Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (13,680)

Search Parameters:
Keywords = PM16

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1418 KB  
Article
Phage PM16 Therapy Induce Long-Term Protective Immunity Against Proteus mirabilis via Macrophage Priming
by Lina Al Allaf, Anton V. Chechushkov, Vera V. Morozova, Yulia N. Kozlova, Tatiana A. Ushakova and Nina V. Tikunova
Pathogens 2026, 15(1), 99; https://doi.org/10.3390/pathogens15010099 (registering DOI) - 16 Jan 2026
Abstract
Bacteriophages, traditionally viewed solely as antibacterial agents, are increasingly being studied for their immunomodulatory properties. In this study, we demonstrate that PM16 phage therapy not only effectively controls subcutaneous Proteus mirabilis infection in mice but also induces long-term specific humoral immunity against subsequent [...] Read more.
Bacteriophages, traditionally viewed solely as antibacterial agents, are increasingly being studied for their immunomodulatory properties. In this study, we demonstrate that PM16 phage therapy not only effectively controls subcutaneous Proteus mirabilis infection in mice but also induces long-term specific humoral immunity against subsequent reinfection. This immunomodulatory effect was dose-dependent. In vitro, PM16 directly activates macrophages, leading to increased production of proinflammatory cytokines (tumor necrosis factor-α and interleukin-1β) and inducible nitric oxide synthase, and enhances macrophage bactericidal activity against P. mirabilis. We assume that the enhancement of the adaptive immune response is mediated not by the phage acting as a classical antigenic adjuvant but by its ability to prime innate immune cells, specifically macrophages. This priming leads to more efficient bacterial clearance, antigen presentation, and the formation of protective immunological memory. Full article
(This article belongs to the Section Bacterial Pathogens)
14 pages, 3162 KB  
Article
Novel Ultrafast Synthesis of Perovskites via Commercial Laser Engraving
by Pedro Piza-Ruiz, Griselda Mendoza-Gómez, Maria Luisa Camacho-Rios, Guillermo Manuel Herrera-Perez, Luis Carlos Rodriguez Pacheco, Kevin Isaac Contreras-Vargas, Daniel Lardizábal-Gutiérrez, Antonio Ramírez-DelaCruz and Caleb Carreno-Gallardo
Processes 2026, 14(2), 327; https://doi.org/10.3390/pr14020327 - 16 Jan 2026
Abstract
We present a rapid, energy-efficient, and ecofriendly route for the synthesis of alkaline earth titanate perovskites—CaTiO3, SrTiO3, and BaTiO3—using an affordable, commercially available CO2 laser engraver, commonly found in makerspaces and small-scale workshops. The method involves [...] Read more.
We present a rapid, energy-efficient, and ecofriendly route for the synthesis of alkaline earth titanate perovskites—CaTiO3, SrTiO3, and BaTiO3—using an affordable, commercially available CO2 laser engraver, commonly found in makerspaces and small-scale workshops. The method involves direct laser irradiation of compacted pellets composed of low-cost, abundant, and non-toxic precursors: TiO2 and alkaline earth carbonates (CaCO3, SrCO3, BaCO3). CaTiO3 and BaTiO3 were synthesized with phase purities exceeding 97%, eliminating the need for conventional high-temperature furnaces or prolonged thermal treatments. X-ray diffraction (XRD) coupled with Rietveld refinement confirmed the formation of orthorhombic CaTiO3 (Pbnm), cubic SrTiO3 (Pm3m), and tetragonal BaTiO3 (P4mm). Raman spectroscopy independently corroborated the perovskite structures, revealing vibrational fingerprints consistent with the expected crystal symmetries and Ti–O bonding environments. All samples contained only small amounts of unreacted anatase TiO2, while BaTiO3 exhibited a partially amorphous fraction, attributed to the sluggish crystallization kinetics of the Ba–Ti system and the rapid quenching inherent to laser processing. Transmission electron microscopy (TEM) revealed nanoparticles with average sizes of 50–150 nm, indicative of localized melting followed by ultrafast solidification. This solvent-free, low-energy, and highly accessible approach, enabled by widely available desktop laser systems, demonstrates exceptional simplicity, scalability, and sustainability. It offers a compelling alternative to conventional ceramic processing, with broad potential for the fabrication of functional oxides in applications ranging from electronics to photocatalysis. Full article
27 pages, 60245 KB  
Article
