Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (214)

Search Parameters:
Keywords = PV power output prediction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3409 KiB  
Article
Short-Term Prediction Intervals for Photovoltaic Power via Multi-Level Analysis and Dual Dynamic Integration
by Kaiyang Kuang, Jingshan Zhang, Qifan Chen, Yan Zhou, Yan Yan, Litao Dai and Guanghu Wang
Electronics 2025, 14(15), 3068; https://doi.org/10.3390/electronics14153068 - 31 Jul 2025
Viewed by 90
Abstract
There is an obvious correlation between the photovoltaic (PV) output of different physical levels; that is, the overall power change trend of large-scale regional (high-level) stations can provide a reference for the prediction of the output of sub-regional (low-level) stations. The current PV [...] Read more.
There is an obvious correlation between the photovoltaic (PV) output of different physical levels; that is, the overall power change trend of large-scale regional (high-level) stations can provide a reference for the prediction of the output of sub-regional (low-level) stations. The current PV prediction methods have not deeply explored the multi-level PV power generation elements and have not considered the correlation between different levels, resulting in the inability to obtain potential information on PV power generation. Moreover, traditional probabilistic prediction models lack adaptability, which can lead to a decrease in prediction performance under different PV prediction scenarios. Therefore, a probabilistic prediction method for short-term PV power based on multi-level adaptive dynamic integration is proposed in this paper. Firstly, an analysis is conducted on the multi-level PV power stations together with the influence of the trend of high-level PV power generation on the forecast of low-level power generation. Then, the PV data are decomposed into multiple layers using the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) and analyzed by combining fuzzy entropy (FE) and mutual information (MI). After that, a new multi-level model prediction method, namely, the improved dual dynamic adaptive stacked generalization (I-Stacking) ensemble learning model, is proposed to construct short-term PV power generation prediction models. Finally, an improved dynamic adaptive kernel density estimation (KDE) method for prediction errors is proposed, which optimizes the performance of the prediction intervals (PIs) through variable bandwidth. Through comparative experiments and analysis using traditional methods, the effectiveness of the proposed method is verified. Full article
Show Figures

Figure 1

11 pages, 493 KiB  
Proceeding Paper
PV Power Generation Forecasting with Fuzzy Inference Systems
by Cinthia Rodriguez, Marco Pacheco, Marley Vellasco, Manoela Kohler and Thiago Medeiros
Eng. Proc. 2025, 101(1), 5; https://doi.org/10.3390/engproc2025101005 - 23 Jul 2025
Viewed by 181
Abstract
This paper aims to implement a fuzzy system for the purpose of forecasting the output of photovoltaic (PV) systems. A bibliometric review was conducted to establish a baseline, involving the exploration of six different configuration of fuzzy systems. These systems were trained and [...] Read more.
This paper aims to implement a fuzzy system for the purpose of forecasting the output of photovoltaic (PV) systems. A bibliometric review was conducted to establish a baseline, involving the exploration of six different configuration of fuzzy systems. These systems were trained and evaluated using a sliding window technique and a validation set. The development of the study utilized data collected from 1 May 2018 to 30 June 2018 at the Universidad Autónoma de Occidente campus. The dataset was analyzed in order to identify any discernible trends, seasonal patterns, and instances of stationarity. A comparison of the six models revealed their ability to predict PV power generation, with the model with 13 lags and five fuzzy sets demonstrating results with a reasonable trade-off between training and test performance. The model achieved an R-squared value of 0.8124 and an RMSE of 29.7025 kWh in the test data, indicating that the predictions were closely aligned with the actual values. However, this suggests that the model may be overly simple or may require additional data to more accurately capture the inherent variability of the data. The paper concludes with a discussion of the model’s limitations and potential avenues for future research. Full article
Show Figures

