Short-Term Photovoltaic Power Forecasting Based on an Improved Zebra Optimization Algorithm—Stochastic Configuration Network
Abstract
:1. Introduction
- (1)
- To mitigate the impact of weather-induced fluctuations, K-means clustering is utilized based on global horizontal irradiance (GHI) to classify the data. Additionally, by employing Pearson correlation analysis, meteorological factors with high correlation to PV output are selected as model inputs.
- (2)
- To avoid falling into local optima and to improve search efficiency, an IZOA is proposed in this paper, integrating the opposition-based differential evolution (ODE), Chebyshev chaotic mapping, and nonlinear decreasing strategy into ZOA to improve the convergence performance.
- (3)
- This paper applies SCN to the domain of PV power forecasting and utilizes IZOA to optimize the critical parameters of SCN. Simulations exhibit that generalization capabilities of the SCN model are enhanced, thus enhancing predictive accuracy.
2. Related Work
2.1. Deep Neural Network
2.2. Stochastic Configuration Network
2.3. Zebra Optimization Algorithm
- Phase 1: Initialization
- Phase 2: Foraging behavior
- Phase 3: Defense strategies
3. Improved Zebra Optimization Algorithm (IZOA)
3.1. Chebyshev Chaotic Mapping
3.2. Population Mutation Mechanism Based on Opposition-Based Differential Evolution (ODE)
- (a)
- Opposition-Based Learning (OBL)
- (b)
- Differential Evolution (DE)
- (1)
- Mutation
- (2)
- Crossover
- (3)
- Selection
3.3. Nonlinear Decreasing Strategy
4. Establishment of IZOA-SCN Model
5. Results and Data Analysis
5.1. Optimizer Performance Analysis
5.2. Data Processing
5.2.1. Meteorological Characteristics Selection
5.2.2. Weather Clustering Method Based on K-Means
5.3. Results
5.3.1. Evaluating Indicator
5.3.2. Forecast Results and Analysis
5.3.3. Model Evaluation Based on Statistical Experiments
5.3.4. Model Ablation Study
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, H.; Yi, H.; Peng, J.; Wang, G.; Liu, Y.; Jiang, H.; Liu, W. Deterministic and probabilistic forecasting of photovoltaic power based on deep convolutional neural network. Energy Convers. Manag. 2017, 153, 409–422. [Google Scholar] [CrossRef]
- Ahmed, R.; Sreeram, V.; Mishra, Y.; Arif, M.D. A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization. Renew. Sustain. Energy Rev. 2020, 124, 109792. [Google Scholar] [CrossRef]
- Semero, Y.K.; Zheng, D.; Zhang, J. A PSO-ANFIS based hybrid approach for short term PV power prediction in microgrids. Electr. Power Compon. Syst. 2018, 46, 95–103. [Google Scholar] [CrossRef]
- Ding, Z.; Wen, X.; Tan, Q.; Yang, T.; Fang, G.; Lei, X.; Zhang, Y.; Wang, H. A forecast-driven decision-making model for long-term operation of a hydro-wind-photovoltaic hybrid system. Appl. Energy 2021, 291, 116820. [Google Scholar] [CrossRef]