Tensile and Fatigue Performance of Cold-Work Tool Steels for Adjustable Forming Tools
by Kaarel Siimut, Kasper Mygind Madsen, Ermanno Ceron and Chris Valentin Nielsen
Appl. Sci. 2026, 16(2), 954; https://doi.org/10.3390/app16020954 - 16 Jan 2026
Abstract
Forming tools adjustable by tensile elastic deformations offer opportunities for improved process control and reduced wear in high-volume metal forming processes such as ironing. However, the lack of tensile and fatigue data for hardened cold-work tool steels limits their broader adoption. This study [...] Read more.
Forming tools adjustable by tensile elastic deformations offer opportunities for improved process control and reduced wear in high-volume metal forming processes such as ironing. However, the lack of tensile and fatigue data for hardened cold-work tool steels limits their broader adoption. This study investigates the mechanical performance of three tool steels—Vanadis®4 Extra SuperClean, Vancron® SuperClean, and Caldie®—through uniaxial tensile and fatigue testing, supplemented by destructive static and fatigue/wear tests on specimens representative of an adjustable ironing punch. Non-coated specimens exhibited ultimate tensile strengths above 2700 MPa with approximately 2% plastic strain, while coated specimens fractured in a brittle manner between 1600–1900 MPa. Fatigue life at stress ranges between 1450–1750 MPa varied from several thousand to over four million cycles, with crack initiation linked to non-metallic inclusions and precipitates 10–30 μm in size. Finite element simulations accurately linked failure observed in uniaxial tests to the component-level tests, confirming that first principal stress is a reliable predictor for punch failure. All punch specimens withstood 106 cycles at diameter changes up to 140 μm (4‰), with coated punches exhibiting minimal wear and non-coated ones showing localized surface damage. The findings support material and coating selection for adjustable forming tools and highlight opportunities for further optimization. Full article
(This article belongs to the Special Issue Fatigue and Fracture Behavior of Engineering Materials)
19 pages, 1142 KB  
Article
Impact of Lignite Combustion Air Pollution on Acute Coronary Syndrome and Atrial Fibrillation Incidence in Western Macedonia, Greece
by Vasileios Vasilakopoulos, Ioannis Kanonidis, Christina-Ioanna Papadopoulou, George Fragulis and Stergios Ganatsios
Int. J. Environ. Res. Public Health 2026, 23(1), 113; https://doi.org/10.3390/ijerph23010113 - 16 Jan 2026
Abstract
Air pollution from lignite combustion represents a major environmental and public health concern, particularly for cardiovascular disease. This study investigated the relationship between ambient air pollution and hospital admissions for Acute Coronary Syndromes (ACS) and Atrial Fibrillation (AF) in Western Macedonia, Greece—a region [...] Read more.
Air pollution from lignite combustion represents a major environmental and public health concern, particularly for cardiovascular disease. This study investigated the relationship between ambient air pollution and hospital admissions for Acute Coronary Syndromes (ACS) and Atrial Fibrillation (AF) in Western Macedonia, Greece—a region historically dominated by lignite mining and power generation. Air quality data for PM10, SO2, and NOx from 2011–2014 and 2021 were analyzed alongside hospital admission records from four regional hospitals (Kozani, Ptolemaida, Florina, Grevena). Spatial analyses revealed significantly higher pollutant concentrations and cardiovascular admissions in high-exposure areas near power plants compared with the control area. Temporal analyses demonstrated a pronounced decline in pollutant levels between 2014 and 2021, coinciding with lignite phase-out and accompanied by a marked reduction in ACS and AF hospitalizations, particularly in the high-exposure areas of Ptolemaida and Florina. Correlation analyses indicated modest but significant positive associations between monthly pollutant concentrations and cardiovascular admissions. These findings provide real-world evidence that reductions in air pollution following lignite decommissioning were associated with improved cardiovascular outcomes. The study underscores the medical importance of air quality improvement and highlights emission reduction as a critical strategy for cardiovascular disease prevention in transitioning energy regions. Full article
Show Figures