Figure 1

29 pages, 9145 KiB  
Article
Ultra-Short-Term Forecasting-Based Optimization for Proactive Home Energy Management
by Siqi Liu, Zhiyuan Xie, Zhengwei Hu, Kaisa Zhang, Weidong Gao and Xuewen Liu
Energies 2025, 18(15), 3936; https://doi.org/10.3390/en18153936 - 23 Jul 2025
Viewed by 191
Abstract
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy [...] Read more.
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy that integrates advanced forecasting models with multi-objective scheduling algorithms. By leveraging deep learning techniques like Graph Attention Network (GAT) architectures, the system predicts ultra-short-term household load profiles with high accuracy, addressing the volatility of residential energy use. Then, based on the predicted data, a comprehensive consideration of electricity costs, user comfort, carbon emission pricing, and grid load balance indicators is undertaken. This study proposes an enhanced mixed-integer optimization algorithm to collaboratively optimize multiple objective functions, thereby refining appliance scheduling, energy storage utilization, and grid interaction. Case studies demonstrate that integrating photovoltaic (PV) power generation forecasting and load forecasting models into a home energy management system, and adjusting the original power usage schedule based on predicted PV output and water heater demand, can effectively reduce electricity costs and carbon emissions without compromising user engagement in optimization. This approach helps promote energy-saving and low-carbon electricity consumption habits among users. Full article
Show Figures

Figure 1

27 pages, 3704 KiB  
Article
Explainable Machine Learning and Predictive Statistics for Sustainable Photovoltaic Power Prediction on Areal Meteorological Variables
by Sajjad Nematzadeh and Vedat Esen
Appl. Sci. 2025, 15(14), 8005; https://doi.org/10.3390/app15148005 - 18 Jul 2025
Cited by 1 | Viewed by 373
Abstract
Precisely predicting photovoltaic (PV) output is crucial for reliable grid integration; so far, most models rely on site-specific sensor data or treat large meteorological datasets as black boxes. This study proposes an explainable machine-learning framework that simultaneously ranks the most informative weather parameters [...] Read more.
Precisely predicting photovoltaic (PV) output is crucial for reliable grid integration; so far, most models rely on site-specific sensor data or treat large meteorological datasets as black boxes. This study proposes an explainable machine-learning framework that simultaneously ranks the most informative weather parameters and reveals their physical relevance to PV generation. Starting from 27 local and plant-level variables recorded at 15 min resolution for a 1 MW array in Çanakkale region, Türkiye (1 August 2022–3 August 2024), we apply a three-stage feature-selection pipeline: (i) variance filtering, (ii) hierarchical correlation clustering with Ward linkage, and (iii) a meta-heuristic optimizer that maximizes a neural-network R2 while penalizing poor or redundant inputs. The resulting subset, dominated by apparent temperature and diffuse, direct, global-tilted, and terrestrial irradiance, reduces dimensionality without significantly degrading accuracy. Feature importance is then quantified through two complementary aspects: (a) tree-based permutation scores extracted from a set of ensemble models and (b) information gain computed over random feature combinations. Both views converge on shortwave, direct, and global-tilted irradiance as the primary drivers of active power. Using only the selected features, the best model attains an average R2 ≅ 0.91 on unseen data. By utilizing transparent feature-reduction techniques and explainable importance metrics, the proposed approach delivers compact, more generalized, and reliable PV forecasts that generalize to sites lacking embedded sensor networks, and it provides actionable insights for plant siting, sensor prioritization, and grid-operation strategies. Full article
Show Figures

Figure 1

22 pages, 3542 KiB  
Article
Enhanced Short-Term PV Power Forecasting via a Hybrid Modified CEEMDAN-Jellyfish Search Optimized BiLSTM Model
by Yanhui Liu, Jiulong Wang, Lingyun Song, Yicheng Liu and Liqun Shen
Energies 2025, 18(13), 3581; https://doi.org/10.3390/en18133581 - 7 Jul 2025
Viewed by 335
Abstract
Accurate short-term photovoltaic (PV) power forecasting is crucial for ensuring the stability and efficiency of modern power systems, particularly given the intermittent and nonlinear characteristics of solar energy. This study proposes a novel hybrid forecasting model that integrates complete ensemble empirical mode decomposition [...] Read more.
Accurate short-term photovoltaic (PV) power forecasting is crucial for ensuring the stability and efficiency of modern power systems, particularly given the intermittent and nonlinear characteristics of solar energy. This study proposes a novel hybrid forecasting model that integrates complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN), the jellyfish search (JS) optimization algorithm, and a bidirectional long short-term memory (BiLSTM) neural network. First, the original PV power signal was decomposed into intrinsic mode functions using a modified CEEMDAN method to better capture the complex nonlinear features. Subsequently, the fast Fourier transform and improved Pearson correlation coefficient (IPCC) were applied to identify and merge similar-frequency intrinsic mode functions, forming new composite components. Each reconstructed component was then forecasted individually using a BiLSTM model, whose parameters were optimized by the JS algorithm. Finally, the predicted components were aggregated to generate the final forecast output. Experimental results on real-world PV datasets demonstrate that the proposed CEEMDAN-JS-BiLSTM model achieves an R2 of 0.9785, a MAPE of 8.1231%, and an RMSE of 37.2833, outperforming several commonly used forecasting models by a substantial margin in prediction accuracy. This highlights its effectiveness as a promising solution for intelligent PV power management. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

