Assessment of Exploited Stock and Management Implications of Tiger Tooth Croaker (Otolithes ruber) in Coastal Waters of Makran, Pakistan
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data Collection
2.2. Assessment Models
2.2.1. Length–Weight Relationship
2.2.2. Growth Pattern
- Lt = L∞ (1 − e−K(t−t0)) [11],where Lt = length at age t, L∞ = asymptotic length, K = growth coefficient, to = theoretical age of a fish at length zero. Electronic length frequency analysis (ELEFAN-GA) [26] was used in the TropFishR to fit the function. The initial value for L∞ was obtained using the formula as L∞ = Lmax/0.95 [27], where Lmax is the maximum observed length of the fish in the sample. The initial seed value of the L∞ was set as L∞ ± 20%, and the K range was between 0.01 and 2. A suitable moving average (MA = 7) was adjusted based on the rule of thumb suggested by [28]. The growth performance index (Φ’) was estimated using the formula of [29], Φ’ = log10 K + 2 log10 L∞, and the theoretical age of a fish at zero length (t₀) was calculated using the following equation:
- log(−t₀) = −0.3922 − 0.275 log(L∞) − 1.038 log(K) [27].
2.2.3. Fishing Mortality and Exploitation
2.2.4. Yield per Recruitment
2.2.5. Length-Based Spawning Potential Ratio (LBSPR)
2.2.6. Length-Based Bayesian Biomass (LBB)
3. Results
3.1. Length–Weight Relationship
3.2. Growth Pattern
3.3. Mortality and Exploitation Rate
3.4. Length at First Capture and Length at Maturity
3.5. Yield per Recruitment
3.6. Length-Based Spawning Potential Ratio (LBSPR)
3.7. Length-Based Biomass (LBB)
4. Discussion
4.1. Length–Weight Relationship
4.2. Growth Parameters
4.3. Mortality and Exploitation
4.4. Length at First Maturity
4.5. Yield per Recruitment
4.6. Length-Based Spawning Potential Ratio (LBSPR)
4.7. Length-Based Bayesian Biomass (LBB)
5. Conclusions
- The current exploitation rate (E = 0.70) exceeds the optimum level (E = 0.50), suggesting excessive fishing pressure.
- The observed length at first capture (Lc = 27.37 cm) is lower than both the optimal length (Lopt = 38.34 cm) estimated from the LBB model and the length at first maturity (Lm = 30.75 cm), indicating the harvest of immature individuals.
- Current biomass is only 8% of the virgin (unfished) biomass (B/B₀ = 0.08), highlighting severe stock depletion.
- The spawning potential ratio (SPR = 0.08) is far below the recommended threshold (>0.4), indicating serious recruitment overfishing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brash, J.M.; Fennessy, S.T. A preliminary investigation of age and growth of Otolithes ruber from KwaZulu-Natal, South Africa. West. Indian Ocean. J. Mar. Sci. 2005, 4, 21–28. [Google Scholar] [CrossRef]
- Fischer, W.; Bianchi, G. FAO Species Identification Sheets for Fishery Purposes. Western Indian Ocean (Fishing Area 51); Food and Agriculture Organisation of the United Nations: Rome, Italy, 1984. [Google Scholar]
- Eskandari, G.; Savari, A.; Kochanian, P.; Motlagh, S. Age, growth and length at first maturity of Otolithes ruber in the Northwestern part of the Persian Gulf, based on age estimation using otolith. Iran. J. Fish. Sci. 2012, 11, 13–27. [Google Scholar]