Figure 1

14 pages, 2941 KB  
Article
High-Sensitivity Optical Sensor Driven by the High-Q Quasi-Bound States in the Continuum of an Asymmetric Bow-Tie Metasurface
by Zanhui Chen, Jiandao Huang, Qinghao Tan, Gongli Xiao, Tangyou Sun, Fabi Zhang, Ahmad Syahrin Idris, Qiping Zou, Haiou Li and Guowei Lu
Photonics 2026, 13(1), 77; https://doi.org/10.3390/photonics13010077 - 16 Jan 2026
Abstract
All-dielectric metasurfaces based on quasi-bound states in the continuum (quasi-BICs) have emerged as a powerful platform for nanophotonic sensing, as they support high-Q resonances and strong near-field enhancements. Herein, we propose and numerically investigate an asymmetric bow-tie metasurface composed of two silicon semi-cylinders [...] Read more.
All-dielectric metasurfaces based on quasi-bound states in the continuum (quasi-BICs) have emerged as a powerful platform for nanophotonic sensing, as they support high-Q resonances and strong near-field enhancements. Herein, we propose and numerically investigate an asymmetric bow-tie metasurface composed of two silicon semi-cylinders with unequal radii and a central bar to achieve a quasi-BIC resonance with a Q-factor of 11,000. The transition mechanism of the BIC modes in the asymmetric bow-tie metasurface is analyzed. Additionally, the spectral features of the asymmetric bow-tie metasurface as a function of the refractive index and temperature of the local environment are also investigated. The proposed structure exhibits a refractive index sensitivity of 454 nm/RIU and a temperature sensitivity of 134 pm/°C. Furthermore, a high figure of merit (FOM) of 3159 RIU−1 is achieved, and the nearly 100% modulation depth maintained across three distinct resonance dips. Our study suggests that the proposed asymmetric bow-tie metasurface offers a promising approach for the development of high-sensitivity biosensing platforms. Full article
Show Figures

Figure 1

17 pages, 1703 KB  
Article
β-Cyclodextrin Inclusion Complexes of Cinnamomum camphora Essential Oil: A Comparative Study on Encapsulation Strategies, Physicochemical Stability, and Cytotoxic Profile
by José Adão Carvalho Nascimento Júnior, Anamaria Mendonça Santos, Ana Maria Santos Oliveira, Cláudio Carvalho Santana Júnior, Saravanan Shanmugam, Antonella Osses Toledo, Natalia Juica, Mikele Cândida Sousa de Sant’Anna, Adriano Antunes de Souza Araújo, Luis Constandil, Jeffri S. Retamal and Mairim Russo Serafini
Pharmaceutics 2026, 18(1), 117; https://doi.org/10.3390/pharmaceutics18010117 - 16 Jan 2026
Abstract
Background/Objectives: Essential oils (EOs) from plants of the genus Cinnamomum have been widely used based on their antimicrobial, antioxidant, and anti-inflammatory properties. However, their elevated volatility and limited aqueous solubility restrict their use in pharmaceutical and food formulations. Cyclodextrins (CDs) have emerged [...] Read more.
Background/Objectives: Essential oils (EOs) from plants of the genus Cinnamomum have been widely used based on their antimicrobial, antioxidant, and anti-inflammatory properties. However, their elevated volatility and limited aqueous solubility restrict their use in pharmaceutical and food formulations. Cyclodextrins (CDs) have emerged as a promising strategy to overcome these limitations through the formation of inclusion complexes. Methods: In this study, inclusion complexes of essential oil from C. camphora L. (EOCNM) with β-cyclodextrin (β-CD) were developed using physical mixing (PM), ultrasonic treatment (US), and freeze-drying (FD). The inclusion complexes were physicochemically characterized by differential scanning calorimetry (DSC), thermogravimetric analysis (TG/DTG), X-ray diffraction (XRD), and scanning electron microscopy (SEM) to evaluate their physicochemical interactions and complexation efficiency. Results: Our results demonstrated successful complex formation, with the FD and US methods showing greater amorphization and stronger inclusion characteristics compared to the PM method. Thermal analysis confirmed improved physicochemical stability of the essential oil when complexed with β-CD. Furthermore, the cytotoxicity assay of the complexes was assessed using the MTT assay and J774 macrophage cells. The complexes exhibited low cytotoxicity, indicating their potential biocompatibility for biomedical and food applications. Conclusions: Overall, β-CD encapsulation effectively enhanced the physicochemical stability and safety profile of C. camphora essential oil, providing a promising strategy for its controlled delivery and protection against degradation. Full article
(This article belongs to the Special Issue Advanced Drug Delivery Systems for Natural Products)
Show Figures