- Limouni, T.; Yaagoubi, R.; Bouziane, K.; Guissi, K.; Baali, E.H. Accurate one step and multistep forecasting of very short-term PV power using LSTM-TCN model. Renew. Energy 2023, 205, 1010–1024. [Google Scholar] [CrossRef]
- Zhang, C.; Tao, Z.; Xiong, J.; Qian, S.; Fu, Y.; Ji, J.; Nazir, M.S.; Peng, T. Research and application of a novel weight-based evolutionary ensemble model using principal component analysis for wind power prediction. Renew. Energy 2024, 232, 121085. [Google Scholar] [CrossRef]
- Pan, M.; Li, C.; Gao, R.; Huang, Y.; You, H.; Gu, T.; Qin, F. Photovoltaic power forecasting based on a support vector machine with improved ant colony optimization. J. Clean. Prod. 2020, 277, 123948. [Google Scholar] [CrossRef]
- Hu, K.; Cao, S.; Wang, L.; Li, W.; Lv, M. A new ultra-short-term photovoltaic power prediction model based on ground-based cloud images. J. Clean. Prod. 2018, 200, 731–745. [Google Scholar] [CrossRef]
- Almonacid, F.; Pérez-Higueras, P.; Fernández, E.F.; Hontoria, L. A methodology based on dynamic artificial neural network for short-term forecasting of the power output of a PV generator. Energy Convers. Manag. 2014, 85, 389–398. [Google Scholar] [CrossRef]
- Lin, G.-Q.; Li, L.-L.; Tseng, M.-L.; Liu, H.-M.; Yuan, D.-D.; Tan, R.R. An improved moth-flame optimization algorithm for support vector machine prediction of photovoltaic power generation. J. Clean. Prod. 2020, 253, 119966. [Google Scholar] [CrossRef]
- Fara, L.; Diaconu, A.; Craciunescu, D.; Fara, S. Forecasting of energy production for photovoltaic systems based on ARIMA and ANN advanced models. Int. J. Photoenergy 2021, 2021, 6777488. [Google Scholar] [CrossRef]
- Prema, V.; Rao, K.U. Development of statistical time series models for solar power prediction. Renew. Energy 2015, 83, 100–109. [Google Scholar] [CrossRef]
- Shi, J.; Lee, W.-J.; Liu, Y.; Yang, Y.; Wang, P. Forecasting power output of photovoltaic systems based on weather classification and support vector machines. IEEE Trans. Ind. Appl. 2012, 48, 1064–1069. [Google Scholar] [CrossRef]
- Gao, M.; Li, J.; Hong, F.; Long, D. Short-term forecasting of power production in a large-scale photovoltaic plant based on LSTM. Appl. Sci. 2019, 9, 3192. [Google Scholar] [CrossRef]
- Lim, S.-C.; Huh, J.-H.; Hong, S.-H.; Park, C.-Y.; Kim, J.-C. Solar power forecasting using CNN-LSTM hybrid model. Energies 2022, 15, 8233. [Google Scholar] [CrossRef]
- Zhou, X.; Cheng, Y.; Qiao, D.; Huo, Z. An adaptive surrogate model-based fast planning for swarm safe migration along halo orbit. Acta Astronaut. 2022, 194, 309–322. [Google Scholar] [CrossRef]