21 pages, 3348 KiB  
Article
An Intelligent Technique for Coordination and Control of PV Energy and Voltage-Regulating Devices in Distribution Networks Under Uncertainties
by Tolulope David Makanju, Ali N. Hasan, Oluwole John Famoriji and Thokozani Shongwe
Energies 2025, 18(13), 3481; https://doi.org/10.3390/en18133481 - 1 Jul 2025
Viewed by 347
Abstract
The proactive involvement of photovoltaic (PV) smart inverters (PVSIs) in grid management facilitates voltage regulation and enhances the integration of distributed energy resources (DERs) within distribution networks. However, to fully exploit the capabilities of PVSIs, it is essential to achieve optimal control of [...] Read more.
The proactive involvement of photovoltaic (PV) smart inverters (PVSIs) in grid management facilitates voltage regulation and enhances the integration of distributed energy resources (DERs) within distribution networks. However, to fully exploit the capabilities of PVSIs, it is essential to achieve optimal control of their operations and effective coordination with voltage-regulating devices in the distribution network. This study developed a dual strategy approach to forecast the optimal setpoints of onload tap changers (OLTCs), PVSIs, and distribution static synchronous compensators (DSTATCOMs) to improve the voltage profiles in power distribution systems. The study began by running a centralized AC optimal power flow (CACOPF) and using the hourly PV output power and the load demand to determine the optimal active and reactive power of the PVSIs, the setpoint of the DSTATCOM, and the optimal tap setting of the OLTC. Furthermore, Machine Learning (ML) models were trained as controllers to determine the reactive-power setpoints for the PVSIs and DSTATCOMs as well as the optimal OLTC tap position required for voltage stability in the network. To assess the effectiveness of the method, comprehensive evaluations were carried out on a modified IEEE 33 bus with a high penetration of PV energy. The results showed that deep neural networks (DNNs) outperformed other ML models used to mimic the coordination method based on CACOPF. Furthermore, when the DNN-based controller was tested and compared with the optimizer approach under different loading and PV conditions, the DNN-based controller was found to outperform the optimizer in terms of computational time. This approach allows predictive control in power systems, helping system operators determine the action to be initiated under uncertain PV energy and loading conditions. The approach also addresses the computational inefficiency arising from contingencies in the power system that may occur when optimal power flow (OPF) is run multiple times. Full article
Show Figures