Graphical abstract

10 pages, 2756 KB  
Article
Tapered Fiber Bragg Grating Fabry–Pérot Cavity for Sensitivity-Enhanced Strain Sensing
by Jinchen Zhang, Chao Wang, Rui Dai, Yaqi Tang and Junhui Hu
Sensors 2026, 26(2), 581; https://doi.org/10.3390/s26020581 - 15 Jan 2026
Abstract
This paper presents a novel optical fiber axial strain sensor based on a Fabry–Perot interferometer (FPI) cavity incorporating Fiber Bragg Gratings (FBGs) and a tapered fiber, which has been experimentally validated. The sensor structure primarily consists of two identical FBGs with a bi-conical [...] Read more.
This paper presents a novel optical fiber axial strain sensor based on a Fabry–Perot interferometer (FPI) cavity incorporating Fiber Bragg Gratings (FBGs) and a tapered fiber, which has been experimentally validated. The sensor structure primarily consists of two identical FBGs with a bi-conical tapered fiber segment between them, achieving a strain sensitivity of 13.19 pm/με. This represents a 12-fold enhancement compared to conventional FBG-FPI, along with a resolution limit of 3.7 × 10−4 με. The proposed sensor offers notable advantages including low fabrication cost, compact structure, and excellent linearity, demonstrating significant potential for high-precision axial strain measurement applications. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

25 pages, 3009 KB  
Article
Participatory Energy Diagnosis for the Design of Sustainable Rural Energy Systems: Evidence from an Indigenous Community in Mexico
by Luis Bernardo López-Sosa, Carlos A. García, Ana Yésica Martínez Villalba and Ricardo González Cárabes
Resources 2026, 15(1), 16; https://doi.org/10.3390/resources15010016 - 15 Jan 2026
Abstract
The study of energy needs in rural areas continues to be an active field of research. Although numerous gaps hinder the achievement of a sustainable energy transition in these areas, it is necessary to develop comprehensive strategies that integrate local participation with the [...] Read more.
The study of energy needs in rural areas continues to be an active field of research. Although numerous gaps hinder the achievement of a sustainable energy transition in these areas, it is necessary to develop comprehensive strategies that integrate local participation with the implementation of efficient and appropriate energy technologies. This research analyzes local energy needs using a community participatory approach and considers four main stages, including a participatory diagnosis at the community level to identify energy needs, defining priority energy needs from the community’s viewpoint, estimating a baseline of the identified needs, their economic costs, and environmental impacts, constructing a scenario with a 20-year projection, and the benefits of implementing more efficient technologies. The results show that 98.9% of energy is destined for residential needs, 0.6% for community needs, and 0.5% for productive needs, and the economic expenditure follows the same hierarchy, while total emissions are estimated annually at just over 30,000 tCO2e and 3 tPM2.5. With the proposed scenario, at the end of year 20, a reduction in consumption of just over 200 TJ is estimated, together with present value savings of USD 490,000, and a decrease in emissions of approximately 27,000 tCO2e and 2.7 tPM2.5. This proposal is expected to contribute to encouraging research with broad community participation and to the formulation of strategies that enable a sustainable energy transition in rural contexts. Full article
Show Figures