- Ye, N.; Long, T.; Meng, J.; Shi, R.; Zhang, B. Surrogate-assisted optimization for anti-ship missile body configuration considering high-velocity water touching. Chin. J. Aeronaut. 2023, 36, 268–281. [Google Scholar] [CrossRef]
- Chen, Q.; Wei, C.; Shi, Y.; Meng, Y. Satellite swarm reconfiguration planning based on surrogate models. J. Guid. Control. Dyn. 2020, 43, 1750–1756. [Google Scholar] [CrossRef]
- Wang, Y.; Liao, W.; Chang, Y. Gated recurrent unit network-based short-term photovoltaic forecasting. Energies 2018, 11, 2163. [Google Scholar] [CrossRef]
- Li, P.; Zhou, K.; Lu, X.; Yang, S. A hybrid deep learning model for short-term PV power forecasting. Appl. Energy 2020, 259, 114216. [Google Scholar] [CrossRef]
- Kukharova, T.; Maltsev, P.; Novozhilov, I. Development of a Control System for Pressure Distribution During Gas Production in a Structurally Complex Field. Appl. Syst. Innov. 2025, 8, 51. [Google Scholar] [CrossRef]
- Wang, D. Randomized algorithms for training neural networks. Inf. Sci. 2016, 100, 126–128. [Google Scholar] [CrossRef]
- Mahoney, M.W. Randomized algorithms for matrices and data. Found. Trends® Mach. Learn. 2011, 3, 123–224. [Google Scholar]
- Zhu, H.; Sun, Y.; Jiang, T.; Zhang, X.; Zhou, H.; Hu, S.; Kang, M. An FCM based weather type classification method considering photovoltaic output and meteorological characteristics and its application in power interval forecasting. IET Renew. Power Gener. 2024, 18, 238–260. [Google Scholar] [CrossRef]
- Pao, Y.-H.; Takefuji, Y. Functional-link net computing: Theory, system architecture, and functionalities. Computer 1992, 25, 76–79. [Google Scholar] [CrossRef]
- Kushwaha, V.; Pindoriya, N.M. A SARIMA-RVFL hybrid model assisted by wavelet decomposition for very short-term solar PV power generation forecast. Renew. Energy 2019, 140, 124–139. [Google Scholar] [CrossRef]
- Elaziz, M.A.; Senthilraja, S.; Zayed, M.E.; Elsheikh, A.H.; Mostafa, R.R.; Lu, S. A new random vector functional link integrated with mayfly optimization algorithm for performance prediction of solar photovoltaic thermal collector combined with electrolytic hydrogen production system. Appl. Therm. Eng. 2021, 193, 117055. [Google Scholar] [CrossRef]
- Wang, D.; Li, M. Stochastic configuration networks: Fundamentals and algorithms. IEEE Trans. Cybern. 2017, 47, 3466–3479. [Google Scholar] [CrossRef]
- Liu, W.; Xu, Y. Randomised learning-based hybrid ensemble model for probabilistic forecasting of PV power generation. IET Gener. Transm. Distrib. 2020, 14, 5909–5917. [Google Scholar] [CrossRef]
- Dai, W.; Li, D.; Zhou, P.; Chai, T. Stochastic configuration networks with block increments for data modeling in process industries. Inf. Sci. 2019, 484, 367–386. [Google Scholar] [CrossRef]