- Farkhondeh, G.; Safaie, M.; Kamrani, E.; Valinassab, T. Population parameters and reproductive biology of Otolithes ruber (Bloch & schneider, 1801) (Teleostei: Sciaenidae) in the northern makran sea. Iran. J. Ichthyol. 2018, 5, 173–183. [Google Scholar] [CrossRef]
- Nelson, J.S.; Grande, T.C.; Wilson, M.V.H. Fishes of the World; John Wiley and Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Burg, J.-P. Geology of the onshore Makran accretionary wedge: Synthesis and tectonic interpretation. Earth-Sci. Rev. 2018, 185, 1210–1231. [Google Scholar] [CrossRef]
- Raza, H.; Liu, Q.; Alam, M.S.; Han, Y. Length-Based Stock Assessment of Five Fish Species from the Marine Water of Pakistan. Sustainability 2022, 14, 1587. [Google Scholar] [CrossRef]
- Zhang, K.; Geng, P.; Panhwar, S.K.; Memon, K.H.; Chen, Z. Maximum sustainable yield and development status of 24 commercial marine fish groups from Pakistani waters. Pak. J. Zool. 2021, 53, 183. [Google Scholar] [CrossRef]
- Almatar, S. A Comparison of Length-Related and Age-Related Growth Parameters of Newaiby Otolithes ruber in Kuwait Waters. Naga ICLARM Q. 1993, 16, 32–34. [Google Scholar]
- Dulčić, J.; Matić-Skoko, S.; Paladin, A.; Kraljević, M. Age, growth and mortality of brown comber, Serranus hepatus (Linnaeus, 1758) (Pisces: Serranidae), in the eastern Adriatic (Croatian coast). J. Appl. Ichthyol. 2007, 23, 195–197. [Google Scholar] [CrossRef]
- Sparre, P.; Venema, S. Introduction to Tropical Fish Stock Assessment Part I: Manual FAO Fish Technical Paper; FAO: Rome, Italy, 1998; Volume 306, p. 407. [Google Scholar]
- Hilborn, R.; Walters, C.J. Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty/Book and Disk; Springer: New York, NY, USA, 1992. [Google Scholar]
- Hordyk, A.; Ono, K.; Prince, J.; Walters, C. A simple length-structured model based on life history ratios and incorporating size-dependent selectivity: Application to spawning potential ratios for data-poor stocks. Can. J. Fish. Aquat. Sci. 2016, 73, 1787–1799. [Google Scholar] [CrossRef]
- Froese, R.; Winker, H.; Coro, G.; Demirel, N.; Tsikliras, A.; Dimarchopoulou, D.; Scarcella, G.; Probst, W.; Dureuil, M.; Pauly, D. A new approach for estimating stock status from length frequency data. ICES J. Mar. Sci. 2018, 76, 1–12. [Google Scholar] [CrossRef]
- Kembaren, D.; Suman, A. Inferring Stock Status of Painted Spiny Lobster (Panulirus versicolor) in Aru Islands Waters, Indonesia. Turk. J. Fish. Aquat. Sci. 2023, 23, TRJFAS21543. [Google Scholar] [CrossRef]
- Mildenberger, T.; Taylor, M.; Wolff, M. TropFishR: An R package for fisheries analysis with length-frequency data. Methods Ecol. Evol. 2017, 8, 1520–1527. [Google Scholar] [CrossRef]
- Khodadadi, M.; Emami, F.; Mohammadi, G.; Riazi, S. Estimation of mortality coefficients of Otolithes ruber (Perciformes) in Khoozestan province of south Iran. J. Environ. Res. Dev. 2010, 4, 917–922. [Google Scholar]
- Schultz, N. Title: Preliminary investigations on the population dynamics of Otolithes ruber (Sciaenidae) on Sofala Bank, Mozambique. Rev. Investig. Pesqueira 1992, 21, 41–49. [Google Scholar]
- Mohamed, A.-R.; Al-Hassani, A. Aspects of Population Dynamics of Tiger Tooth Croaker, Otolithes ruber (Bloch and Schneider, 1801) from Northwest Arabian Gulf, Iraq. Asian J. Fish. Aquat. Res. 2021, 12, 9–21. [Google Scholar] [CrossRef]