Figure 1

20 pages, 1336 KB  
Article
Selection of Morphoagronomic Traits for Screening Tropical Forage Genotypes for Waterlogging Tolerance Under Controlled Conditions
by Clemeson Silva de Souza, Marcio de Oliveira Martins, Liana Jank, Sanzio Carvalho Lima Barrios, Carlos Mauricio Soares de Andrade, Márcia Silva de Mendonça and Giselle Mariano Lessa de Assis
Grasses 2026, 5(1), 5; https://doi.org/10.3390/grasses5010005 - 15 Jan 2026
Abstract
Poorly drained pastures in tropical America are recurrently degraded by Marandu Death Syndrome (MDS), affecting beef and dairy production. This study screened genotypes of Megathyrsus maximus and Urochloa spp. for waterlogging tolerance under controlled conditions to identify discriminant, easily measurable morphoagronomic traits suitable [...] Read more.
Poorly drained pastures in tropical America are recurrently degraded by Marandu Death Syndrome (MDS), affecting beef and dairy production. This study screened genotypes of Megathyrsus maximus and Urochloa spp. for waterlogging tolerance under controlled conditions to identify discriminant, easily measurable morphoagronomic traits suitable for breeding programs. Four experiments were conducted in factorial arrangement (five genotypes × two water regimes, with four replications), where morphoagronomic and physiological variables were analyzed using multivariate techniques. The first two principal components explained 75.17–88.60% of the total variation and stayed above 70% after variable reduction, without significantly altering genotype dispersion. Physiological responses showed a strong correlation with morphoagronomic traits. The most informative traits were the number of yellow and senescent leaves, number of tillers, SPAD index, leaf dry mass, and root dry mass. Genotypes were grouped by tolerance level. Among M. maximus, ‘Mombaça’ was the most tolerant, while PM13 and PM21 were the least. In Urochloa spp., U. humidicola cv. Tully was the most tolerant and ‘Marandu’ the least tolerant. Screening under controlled conditions is an alternative to distinguish genotypes with contrasting tolerance; however, because controlled environments do not fully reproduce the multifactorial nature of MDS, this approach is recommended only for early stages of breeding programs. Nevertheless, field evaluations on poorly drained soils under grazing remain essential to confirm tolerance to MDS. Full article
Show Figures

Figure 1

16 pages, 1213 KB  
Article
Impact of Subway Platform Screen Door Opening and Closing on Particulate Matter Concentration Distribution at Different Locations and Times: The Case of Xi’an
by Liang Xian, Yonghao Yuan and Xin Zhang
Buildings 2026, 16(2), 356; https://doi.org/10.3390/buildings16020356 - 15 Jan 2026
Abstract
To explore how the opening and closing of subway platform screen doors (PSD) affect particulate matter concentrations (PM10, PM2.5, and PM1.0) across different times (morning peak, off-peak, evening peak), and three key locations (subway tunnels, platforms, and [...] Read more.
To explore how the opening and closing of subway platform screen doors (PSD) affect particulate matter concentrations (PM10, PM2.5, and PM1.0) across different times (morning peak, off-peak, evening peak), and three key locations (subway tunnels, platforms, and waiting areas), we studied the Xi’an subway using a systematic monitoring approach, and a total of 6 monitoring points were monitored at 3 locations for 60 consecutive days of testing. The sampling time for each measurement point was 20 min, and a total of three groups were tested. The relationship between the opening/closing status of PSD and changes in particulate matter concentrations was then analyzed using statistical methods. The results showed that the particulate matter concentrations followed a sequential pattern: tunnel concentrations were higher than those in the waiting area, which in turn were higher than those at the platform center. PM10 concentrations exceeded China’s standards for indoor air quality (GB/T 18883-2022) at all three locations. For PM2.5, concentrations in the tunnel and waiting area exceeded the standard, while those at the platform center remained within the limit. Particles smaller than 1.0 μm constituted the dominant fraction of particulate matter in the tunnel, waiting area, and platform center. After the PSD opened, the peak average concentrations of PM10, PM2.5, and PM1.0 in the waiting area increased by 70.53%, 55.81%, and 42.41%, respectively, compared to the average concentrations before the train entered the station. PSD had a significant impact on fine particulate matter concentrations on the platform during the evening peak: PM10 concentrations in the front and rear of the waiting area were 37.85% and 57.61% higher than those in the middle, while PM2.5 concentrations in these two areas were 39.81% and 50.23% higher than in the middle. No obvious distribution pattern was observed for PM1.0. These results provide reference data for optimizing indoor air quality in the Xi’an subway and regulating the operation of platform screen doors. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

