [...] Read more.
In this study, the analysis of the extreme sea level was carried out by using 10 years (2007–2016) of hourly tide gauge data of Karachi port station along the Pakistan coast. Observations revealed that the magnitudes of the tides usually exceeded the storm surges at this station. The main observation for this duration and the subsequent analysis showed that in June 2007 a tropical Cyclone “Yemyin” hit the Pakistan coast. The joint probability method (JPM) and the annual maximum method (AMM) were used for statistical analysis to find out the return periods of different extreme sea levels. According to the achieved results, the AMM and JPM methods erre compatible with each other for the Karachi coast and remained well within the range of 95% confidence. For the JPM method, the highest astronomical tide (HAT) of the Karachi coast was considered as the threshold and the sea levels above it were considered extreme sea levels. The 10 annual observed sea level maxima, in the recent past, showed an increasing trend for extreme sea levels. In the study period, the increment rates of 3.6 mm/year and 2.1 mm/year were observed for mean sea level and extreme sea level, respectively, along the Karachi coast. Tidal analysis, for the Karachi tide gauge data, showed less dependency of the extreme sea levels on the non-tidal residuals. By applying the Merrifield criteria of mean annual maximum water level ratio, it was found that the Karachi coast was tidally dominated and the non-tidal residual contribution was just 10%. The examination of the highest water level event (13 June 2014) during the study period, further favored the tidal dominance as compared to the non-tidal component along the Karachi coast. Full article
Show Figures

Figure 1

24 pages, 6891 KiB  
Article
Coastline Vulnerability Assessment through Landsat and Cubesats in a Coastal Mega City
by Majid Nazeer, Muhammad Waqas, Muhammad Imran Shahzad, Ibrahim Zia and Weicheng Wu
Remote Sens. 2020, 12(5), 749; https://doi.org/10.3390/rs12050749 - 25 Feb 2020
Cited by 43 | Viewed by 13392
Abstract
According to the Intergovernmental Panel on Climate Change (IPCC), global mean sea levels may rise from 0.43 m to 0.84 m by the end of the 21st century. This poses a significant threat to coastal cities around the world. The shoreline of Karachi [...] Read more.
According to the Intergovernmental Panel on Climate Change (IPCC), global mean sea levels may rise from 0.43 m to 0.84 m by the end of the 21st century. This poses a significant threat to coastal cities around the world. The shoreline of Karachi (a coastal mega city located in Southern Pakistan) is vulnerable mainly due to anthropogenic activities near the coast. Therefore, the present study investigates rates and susceptibility to shoreline change using a 76-year multi-temporal dataset (1942 to 2018) through the Digital Shoreline Analysis System (DSAS). Historical shoreline positions were extracted from the topographic sheets (1:250,000) of 1942 and 1966, the medium spatial resolution (30 m) multi-sensor Landsat images of 1976, 1990, 2002, 2011, and a high spatial resolution (3 m) Planet Scope image from 2018, along the 100 km coast of Karachi. The shoreline was divided into two zones, namely eastern (25 km) and western (29 km) zones, to track changes in development, movement, and dynamics of the shoreline position. The analysis revealed that 95% of transects drawn for the eastern zone underwent accretion (i.e., land reclamation) with a mean rate of 14 m/year indicating that the eastern zone faced rapid shoreline progression, with the highest rates due to the development of coastal areas for urban settlement. Similarly, 74% of transects drawn for the western zone experienced erosion (i.e., land loss) with a mean rate of −1.15 m/year indicating the weathering and erosion of rocky and sandy beaches by marine erosion. Among the 25 km length of the eastern zone, 94% (23.5 km) of the shoreline was found to be highly vulnerable, while the western zone showed much more stable conditions due to anthropogenic inactivity. Seasonal hydrodynamic analysis revealed approximately a 3% increase in the average wave height during the summer monsoon season and a 1% increase for the winter monsoon season during the post-land reclamation era. Coastal protection and management along the Sindh coastal zone should be adopted to defend against natural wave erosion and the government must take measures to stop illegal sea encroachments. Full article
Show Figures

Graphical abstract

Back to TopTop