- Mzingirwa, F.; Nyamora, J.; Omukoto, J.; Tuda, P. Stock assessment of the Tigertooth croaker, Otolithes ruber (Bloch & Schneider, 1801) from the commercial prawn trawl fishery by-catch in coastal Kenya. West. Indian Ocean. J. Mar. Sci. 2021, 19, 149–165. [Google Scholar] [CrossRef]
- Sultana, R.; Liu, Q.; Schneider, P.; Al-Mamun, M.A.; Mamun, A.; Tazim, M.F.; Mozumder, M.M.H.; Parvej, M.R.; Shamsuzzaman, M.M. Stock assessment of six Sciaenidae species in the Bay of Bengal, Bangladesh water using a length-based Bayesian biomass (LBB) method. Fishes 2022, 7, 214. [Google Scholar] [CrossRef]
- Rahangdale, S.; Zacharia, P.U.; Kumar, R.; Vase, V. Evaluating the stock status of 10 croaker species landed along the north-eastern Arabian Sea using the length-based Bayesian biomass approach. Front. Mar. Sci. 2022, 9, 952795. [Google Scholar] [CrossRef]
- Santhoshkumar, S.; Rajagopalsamy, C.B.T.; Jawahar, P.; Jayakumar, N.; Pavinkumar, P. Growth and mortality characteristics of Otolithes ruber (Schneider, 1801) exploited off Thoothukudi Coast, Tamil Nadu. J. Entomol. Zool. Stud. 2017, 5, 1746–1749. [Google Scholar]
- Baloch, W.A.; Zhang, K.; Kalhoro, M.; Memon, A.; Kalhoro, M.; Buzdar, M.; Muhammad, D.S.; Saeed, F.; Sohail, M.; Razaaq, S. Preliminary investigations on stock analysis of tigertooth croaker (Otolithes ruber) from Balochistan coast, Pakistan. J. Anim. Plant Sci. 2020, 30, 2020. [Google Scholar] [CrossRef]
- Le Cren, E.D. The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). J. Anim. Ecol. 1951, 20, 201–219. [Google Scholar] [CrossRef]
- Pauly, D.; David, N. ELEFAN I, a BASIC program for the objective extraction of growth parameters from length-frequency data. Meeresforschung 1981, 28, 205–211. [Google Scholar]
- Pauly, D. Fish Population Dynamics in Tropical Waters: A Manual for Use with Programmable Calculators; WorldFish: Penang, Malaysia, 1984; Volume 8. [Google Scholar]
- Taylor, M.; Mildenberger, T.K. Extending electronic length frequency analysis in R. Fish. Manag. Ecol. 2017, 24, 330–338. [Google Scholar] [CrossRef]
- Pauly, D.; Munro, J. Once more on the comparison of growth in fish and invertebrates. Fishbyte 1984, 2, 1–21. [Google Scholar]
- Then, A.Y.; Hoenig, J.M.; Hall, N.G.; Hewitt, D.A.; Jardim, H.E.E. Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species. ICES J. Mar. Sci. 2015, 72, 82–92. [Google Scholar] [CrossRef]
- Prince, J.; Victor, S.; Kloulchad, V.; Hordyk, A. Length-based SPR assessment of eleven Indo-Pacific coral reef fish populations in Palau. Fish. Res. 2015, 171, 42–58. [Google Scholar] [CrossRef]
- Hordyk, A.; Ono, K.; Valencia, S.; Loneragan, N.; Prince, J. A novel length-based empirical estimation method of spawning potential ratio (SPR), and tests of its performance, for small-scale, data-poor fisheries. ICES J. Mar. Sci. 2015, 72, 217–231. [Google Scholar] [CrossRef]
- Froese, R.; Binohlan, C. Empirical relationships to estimate asymptotic length, length at first maturity and length at maximum yield per recruit in fishes, with a simple method to evaluate length frequency data. J. Fish Biol. 2000, 56, 758–773. [Google Scholar] [CrossRef]
- Hordyk, A. LBSPR: Length-Based Spawning Potential Ratio. Available online: https://CRAN.R-project.org/package=LBSPR (accessed on 15 August 2024).