18 pages, 2734 KB  
Article
Feeding Rate Impacts on Hermetia Illucens Growth and Bioconversion Efficiency When Using Low-Value Organic Wastes
by Martha Sumba, Carlos Amador, Diego Portalanza, Jorge Amaya, Omar Ruiz, Malena Torres, Narcisa Gorotiza, Barbara Guerrero, Juan D. Cabrera and Eduardo Álava
Recycling 2026, 11(1), 17; https://doi.org/10.3390/recycling11010017 - 15 Jan 2026
Abstract
The growing generation of organic solid waste from small-scale agriculture poses major environmental challenges in developing countries like Ecuador, where rural areas often lack waste management infrastructure. Residues from livestock rearing and traditional brewing such as poultry manure (PM), bovine manure (BM), and [...] Read more.
The growing generation of organic solid waste from small-scale agriculture poses major environmental challenges in developing countries like Ecuador, where rural areas often lack waste management infrastructure. Residues from livestock rearing and traditional brewing such as poultry manure (PM), bovine manure (BM), and barley by-product (BB) are often discarded untreated. This study evaluated the bioconversion potential of Hermetia illucens (black soldier fly larvae (BSFL), using a local Ecuadorian strain reared on these substrates under natural conditions and three feeding rates (50, 100, and 150 mg·larva−1·day−1). Larval growth and process efficiency were analyzed on a dry-matter basis. Both substrate and feeding rate significantly influenced performance (p < 0.05). PM and BB produced the highest larval dry weights (37.4 and 35.9 mg, respectively) at 100 mg·larva−1·day−1, with development completed in 35 days. BM-fed larvae reached only 17.6 mg and required up to 91 days. Bioconversion peaked at 4.6% (PM100) and 4.2% (BB50), while all BM treatments showed very low efficiency (<0.8%). Waste reduction was highest in BB100 (52.9%) and PM100 (43.5%). These results demonstrate the potential of BSFL as a biological treatment option for rural organic waste streams; however, performance strongly depended on substrate quality and feeding rate, indicating that not all locally available residues are equally suitable for larval bioconversion. Full article
(This article belongs to the Special Issue Biomass Revival: Rethinking Waste Recycling for a Greener Future)
Show Figures