Figure 1

17 pages, 2261 KiB  
Article
Impact of Multiple Factors on Temperature Distribution and Output Performance in Dusty Photovoltaic Modules: Implications for Sustainable Solar Energy
by Weiping Zhao, Shuai Hu and Zhiguang Dong
Energies 2025, 18(13), 3411; https://doi.org/10.3390/en18133411 - 28 Jun 2025
Viewed by 344
Abstract
Enhancing solar photovoltaic (PV) power generation is fundamental to achieving energy sustainability goals. However, elevated module temperatures can diminish photoelectric conversion efficiency and output power, impacting the safe and efficient operation of PV modules. Therefore, understanding module temperature distribution is crucial for predicting [...] Read more.
Enhancing solar photovoltaic (PV) power generation is fundamental to achieving energy sustainability goals. However, elevated module temperatures can diminish photoelectric conversion efficiency and output power, impacting the safe and efficient operation of PV modules. Therefore, understanding module temperature distribution is crucial for predicting power generation performance and optimizing cleaning schedules in PV power plants. To investigate the combined effects of multiple factors on the temperature distribution and output power of dusty PV modules, a heat transfer model was developed. Validation against experimental data and comparisons with the NOCT model demonstrated the validity and advantages of the proposed model in accurately predicting PV module behavior. This validated model was then employed to simulate and analyze the influence of various parameters on the temperature of dusty modules and to evaluate the module output power, providing insights into sustainable PV energy generation. Results indicate that the attenuation of PV glass transmittance due to dust accumulation constitutes the primary determinant of the lower temperature observed in dusty modules compared to clean modules. This highlights a significant factor impacting long-term performance and resource utilization efficiency. Dusty module temperature exhibits a positive correlation with irradiance and ambient temperature, while displaying a negative correlation with wind speed and dust accumulation. Notably, alignment of wind direction and module orientation enhances module heat dissipation, representing a passive cooling strategy that promotes efficient and sustainable operation. At an ambient temperature of 25 °C and a wind speed of 3 m/s, the dusty module exhibits a temperature reduction of approximately 11.0% compared to the clean module. Furthermore, increasing the irradiance from 200 W/m2 to 800 W/m2 results in an increase in output power attenuation from 51.4 W to 192.6 W (approximately 30.4% attenuation rate) for a PV module with a dust accumulation of 25 g/m2. This underscores the imperative for effective dust mitigation strategies to ensure long-term viability, economic sustainability, and optimized energy yields from solar energy investments. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

24 pages, 4961 KiB  
Article
A Small-Sample Scenario Optimization Scheduling Method Based on Multidimensional Data Expansion
by Yaoxian Liu, Kaixin Zhang, Yue Sun, Jingwen Chen and Junshuo Chen
Algorithms 2025, 18(6), 373; https://doi.org/10.3390/a18060373 - 19 Jun 2025
Viewed by 345
Abstract
Currently, deep reinforcement learning has been widely applied to energy system optimization and scheduling, and the DRL method relies more heavily on historical data. The lack of historical operation data in new integrated energy systems leads to insufficient DRL training samples, which easily [...] Read more.
Currently, deep reinforcement learning has been widely applied to energy system optimization and scheduling, and the DRL method relies more heavily on historical data. The lack of historical operation data in new integrated energy systems leads to insufficient DRL training samples, which easily triggers the problems of underfitting and insufficient exploration of the decision space and thus reduces the accuracy of the scheduling plan. In addition, conventional data-driven methods are also difficult to accurately predict renewable energy output due to insufficient training data, which further affects the scheduling effect. Therefore, this paper proposes a small-sample scenario optimization scheduling method based on multidimensional data expansion. Firstly, based on spatial correlation, the daily power curves of PV power plants with measured power are screened, and the meteorological similarity is calculated using multicore maximum mean difference (MK-MMD) to generate new energy output historical data of the target distributed PV system through the capacity conversion method; secondly, based on the existing daily load data of different types, the load historical data are generated using the stochastic and simultaneous sampling methods to construct the full historical dataset; subsequently, for the sample imbalance problem in the small-sample scenario, an oversampling method is used to enhance the data for the scarce samples, and the XGBoost PV output prediction model is established; finally, the optimal scheduling model is transformed into a Markovian decision-making process, which is solved by using the Deep Deterministic Policy Gradient (DDPG) algorithm. The effectiveness of the proposed method is verified by arithmetic examples. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

21 pages, 11008 KiB  
Article
An Improved Maximum Power Point Tracking Control Scheme for Photovoltaic Systems: Integrating Sparrow Search Algorithm-Optimized Support Vector Regression and Optimal Regulation for Enhancing Precision and Robustness
by Mingjun He, Ke Zhou, Yutao Xu, Jinsong Yu, Yangquan Qu and Xiankui Wen
Energies 2025, 18(12), 3182; https://doi.org/10.3390/en18123182 - 17 Jun 2025
Viewed by 339
Abstract
Overdependence on fossil fuels contributes to global warming and environmental degradation. Solar energy, particularly photovoltaic (PV) power generation, has emerged as a widely adopted clean and renewable alternative. To increase and enhance the efficiency of PV systems, maximum power point tracking (MPPT) technology [...] Read more.
Overdependence on fossil fuels contributes to global warming and environmental degradation. Solar energy, particularly photovoltaic (PV) power generation, has emerged as a widely adopted clean and renewable alternative. To increase and enhance the efficiency of PV systems, maximum power point tracking (MPPT) technology is essential. However, achieving accurate tracking control while balancing overall performance in terms of stability, dynamic response, and robustness remains a challenge. In this study, an improved MPPT control scheme based on the technique of predicting the reference current at the MPP and regulating the optimal current is proposed. Support vector regression (SVR) endowed with a strong generalization stability was adopted to model the nonlinear relationship between the PV output current and the environmental factors of irradiance and temperature. The sparrow search algorithm (SSA), recognized for its excellent global search capability, was employed to optimize the hyperparameters of SVR to further increase the prediction accuracy. To satisfy the performance requirements for the current-tracking process, a linear quadratic (LQ) optimal control strategy was applied to design the current regulator based on the PV system’s state-space model. The effectiveness and superior performance of the suggested SSA-SVR-LQ control scheme were validated using measured data under real operating conditions. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