- Trojovska, E.; Dehghani, M.; Trojovsky, P. Zebra optimization algorithm: A new bio-inspired optimization algorithm for solving optimization algorithm. IEEE Access 2022, 10, 49445–49473. [Google Scholar] [CrossRef]
- Gokulakrishan, D.; Ramakrishnan, R.; Saritha, G.; Sreedevi, B. An advancing method for web service reliability and scalability using ResNet convolution neural network optimized with zebra optimization Algorithm. Trans. Emerg. Telecommun. Technol. 2024, 35, e4968. [Google Scholar] [CrossRef]
- Karthick, M.; Rukkumani, V. Enhanced cascaded converters for switched reluctance motor-fed electric vehicles. IETE J. Res. 2024, 70, 914–935. [Google Scholar] [CrossRef]
- Wang, W.; Tian, J. An improved nonlinear tuna swarm optimization algorithm based on circle chaos map and levy flight operator. Electronics 2022, 11, 3678. [Google Scholar] [CrossRef]
- Rahnamayan, S.; Tizhoosh, H.R.; Salama, M.M.A. Opposition-based differential evolution. IEEE Trans. Evol. Comput. 2008, 12, 64–79. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, C.; Cheng, L.; Li, G. An approach for day-ahead interval forecasting of photovoltaic power: A novel DCGAN and LSTM based quantile regression modeling method. Energy Rep. 2022, 8, 14020–14033. [Google Scholar] [CrossRef]
- Raza, M.Q.; Mithulananthan, N.; Summerfield, A. Solar output power forecast using an ensemble framework with neural predictors and Bayesian adaptive combination. Sol. Energy 2018, 166, 226–241. [Google Scholar] [CrossRef]
- Almeida, M.P.; Muñoz, M.; de la Parra, I.; Perpiñán, O. Comparative study of PV power forecast using parametric and nonparametric PV models. Sol. Energy 2017, 155, 854–866. [Google Scholar] [CrossRef]
- Yu, B.; Wang, Y.; Wang, J.; Ma, Y.; Li, W.; Zheng, W. A hybrid model for short-term offshore wind power prediction combining Kepler optimization algorithm with variational mode decomposition and stochastic configuration networks. Int. J. Electr. Power Energy Syst. 2025, 168, 110703. [Google Scholar] [CrossRef]
- Wang, Y.; Hao, Y.; Zhao, K.; Yao, Y. Stochastic configuration networks for short-term power load forecasting. Inf. Sci. 2025, 689, 121489. [Google Scholar] [CrossRef]
Function | Dimension | Range |
---|---|---|
30 | [−100, 100] | |
30 | [−10, 10] | |
30 | [−100, 100] | |
30 | [−5.12, 5.12] | |
30 | [−32, 32] | |
30 | [−5, 5] |
Function | Algorithms | AVG | STD | Optimal |
---|---|---|---|---|
IZOA | 7.0024 × 10−314 | 0 | 4.9407 × 10−323 | |
ZOA | 4.9393 × 10−251 | 0 | 2.3053 × 10−261 | |
GWO | 4.2078 × 10−27 | 1.2424 × 10−26 | 5.8831 × 10−29 | |
WOA | 5.4801 × 10−75 | 1.7245 × 10−74 | 2.4443 × 10−83 | |
PSO | 0.25409 | 0.24676 | 0.079196 | |