Figure 1

25 pages, 9139 KB  
Article
Meteorological and Air Quality Effects on Bioaerosol Detection Using WIBS-NEO and IBAC-2 in Dublin City
by Emma Markey, Jerry Hourihane Clancy, Moisés Martínez-Bracero, José María Maya-Manzano, Raúl Pecero-Casimiro, Eoin Joseph McGillicuddy, Gavin Sewell, Roland Sarda-Estève, Andrés M. Vélez-Pereira and David J. O’Connor
Atmosphere 2026, 17(1), 86; https://doi.org/10.3390/atmos17010086 - 15 Jan 2026
Abstract
This study evaluates the performance of two real-time fluorescence-based bioaerosol sensors, the WIBS-NEO and IBAC-2, operating in urban Dublin, Ireland, and assesses the influence of different meteorological and pollution parameters on their outputs. This was done by comparing particle sensor data to meteorological [...] Read more.
This study evaluates the performance of two real-time fluorescence-based bioaerosol sensors, the WIBS-NEO and IBAC-2, operating in urban Dublin, Ireland, and assesses the influence of different meteorological and pollution parameters on their outputs. This was done by comparing particle sensor data to meteorological variables and air quality metrics. Over the 41-day campaign, Urticaceae pollen and Cladosporium spores were the dominant bioaerosols recorded, comprising 78% and 66% of total pollen and fungal spore concentrations, respectively. Correlation analyses revealed several significant variables: fluorescent BC-type particles (>8 μm) detected by WIBS-NEO strongly correlated with pollen concentrations (r = 0.84 after excluding high-wind days). For fungal spores, PM10 and grass minimum temperature were the most significant parameters related to variability. Anthropogenic pollutants, particularly NOX and combustion-related aerosols, were found to correlate with fluorescence signals, especially for smaller particles (<2 μm), underscoring urban detection challenges. Wind trajectory analysis identified the likely source of Urticaceae pollen as northerly green spaces (e.g., Phoenix Park), while Cladosporium spores showed multidirectional transport. Multiple linear regression (MLR) analysis achieved strong correlation (R2 = 0.82 for pollen, 0.78 for fungal spores), highlighting the value of incorporating multiple environmental variables to investigate the complex relationships between urban environmental conditions and bioaerosol sensor outputs. Both instruments exhibited operational limitations under the study conditions. The WIBS-NEO outperformed the IBAC-2 in biological discrimination due to its multi-channel single particle fluorescence capabilities. However, operational limitations emerged during higher wind speeds, comparable to moderate breezes (>16.6 km/h), which affected sampling comparability when compared with traditional methods. This study investigates how meteorological conditions and air quality influence bioaerosol detection in an urban environment. The use of MLR techniques to examine the complex relationships between environmental variables and fluorescent sensor outputs may help inform future bioaerosol modelling efforts. Full article
(This article belongs to the Section Aerosols)
Show Figures

Figure 1

11 pages, 570 KB  
Article
Evaluating the Effectiveness of Combined Indoor Air Quality Management and Asthma Education on Indoor Air Quality and Asthma Control in Adults
by Alexander Obeng, Taehyun Roh, Alejandro Moreno-Rangel and Genny Carrillo
Atmosphere 2026, 17(1), 84; https://doi.org/10.3390/atmos17010084 - 15 Jan 2026
Abstract
Indoor air quality (IAQ) is a critical determinant of respiratory health and plays an essential role in asthma management. Exposure to indoor pollutants such as particulate matter (PM2.5), volatile organic compounds (VOCs), and biological allergens can exacerbate asthma symptoms. This pilot [...] Read more.
Indoor air quality (IAQ) is a critical determinant of respiratory health and plays an essential role in asthma management. Exposure to indoor pollutants such as particulate matter (PM2.5), volatile organic compounds (VOCs), and biological allergens can exacerbate asthma symptoms. This pilot quasi-experimental, one-group pretest–posttest study evaluated the combined effect of high-efficiency particulate air (HEPA) purifiers and tailored asthma education on the IAQ and asthma outcomes of 30 adults diagnosed with asthma. Indoor PM2.5, total VOCs (tVOC), temperature, and relative humidity were monitored using low-cost air quality monitors across three home locations for 30 days, and participants completed baseline and follow-up assessments of asthma control (ACQ) and quality of life (AQLQ). The intervention reduced PM2.5 concentrations from 21.32 µg/m3 to 18.19 µg/m3 (p < 0.001), while tVOC levels increased slightly from 237.05 ppb to 251.81 ppb (p = 0.02). The median ACQ scores improved from 1.17 to 0.50 (p < 0.001), the proportion of participants with well-controlled asthma (ACQ ≤ 0.75) rose from 30% to 66.7%, and the median AQLQ scores increased from 5.75 to 6.30 (p < 0.001). Participants in the intervention experienced significantly improved asthma control, quality of life, and indoor PM2.5 levels, which underscores the significance of integrating environmental and educational strategies in adult asthma management. Full article
(This article belongs to the Special Issue Air Quality in the Era of Net-Zero Buildings)
Show Figures