- Palomares, M.L.D.; Froese, R.; Derrick, B.; Nöel, S.L.; Tsui, G.; Woroniak, J. A Preliminary Global Assessment of the Status of Exploited Marine Fish and Invertebrate Populations; A Report Prepared by the Sea Around Us for OCEANA; The University of British Columbia: Vancouver, BC, Canada, 2018. [Google Scholar]
- Froese, R. Keep it simple: Three indicators to deal with overfishing. Fish Fish. 2004, 5, 86–91. [Google Scholar] [CrossRef]
- Froese, R. Cube law, condition factor and weight–length relationships: History, meta-analysis and recommendations. J. Appl. Ichthyol. 2006, 22, 241–253. [Google Scholar] [CrossRef]
- Barua, S.; Liu, Q.; Alam, M.S.; Schneider, P.; Mozumder, M.M.H. Application of Length-Based Assessment Methods to Elucidate Biological Reference Points of Black Pomfret Stock in the Bay of Bengal, Bangladesh. Fishes 2022, 7, 384. [Google Scholar] [CrossRef]
- Fennessy, S. Aspects of the biology of four species of Sciaenidae from the east coast of South Africa. Estuar. Coast. Shelf Sci. 2000, 50, 259–269. [Google Scholar] [CrossRef]
- Chu, W.-S.; Wang, J.-P.; Hou, Y.-Y.; Ueng, Y.-T.; Chu, P.-H. Length-weight relationships for fishes off the southwestern coast of Taiwan. Afr. J. Biotechnol. 2011, 10, 3945–3950. [Google Scholar]
- Kazemi, S.H.; Paighambari, S.Y.; Daliri, M.; Naderi, R.A. Length-weight and length-length relationships, condition factors and optimal length of some fish species from the Persian Gulf and Oman Sea. Int. J. Aquat. Biol. 2013, 1, 167–174. [Google Scholar] [CrossRef]
- Palla, H.P.; Pagliawan, H.B.; Rodriguez, E.F.; Montaño, B.S.; Cacho, G.T.; Gonzales, B.J.; Bonnell, C.; Fowler, T. Length-weight relationship of marine fishes from Palawan, Philippines. Palawan Sci. 2018, 10, 17–28. [Google Scholar] [CrossRef]
- Santhoshkumar, S.; Rajagopalsamy, C.; Jawahar, P.; Francis, T. Length–Weight Relationship of Otolithes ruber (Schneider, 1801) from Thoothukudi coast, Tamil Nadu, India. Int. J. Fish. Aquat. Stud. 2014, 1, 9–11. [Google Scholar]
- Biswas, S.P. Manual of Methods in Fish Biology; South Asian Publishers: New Delhi, India, 1993. [Google Scholar]
- Baset, A.; Liu, Q.; Liao, B.; Waris, A.; Yanan, H.; Qingqing, Z. Population dynamics of Rainbow Sardines, Dussumieria acuta (Valenciennes, 1847) from Pakistani waters. Int. J. Aquac. Fish. Sci. 2020, 6, 029–034. [Google Scholar] [CrossRef]
- Khan, S.; Khan, M.A. Importance of age and growth studies in fisheries management. In Proceedings of the Reviewed Proceedings of National Seminar on NGSV. Next Generation Sciences: Vision 2020 and Beyond, Rohtak, India, 8 March 2014; pp. 194–201. [Google Scholar]
- Banse, K. On upwelling and bottom-trawling off the southwest coast of India. J. Mar. Biol. Assoc. India 1959, 1, 33–49. [Google Scholar]
- Beverton, R.J.H.; Holt, S.J. On the Dynamics of Exploited Fish Populations; H.M. Stationery Office: London, UK, 1957. [Google Scholar]
- King, R. Some aspects of the reproductive strategy of Ilisha africana (Bloch, 1795) (Teleostei, Clupeidae) in Qua Iboe estuary, Nigeria. Cybium 1991, 15, 239–257. [Google Scholar]
- Chapman, D.; Van Well, P. Growth and mortality of Stolothrissa tanganicae. Trans. Am. Fish. Soc. 1978, 107, 26–35. [Google Scholar] [CrossRef]
- Lanzuela, N.S.B.; Gallego, E.M.; Baltar, J.E.P. Reproductive Biological Performance of Otolithes ruber (Bloch and Schneider 1801) in San Miguel Bay, Philippines. Philipp. J. Fish. 2020, 27, 127–136. [Google Scholar] [CrossRef]
- Azhir, M.T. Biological investigation of Tiger-toothed Croaker, Otolithes rubber, in Oman Sea along Sistan and Baluchistan Province. Iran. Sci. Fish. J. 2008, 17, 1–10. [Google Scholar]
- Gabriel, W.L.; Mace, P.M. A Review of Biological Reference Points in the Context of the Precautionary Approach. In Proceedings of the Fifth National NMFS Stock Assessment Workshop: Providing Scientific Advice to Implement the Precautionary Approach under the Magnuson-Stevens Fishery Conservation and Management Act, 1999. pp. 34–45. Available online: www.st.nmfs.noaa.gov/Assets/stock/documents/workshops/nsaw_5/gabriel_.pdf (accessed on 1 September 2024).