RIME | 2.0523 | 0.67872 | 1.2152 | |
IZOA | 6.1121 × 10−171 | 0 | 3.8899 × 10−175 | |
ZOA | 2.922 × 10−132 | 7.7955 × 10−132 | 2.6854 × 10−138 | |
GWO | 8.4728 × 10−17 | 5.5396 × 10−17 | 1.2437 × 10−17 | |
WOA | 2.4134 × 10−52 | 7.2024 × 10−52 | 1.1527 × 10−56 | |
PSO | 0.063561 | 0.024854 | 0.032937 | |
RIME | 1.4435 | 1.0873 | 0.4416 | |
IZOA | 4.9213 × 10−190 | 0 | 7.8331 × 10−214 | |
ZOA | 7.7994 × 10−161 | 2.4663 × 10−160 | 3.9772 × 10−180 | |
GWO | 9.9272 × 10−6 | 2.7574 × 10−5 | 2.8674 × 10−8 | |
WOA | 38288.916 | 14914.0565 | 11776.3969 | |
PSO | 2384.4845 | 2198.1302 | 606.7415 | |
RIME | 1320.7304 | 415.1079 | 611.877 | |
IZOA | 0 | 0 | 0 | |
ZOA | 0 | 0 | 0 | |
GWO | 1.5218 | 2.7839 | 0 | |
WOA | 5.6843 × 10−15 | 1.7975 × 10−14 | 0 | |
PSO | 49.8859 | 9.6766 | 34.4649 | |
RIME | 56.1388 | 15.7847 | 32.1465 | |
IZOA | 4.4409 × 10−16 | 0 | 4.4409 × 10−16 | |
ZOA | 4.4409 × 10−16 | 0 | 4.4409 × 10−16 | |
GWO | 1.0134 × 10−13 | 1.9036×10−14 | 7.8604 × 10−14 | |
WOA | 4.7073 × 10−15 | 2.2469×10−15 | 4.4409 × 10−16 | |
PSO | 0.46163 | 0.47346 | 0.084786 | |
RIME | 2.2076 | 0.29868 | 1.891 | |
IZOA | 7.0024 × 10−314 | 0 | 4.9407 × 10−323 | |
ZOA | 4.9393 × 10−251 | 0 | 2.3053 × 10−261 | |
GWO | 4.2078 × 10−27 | 1.2424 × 10−26 | 5.8831 × 10−29 | |
WOA | 5.4801 × 10−75 | 1.7245 × 10−74 | 2.4443 × 10−83 | |
PSO | 0.25409 | 0.24676 | 0.079196 | |
RIME | 2.0523 | 0.67872 | 1.2152 |
Attributes | |
---|---|
Global horizontal irradiance | 0.99 |
Cloud opacity | −0.20 |
Zenith angle | −0.83 |
Azimuth | −0.03 |
Dew point temperature | 0.06 |
Atmospheric precipitation | 0.07 |
Relative humidity | −0.44 |
Snow depth | −0.08 |
Pressure | −0.05 |
Model (Sunny) | MAE | MSE | RMSE | MAPE (%) | |
---|---|---|---|---|---|
SCN | 1.3984 | 3.3014 | 1.8170 | 1.6487 | 0.9977 |
ZOA-SCN | 0.3739 | 0.2609 | 0.4441 | 0.3836 | 0.9998 |
IZOA-SCN | 0.2609 | 0.1011 | 0.3180 | 0.2824 | 0.9999 |
LSTM | 1.5364 | 3.6232 | 1.9035 | 1.5708 | 0.9988 |
PSO-SCN | 0.7174 | 0.9882 | 0.9941 | 0.7122 | 0.9996 |
SSA-SCN | 0.7095 | 0.7110 | 0.8438 | 0.7837 | 0.9994 |
TCN | 1.3371 | 3.8214 | 1.9548 | 1.2451 | 0.9983 |
GRU | 1.1699 | 1.8855 | 1.3731 | 1.4182 | 0.9992 |
Model (Cloudy) | MAE | MSE | RMSE | MAPE (%) | |
---|---|---|---|---|---|
SCN | 1.3165 | 4.5598 | 2.1354 | 6.2283 | 0.9982 |
ZOA-SCN | 0.7431 | 0.7779 | 0.8820 | 1.8263 | 0.9991 |
IZOA-SCN | 0.2101 | 0.0779 | 0.2791 | 0.5601 | 0.9997 |
LSTM | 1.9525 | 5.4550 | 2.3356 | 3.9253 | 0.9981 |
PSO-SCN | 1.2554 | 2.2969 | 1.5155 | 2.2459 | 0.9991 |
SSA-SCN | 0.8594 | 1.1176 | 1.0572 | 2.0612 | 0.9995 |
TCN | 1.538 | 4.6289 | 2.1515 | 2.1954 | 0.9988 |
GRU | 1.5760 | 5.6070 | 2.3679 | 3.3880 | 0.9980 |
Model (Rainy) | MAE | MSE | RMSE | MAPE (%) | |