25 pages, 4300 KiB  
Article
Photovoltaic Power Generation Forecasting Based on Secondary Data Decomposition and Hybrid Deep Learning Model
by Liwei Zhang, Lisang Liu, Wenwei Chen, Zhihui Lin, Dongwei He and Jian Chen
Energies 2025, 18(12), 3136; https://doi.org/10.3390/en18123136 - 14 Jun 2025
Viewed by 435
Abstract
Accurate forecasting of photovoltaic (PV) power generation is crucial for optimizing grid operation and ensuring a reliable power supply. However, the inherent volatility and intermittency of solar energy pose significant challenges to grid stability and energy management. This paper proposes a learning model [...] Read more.
Accurate forecasting of photovoltaic (PV) power generation is crucial for optimizing grid operation and ensuring a reliable power supply. However, the inherent volatility and intermittency of solar energy pose significant challenges to grid stability and energy management. This paper proposes a learning model named CECSVB-LSTM, which integrates several advanced techniques: a bidirectional long short-term memory (BILSTM) network, Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), variational mode decomposition (VMD), and the Sparrow Search Algorithm (CSSSA) incorporating circle chaos mapping and the Sine Cosine Algorithm. The model first uses CEEMDAN to decompose PV power data into Intrinsic Mode Functions (IMFs), capturing complex nonlinear features. Then, the CSSSA is employed to optimize VMD parameters, particularly the number of modes and the penalty factor, ensuring optimal signal decomposition. Subsequently, BILSTM is used to model time dependencies and predict future PV power output. Empirical tests on a PV dataset from an Australian solar power plant show that the proposed CECSVB-LSTM model significantly outperforms traditional single models and combination models with different decomposition methods, improving R2 by more than 7.98% and reducing the root mean square error (RMSE) and mean absolute error (MAE) by at least 60% and 55%, respectively. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

21 pages, 2175 KiB  
Article
Performance Ratio Estimation for Building-Integrated Photovoltaics—Thermal and Angular Characterisation
by Ana Marcos-Castro, Carlos Sanz-Saiz, Jesús Polo and Nuria Martín-Chivelet
Appl. Sci. 2025, 15(12), 6579; https://doi.org/10.3390/app15126579 - 11 Jun 2025
Viewed by 514
Abstract
Building-integrated photovoltaics (BIPV) requires tools that improve and facilitate simulating and predicting the system’s output energy. The efficiency of a photovoltaic (PV) system can be determined by the performance ratio (PR), which relates the actual system’s output energy to the theoretical [...] Read more.
Building-integrated photovoltaics (BIPV) requires tools that improve and facilitate simulating and predicting the system’s output energy. The efficiency of a photovoltaic (PV) system can be determined by the performance ratio (PR), which relates the actual system’s output energy to the theoretical output according to the installed power and the solar irradiation, thus accounting for the power losses the PV system undergoes. Among the different parameters affecting PR, module temperature and the angle of incidence of irradiance are the most dependent on the BIPV application due to the varied module positioning. This paper assesses the suitability of several BIPV temperature models and determines the angular losses for any possible module positioning. The proposed methodology is easy to replicate and results in polar heatmap graphs to estimate PR at the desired location as a function of the tilt and azimuth angles of the modules. The calculations require irradiance, ambient temperature, and wind speed data, which can easily be obtained worldwide. Dynamic sky conditions are addressed through filters that smooth out quickly changing input data to avoid high and low peaks. The developed graphs are helpful in the decision-making process for BIPV designs by allowing the designer to estimate the expected PR of the BIPV system for any possible position of the modules on the building envelope, reducing the effect of uncertainties and resulting in more accurate and better predictions of the system’s output energy. The method applied to a BIPV façade in Madrid showed a deviation of less than 3% between the estimated and monitored PRs; the PR values ranged between 0.74 and 0.82, depending on the BIPV application and module position. Full article
(This article belongs to the Special Issue Advances in the Energy Efficiency and Thermal Comfort of Buildings)
Show Figures