- Cadima, E.L. Fish Stock Assessment Manual FAO Fisheries Technical Paper 393; Food & Agriculture Organizations: Rome, Italy, 2003. [Google Scholar]
- Tirtadanu; Prihatiningsih; Yusuf, H.N.; Zamroni, A.; Amri, K.; Chodrijah, U. Assessing the stock status of areolate grouper (Epinephelus areolatus) in Java Sea, Indonesia. Reg. Stud. Mar. Sci. 2023, 66, 103116. [Google Scholar] [CrossRef]
- Pauly, D. Some Simple Methods for the Assessment of Tropical Fish Stocks; Food and Agriculture Organization of the United Nations: Rome, Italy, 1983. [Google Scholar]
- Barua, S.; Liu, Q.; Alam, M.S.; Schneider, P.; Mozumder, M.M.H.; Rouf, M.A. Population dynamics and stock assessment of two major eels (Muraenesox bagio and Congresox talabonoides) from the marine waters of Bangladesh. Front. Mar. Sci. 2023, 10, 1134343. [Google Scholar] [CrossRef]
- Liang, C.; Xian, W.; Liu, S.; Pauly, D. Assessments of 14 exploited fish and invertebrate stocks in Chinese waters using the LBB method. Front. Mar. Sci. 2020, 7, 314. [Google Scholar] [CrossRef]
- Sarr, O.; Kindong, R.; Sow, F.N.; Tian, S. Estimation of Atlantic bonito (Sarda sarda) stock status in the Senegalese Exclusive Economic Zone (SEEZ) from the catch-based model (CMSY) and length-based bayesian estimation (LBB) method. Reg. Stud. Mar. Sci. 2023, 65, 103052. [Google Scholar] [CrossRef]
- Kindong, R.; Gao, C.; Pandong, N.A.; Ma, Q.; Tian, S.; Wu, F.; Sarr, O. Stock status assessments of five small pelagic species in the Atlantic and Pacific Oceans using the length-based bayesian estimation (LBB) method. Front. Mar. Sci. 2020, 7, 592082. [Google Scholar] [CrossRef]
Parameters | Calculated Value |
---|---|
Asymptotic length (L∞ cm) | 55.47 |
Growth coefficient (K year−1) | 0.50 |
Growth performance index (Φ’) | 3.18 |
Hypothetical age (t0 year) | −0.27 |
Total mortality (Z year−1) | 2.27 |
Natural mortality (M year−1) | 0.67 |
Fishing mortality (F year−1) | 1.6 |
Exploitation rate (E year−1) | 0.70 |
Length at first capture (Lc50 cm) | 27.37 |
Length at 50% maturity (Lm50 cm) | 30.75 |
Length at 95% maturity (Lm95 cm) | 33.82 |
Sample size (n) | 1359 |
Intercept of LWR (a) | 0.0034 |
Relative growth coefficient (b) | 3.28 |
Rnvalue | 0.18 |
Fishing Mortality (Year−1) | Yield per Recruit (g/Recruit) |
---|---|
F0.1 = 1.40 | 148.77 |
F0.5 = 0.82 | 124.06 |
Fmax = 2.42 | 157.93 |
Fcurrent = 1.60 | 151.59 |
Parameters | Value |
---|---|
Spawning potential ratio | 0.08 (8%) |
SL50% | 28.32 cm |
SL95% | 35.09 cm |
F/M | 4.31 |
Variables | Value |
---|---|
L∞ (CI) | 54.4 (53.6–55.3) cm |
Lopt | 38.34 |
Lopt range | 34.5–42.2 cm |
Lopt/L∞ | 0.7 |
Lc_opt | 36 cm |
Lc_opt/L∞ | 0.66 |
Lmean | 36.3 cm |
M/K (CI) | 1.29 (1.17–1.41) |
F/M | 4.74 (3.96–5.46) |
F/K | 6.06 (5.53–6.6) |
Z/K | 7.35 (6.92–7.89) |
B/Bo (CI) | 0.08 (0.06–0.09) |
Lc50 (CI) | 29.3 (29–29.7) |
Lc95 (CI) | 38 (37.8–38.4) |
Alpha (CI) | 0.34 (0.33–0.35) |
Lmean/Lopt | 0.88 |
Lc/Lc_opt | 0.82 |
L95th/L∞ | 0.94 |
B/Bmsy (CI) | 0.21 (0.17–0.26) |
Stock status | Collapsed |
Study Area | b | a | R2 | Source |
---|---|---|---|---|