---|---|---|---|---|---|
SCN | 1.1213 | 2.2044 | 1.4847 | 2.2454 | 0.9968 |
ZOA-SCN | 0.4832 | 0.4249 | 0.6519 | 0.8074 | 0.9994 |
IZOA-SCN | 0.2709 | 0.0993 | 0.3152 | 0.5656 | 0.9998 |
LSTM | 2.0995 | 6.1442 | 2.4788 | 3.9241 | 0.9927 |
PSO-SCN | 0.8419 | 1.1625 | 1.0782 | 1.4624 | 0.9983 |
SSA-SCN | 0.7193 | 0.7652 | 0.8747 | 1.3840 | 0.9990 |
TCN | 1.1436 | 1.8426 | 1.3574 | 2.1431 | 0.9995 |
GRU | 1.7836 | 5.0694 | 2.2515 | 3.2302 | 0.9977 |
Model (Sunny) | MAE | MSE | RMSE | MAPE (%) | |
---|---|---|---|---|---|
SCN | 0.5165 | 0.6264 | 0.7914 | 6.8209 | 0.9995 |
ZOA-SCN | 0.3685 | 0.1967 | 0.4434 | 1.8358 | 0.9998 |
IZOA-SCN | 0.2432 | 0.0836 | 0.2892 | 4.6897 | 0.9999 |
LSTM | 0.7193 | 0.7880 | 0.8877 | 12.5643 | 0.9990 |
PSO-SCN | 0.4795 | 0.3583 | 0.5986 | 6.6481 | 0.9997 |
SSA-SCN | 0.4608 | 0.2662 | 0.5159 | 15.4201 | 0.9998 |
GRU | 0.6156 | 0.5710 | 0.7756 | 18.3660 | 0.9994 |
TCN | 0.6473 | 1.2211 | 1.1050 | 12.5053 | 0.9994 |
Model (Cloudy) | MAE | MSE | RMSE | MAPE (%) | |
---|---|---|---|---|---|
SCN | 0.4579 | 0.3647 | 0.6039 | 12.2580 | 0.9995 |
ZOA-SCN | 0.2338 | 0.1389 | 0.3728 | 9.0799 | 0.9998 |
IZOA-SCN | 0.1888 | 0.0537 | 0.2319 | 6.1443 | 0.9999 |
LSTM | 0.5144 | 0.3706 | 0.6087 | 12.9821 | 0.9994 |
PSO-SCN | 0.4451 | 0.3414 | 0.5843 | 12.0781 | 0.9995 |
SSA-SCN | 0.3619 | 0.2075 | 0.4555 | 8.1989 | 0.9997 |
GRU | 0.4729 | 0.3563 | 0.5969 | 14.4412 | 0.9995 |
TCN | 0.4392 | 0.2934 | 0.5416 | 14.5031 | 0.9995 |
Model (Rainy) | MAE | MSE | RMSE | MAPE (%) | |
---|---|---|---|---|---|
SCN | 0.3099 | 0.1791 | 0.4232 | 7.0937 | 0.9996 |
ZOA-SCN | 0.1427 | 0.0314 | 0.1772 | 6.4546 | 0.9998 |
IZOA-SCN | 0.0512 | 0.0053 | 0.0732 | 0.7495 | 0.9999 |
LSTM | 0.5841 | 0.6699 | 0.8184 | 16.4726 | 0.9985 |
PSO-SCN | 0.2644 | 0.1645 | 0.4056 | 6.5522 | 0.9998 |
SSA-SCN | 0.2789 | 0.1294 | 0.3598 | 6.4320 | 0.9998 |
GRU | 0.4664 | 0.2962 | 0.5442 | 16.3502 | 0.9995 |
TCN | 0.7261 | 0.7188 | 0.8478 | 15.955 | 0.9989 |
Weather Pattern | Model | Elapsed Time (s) |
---|---|---|
Sunny | SCN | 1.779 |
ZOA-SCN | 13.871 | |
IZOA-SCN | 30.652 | |
LSTM | 20.173 | |
PSO-SCN | 14.527 | |
SSA-SCN | 17.769 | |
GRU | 18.449 | |
TCN | 15.592 | |
Cloudy | SCN | 1.850 |
ZOA-SCN | 16.987 | |
IZOA-SCN | 38.551 | |
LSTM | 21.024 | |
PSO-SCN | 18.618 | |
SSA-SCN | 17.301 | |
GRU | 20.673 | |
TCN | 17.099 | |
Rainy | SCN | 1.971 |
ZOA-SCN | 20.745 | |
IZOA-SCN | 45.501 | |
LSTM | 20.767 | |
PSO-SCN | 22.219 | |
SSA-SCN | 23.444 | |
GRU | 21.394 | |
TCN | 20.915 |
Model (Sunny) | Wilcoxon Text | Friedman Text |
---|---|---|
ZOA | 0.011342 < 0.05 | |
SCN | 0.0067885 < 0.05 | |
LSTM | 1.9587 × 10−6 < 0.05 | |
SSA-SCN | 0.022494 < 0.05 | 5.223610314 × 10−15 < 0.05 |