Graphical abstract

13 pages, 2572 KiB  
Article
Predictive Control for Grid-Forming Single-Stage PV System Without Energy Storage
by Xiao Zeng, Pengcheng Yang, Hongda Cai, Jing Li, Yanghong Xia and Wei Wei
Sustainability 2025, 17(11), 5227; https://doi.org/10.3390/su17115227 - 5 Jun 2025
Viewed by 536
Abstract
Unlike diesel generators or energy storage systems, photovoltaic (PV) arrays lack inherent rotational inertia and have output limitations due to their operational environmental dependencies. These characteristics restrict their suitability as primary power system backbone components. This study proposes a grid-forming (GF) control strategy [...] Read more.
Unlike diesel generators or energy storage systems, photovoltaic (PV) arrays lack inherent rotational inertia and have output limitations due to their operational environmental dependencies. These characteristics restrict their suitability as primary power system backbone components. This study proposes a grid-forming (GF) control strategy for PV inverters in low voltage grid (LVG) using a model predictive control (MPC) approach. The proposed method introduces a novel predictive model accounting for capacitor dynamics to precisely regulate both AC-side output voltage and DC-side voltage. Furthermore, in this paper, P-V droop control replaces the traditional frequency regulation, achieving the real-time balance of DC/AC power and seamless sharing of multiple photovoltaic power sources. By integrating a modified cost function, the controller can flexibly switch between maximum power point tracking (MPPT) mode and power reserve mode according to varying output demands. The proposed strategy can provide advanced frequency stability, MPPT accuracy, and fast dynamic response under rapidly changing solar irradiance and load conditions. Simulation and experimental tests are carried out to validate the effectiveness of the proposed strategy. Full article
Show Figures

Figure 1

28 pages, 4771 KiB  
Article
Discrimination of High Impedance Fault in Microgrids: A Rule-Based Ensemble Approach with Supervised Data Discretisation
by Arangarajan Vinayagam, Suganthi Saravana Balaji, Mohandas R, Soumya Mishra, Ahmad Alshamayleh and Bharatiraja C
Processes 2025, 13(6), 1751; https://doi.org/10.3390/pr13061751 - 2 Jun 2025
Viewed by 633
Abstract
This research presents a voting ensemble classification model to distinguish high impedance faults (HIFs) from other transients in a photovoltaic (PV) integrated microgrid (MG). Due to their low fault current magnitudes, sporadic incidence, and non-linear character, HIFs are difficult to detect with a [...] Read more.
This research presents a voting ensemble classification model to distinguish high impedance faults (HIFs) from other transients in a photovoltaic (PV) integrated microgrid (MG). Due to their low fault current magnitudes, sporadic incidence, and non-linear character, HIFs are difficult to detect with a conventional protective system. A machine learning (ML)-based ensemble classifier is used in this work to classify HIF more accurately. The ensemble classifier improves overall accuracy by combining the strengths of many rule-based models; this decreases the likelihood of overfitting and increases the robustness of classification. The ensemble classifier includes a classification process into two steps. The first phase extracts features from HIFs and other transient signals using the discrete wavelet transform (DWT) technique. A supervised discretisation approach is then used to discretise these attributes. Using discretised features, the rule-based classifiers like decision tree (DT), Java repeated incremental pruning (JRIP), and partial decision tree (PART) are trained in the second phase. In the classification step, the voting ensemble technique applies the rule of an average probability over the output predictions of rule-based classifiers to obtain the final target of classes. Under standard test conditions (STCs) and real-time weather circumstances, the ensemble technique surpasses individual classifiers in accuracy (95%), HIF detection success rate (93.3%), and overall performance metrics. Feature discretisation boosts classification accuracy to 98.75% and HIF detection to 95%. Additionally, the ensemble model’s efficacy is confirmed by classifying HIF from other transients in the IEEE 13-bus standard network. Furthermore, the ensemble model performs well, even with noisy event data. The proposed model provides higher classification accuracy in both PV-connected MG and IEEE 13 bus networks, allowing power systems to have effective protection against faults with improved reliability. Full article
Show Figures