Makran Coast, Pakistan | 3.28 | 0.0036 | 0.94 | [current study] |
Taiwan | 2.63 | 0.0300 | 0.83 | [40] |
Philippines | 2.73 | 0.0150 | 0.91 | [42] |
South Africa | 3.13 | 0.00049 | - | [39] |
India | 2.83 | 0.018 | 0.88 | [43] |
Persian Gulf, Iran | 2.70 | 0.032 | 0.86 | [41] |
Northern Makran, Sea Iran | 2.94 | 0.012 | 0.91 | [4] |
Persian Gulf, Iran | 3.19 | 0.005 | 0.99 | [3] |
Iraq | 2.75 | 0.023 | 0.99 | [19] |
Study Area | K year−1 | L∞ (cm) | Φ’ | Source |
---|---|---|---|---|
Makran coast, Pakistan | 0.50 | 55. 47 | 3.18 | [current study] |
Sofala Bank, Mozambique | 0.32 | 45.9 | 2.84 | [18] |
KwaZulu-Natal, South Africa | 0.31 | 41.9 | 2.73 | [1] |
India, Tamil Nadu | 0.27 | 37.28 | 2.57 | [23] |
Iran, Gulf of Oman | 0.41 | 65.0 | 1.85 | [4] |
Iran, Persian Gulf | 0.27 | 67.57 | 3.09 | [3] |
Balochistan, Pakistan | 0.83 | 34.65 | 2.99 | [24] |
Northwest Arabian Gulf, Iraq | 0.36 | 68.5 | 3.22 | [19] |
Malindi-Ungwana Bay, Kenya | 0.70 | 41.7 | 3.08 | [20] |
Study Area | F | M | Z | E | Source |
---|---|---|---|---|---|
Makran coast, Pakistan | 1.6 | 0.67 | 2.27 | 0.70 | [current study] |
Iran, Persian Gulf | 1.25 | 0.7 | 1.95 | 0.64 | [17] |
SofalaBank, Mozambique | 1.25 | 0.7 | 1.95 | 0.64 | [18] |
Balochistan, Pakistan | 2.17 | 1.46 | 3.18 | 0.68 | [24] |
Northwest Arabian Gulf, Iraq | 0.41 | 0.69 | 1.10 | 0.38 | [19] |
Malindi-Ungwana Bay, Kenya | 2.30 | 0.93 | 3.23 | 0.71 | [20] |
Area | Lm 50 (cm) | Source |
---|---|---|
Makran coast, Pakistan | 30.75 | [current study] |
Oman Sea | 40.0 | [52] |
Makran Sea, Iran | 43.3 | [4] |
Persian Gulf | 28.0 | [3] |
Kwazulu-Natal coast, South Africa | 23.70 | [39] |
San Miguel Bay, Philippines | 13.95 | [51] |
Study Area | B/B0 | B/BMSY | F/M | F/K | Lmean/Lopt | Reference |
---|---|---|---|---|---|---|
Makran coast, Pakistan | 0.08 | 0.21 | 4.74 | 6.06 | 0.88 | [current study] |
Northwest coast of India | 0.35 | 0.97 | 1.10 | 1.70 | 0.99 | [22] |
Bay of Bengal, Bangladesh | 0.17 | 0.47 | 2.1 | 2.1 | 0.86 | [21] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majeed, S.; Amin, S.M.N.; Muhammad, A.U.A.; Ahmed, S. Assessment of Exploited Stock and Management Implications of Tiger Tooth Croaker (Otolithes ruber) in Coastal Waters of Makran, Pakistan. Fishes 2025, 10, 238. https://doi.org/10.3390/fishes10050238
Majeed S, Amin SMN, Muhammad AUA, Ahmed S. Assessment of Exploited Stock and Management Implications of Tiger Tooth Croaker (Otolithes ruber) in Coastal Waters of Makran, Pakistan. Fishes. 2025; 10(5):238. https://doi.org/10.3390/fishes10050238
Chicago/Turabian StyleMajeed, Samroz, S M Nurul Amin, Asad Ullah Ali Muhammad, and Sudheer Ahmed. 2025. "Assessment of Exploited Stock and Management Implications of Tiger Tooth Croaker (Otolithes ruber) in Coastal Waters of Makran, Pakistan" Fishes 10, no. 5: 238. https://doi.org/10.3390/fishes10050238
APA StyleMajeed, S., Amin, S. M. N., Muhammad, A. U. A., & Ahmed, S. (2025). Assessment of Exploited Stock and Management Implications of Tiger Tooth Croaker (Otolithes ruber) in Coastal Waters of Makran, Pakistan. Fishes, 10(5), 238. https://doi.org/10.3390/fishes10050238