PSO-SCN | 7.8198 × 10−6 < 0.05 | |
GRU | 0.00010889 < 0.05 | |
TCN | 9.3297 × 10−5 < 0.05 |
Model (Cloudy) | Wilcoxon Text | Friedman Text |
---|---|---|
ZOA | 0.019704 < 0.05 | |
SCN | 0.0012284 < 0.05 | |
LSTM | 0.0048087 < 0.05 | |
SSA-SCN | 0.0062941 < 0.05 | 1.1907238022 × 10−10 < 0.05 |
PSO-SCN | 0.014011 < 0.05 | |
GRU | 0.0048087 < 0.05 | |
TCN | 0.0060593 < 0.05 |
Model (Rainy) | Wilcoxon Text | Friedman Text |
---|---|---|
ZOA | 1.8409 × 10−6 < 0.05 | |
SCN | 0.013531 < 0.05 | |
LSTM | 0.0067885 < 0.05 | |
SSA-SCN | 9.3297 × 10−5 < 0.05 | 1.01269394479 × 10−30 < 0.05 |
PSO-SCN | 1.6479 × 10−8 < 0.05 | |
GRU | 2.5418 × 10−8 < 0.05 | |
TCN | 1.6479 × 10−8 < 0.05 |
Model | MAE | MSE | RMSE |
---|---|---|---|
IZOA-SCN | 0.1608 | 0.0361 | 0.1901 |
ZOA-SCN | 0.6580 | 0.7087 | 0.8418 |
SCN | 1.4587 | 4.0571 | 2.0142 |
Hidden Nodes | ) | ) | |
---|---|---|---|
3.3908 | 19.0944 | 4.3697 | |
2.265 | 8.7172 | 2.9525 | |
2.1474 | 7.9684 | 2.8228 | |
1.4637 | 4.1835 | 2.0454 | |
2.1468 | 8.0745 | 2.8416 | |
2.1879 | 8.4540 | 2.9076 |
Candidate Nodes | ) | ) | |
---|---|---|---|
2.7614 | 17.9493 | 4.2367 | |
1.4637 | 4.1835 | 2.0454 | |
1.9404 | 6.9839 | 2.6427 | |
2.2223 | 7.7108 | 2.7768 | |
2.8059 | 14.8741 | 3.8367 | |
2.8089 | 14.7204 | 3.8567 |
Maximum Iterations | ) | ) | |
---|---|---|---|
0.49700 | 0.35266 | 0.59385 | |
0.38241 | 0.22795 | 0.47744 | |
0.36848 | 0.19665 | 0.44345 | |
0.61054 | 0.57563 | 0.75870 | |
1.18730 | 1.12210 | 1.76690 |
Population Size | ) | ) | |
---|---|---|---|
0.65755 | 0.56795 | 0.75362 | |
0.56288 | 0.51822 | 0.71988 | |
0.36848 | 0.19665 | 0.43345 | |
0.39902 | 0.24134 | 0.49126 | |
0.43038 | 0.28295 | 0.53193 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Li, W.; Chen, H.; Ma, Y.; Yu, B.; Yu, Y. Short-Term Photovoltaic Power Forecasting Based on an Improved Zebra Optimization Algorithm—Stochastic Configuration Network. Sensors 2025, 25, 3378. https://doi.org/10.3390/s25113378
Wang Y, Li W, Chen H, Ma Y, Yu B, Yu Y. Short-Term Photovoltaic Power Forecasting Based on an Improved Zebra Optimization Algorithm—Stochastic Configuration Network. Sensors. 2025; 25(11):3378. https://doi.org/10.3390/s25113378
Chicago/Turabian StyleWang, Yonggang, Wenpeng Li, Haoran Chen, Yuanchu Ma, Bingbing Yu, and Yadong Yu. 2025. "Short-Term Photovoltaic Power Forecasting Based on an Improved Zebra Optimization Algorithm—Stochastic Configuration Network" Sensors 25, no. 11: 3378. https://doi.org/10.3390/s25113378
APA StyleWang, Y., Li, W., Chen, H., Ma, Y., Yu, B., & Yu, Y. (2025). Short-Term Photovoltaic Power Forecasting Based on an Improved Zebra Optimization Algorithm—Stochastic Configuration Network. Sensors, 25(11), 3378. https://doi.org/10.3390/s25113378