Figure 1

19 pages, 4741 KiB  
Article
A Day-Ahead PV Power Forecasting Method Based on Irradiance Correction and Weather Mode Reliability Decision
by Haonan Dai, Yumo Zhang and Fei Wang
Energies 2025, 18(11), 2809; https://doi.org/10.3390/en18112809 - 28 May 2025
Viewed by 536
Abstract
Accurate day-ahead photovoltaics (PV) power forecasting results are significant for power grid operation. According to different weather modes, the existing research has established a classification forecast framework to improve the accuracy of day-ahead forecasts. However, the existing framework still has the following two [...] Read more.
Accurate day-ahead photovoltaics (PV) power forecasting results are significant for power grid operation. According to different weather modes, the existing research has established a classification forecast framework to improve the accuracy of day-ahead forecasts. However, the existing framework still has the following two problems: (1) weather mode prediction and power forecasting are highly dependent on the accuracy of numerical weather prediction (NWP), but the existing classification forecasting framework ignores the impact from NWP errors; (2) the validity of the classification forecasting framework comes from the accurate prediction of weather modes, but the existing framework lacks the analysis and decision-making mechanism of the reliability of weather mode prediction results, which will lead to a significant decline in the overall accuracy when weather modes are wrongly predicted. Therefore, this paper proposes a day-ahead PV power forecasting method based on irradiance correction and weather mode reliability decision. Firstly, based on the measured irradiance, K-means clustering method is used to obtain the daily actual weather mode labels; secondly, considering the coupling relationship of meteorological elements, the graph convolutional network (GCN) model is used to correct the predicted irradiance by using multiple meteorological elements of NWP data; thirdly, the weather mode label is converted into one-heat code, and a weather mode reliability prediction model based on a convolutional neural network (CNN) is constructed, and then the prediction strategy of the day to be forecasted is decided; finally, based on the weather mode reliability prediction results, transformer model are established for unreliable weather and credible weather respectively. The simulation results of the ablation experiments show that classification prediction is an effective strategy to improve the forecasting accuracy of day-ahead PV output, which can be further improved by adding irradiance correction and weather mode reliability prediction modules. Full article
Show Figures

Figure 1

33 pages, 5679 KiB  
Article
Short-Term Photovoltaic Power Forecasting Based on an Improved Zebra Optimization Algorithm—Stochastic Configuration Network
by Yonggang Wang, Wenpeng Li, Haoran Chen, Yuanchu Ma, Bingbing Yu and Yadong Yu
Sensors 2025, 25(11), 3378; https://doi.org/10.3390/s25113378 - 27 May 2025
Viewed by 490
Abstract
The output of photovoltaic (PV) power generation systems remains uncertain primarily due to the uncontrollable nature of weather conditions, which may introduce disturbances to the power grid upon integrating PV systems. Accurate short-term PV power forecasting is an essential approach for ensuring the [...] Read more.
The output of photovoltaic (PV) power generation systems remains uncertain primarily due to the uncontrollable nature of weather conditions, which may introduce disturbances to the power grid upon integrating PV systems. Accurate short-term PV power forecasting is an essential approach for ensuring the stability of the power system. The paper proposes a short-term PV power forecasting model based on improved zebra optimization algorithm (IZOA)-stochastic configuration network (SCN). First, the historical PV data are divided into three weather patterns, effectively reducing the uncertainty of PV power. Second, a prediction model based on SCN is developed. To enhance the forecasting model’s accuracy even further, the IZOA is introduced to optimize the key parameters of the SCN. Finally, IZOA-SCN is employed for short-term PV power through various weather patterns. Experiment results show that the proposed method significantly improves the prediction accuracy in contrast to other comparison models. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

Back to TopTop