Figure 1

34 pages, 11044 KB  
Article
Monitoring the Sustained Environmental Performances of Nature-Based Solutions in Urban Environments: The Case Study of the UPPER Project (Latina, Italy)
by Riccardo Gasbarrone, Giuseppe Bonifazi and Silvia Serranti
Sustainability 2026, 18(2), 864; https://doi.org/10.3390/su18020864 - 14 Jan 2026
Viewed by 22
Abstract
This follow-up study investigates the long-term environmental sustainability and remediation outcomes of the UPPER (‘Urban Productive Parks for Sustainable Urban Regeneration’-UIA04-252) project in Latina, Italy, focusing on Nature-Based Solutions (NbS) applied to urban green infrastructure. By integrating proximal and satellite-based remote sensing methodologies, [...] Read more.
This follow-up study investigates the long-term environmental sustainability and remediation outcomes of the UPPER (‘Urban Productive Parks for Sustainable Urban Regeneration’-UIA04-252) project in Latina, Italy, focusing on Nature-Based Solutions (NbS) applied to urban green infrastructure. By integrating proximal and satellite-based remote sensing methodologies, the research evaluates persistent improvements in vegetation health, soil moisture dynamics, and overall environmental quality over multiple years. Building upon the initial monitoring framework, this case study incorporates updated data and refined techniques to quantify temporal changes and assess the ecological performance of NbS interventions. In more detail, ground-based data from meteo-climatic, air quality stations and remote satellite data from the Sentinel-2 mission are adopted. Ground-based measurements such as temperature, humidity, radiation, rainfall intensity, PM10 and PM2.5 are carried out to monitor the overall environmental quality. Updated satellite imagery from Sentinel-2 is analyzed using advanced band ratio indices, including the Normalized Difference Vegetation Index (NDVI), the Normalized Difference Water Index (NDWI) and the Normalized Difference Moisture Index (NDMI). Comparative temporal analysis revealed consistent enhancements in vegetation health, with NDVI values significantly exceeding baseline levels (NDVI 2022–2024: +0.096, p = 0.024), demonstrating successful vegetation establishment with larger gains in green areas (+27.0%) than parking retrofits (+11.4%, p = 0.041). However, concurrent NDWI decline (−0.066, p = 0.063) indicates increased vegetation water stress despite irrigation infrastructure. NDMI improvements (+0.098, p = 0.016) suggest physiological adaptation through stomatal regulation. Principal Component Analysis (PCA) of meteo-climatic variables reveals temperature as the dominant environmental driver (PC2 loadings > 0.8), with municipality-wide NDVI-temperature correlations of r = −0.87. These multi-scale findings validate sustained NbS effectiveness in enhancing vegetation density and ecosystem services, yet simultaneously expose critical water-limitation trade-offs in Mediterranean semi-arid contexts, necessitating adaptive irrigation management and continued monitoring for long-term urban climate resilience. The integrated monitoring approach underscores the critical role of continuous, multi-scale assessment in ensuring long-term success and adaptive management of NbS-based interventions. Full article
(This article belongs to the Special Issue Advanced Materials and Technologies for Environmental Sustainability)
Show Figures

Figure 1

24 pages, 15798 KB  
Article
Optimizing Priestley–Taylor Model Based on Machine Learning Algorithms to Simulate Tomato Evapotranspiration in Chinese Greenhouse
by Jiankun Ge, Jiaxu Du, Xuewen Gong, Quan Zhou, Guoyong Yang, Yanbin Li, Huanhuan Li, Jiumao Cai, Hanmi Zhou, Mingze Yao, Xinguang Wei and Weiwei Xu
Horticulturae 2026, 12(1), 89; https://doi.org/10.3390/horticulturae12010089 - 14 Jan 2026
Viewed by 30
Abstract
To further improve the prediction accuracy for greenhouse crop evapotranspiration (ET) under different irrigation conditions and enhance irrigation water use efficiency, this study proposes three methods to revise the Priestley–Taylor (PT) model coefficient α for calculating ET at different growth stages: [...] Read more.
To further improve the prediction accuracy for greenhouse crop evapotranspiration (ET) under different irrigation conditions and enhance irrigation water use efficiency, this study proposes three methods to revise the Priestley–Taylor (PT) model coefficient α for calculating ET at different growth stages: (1) considering the leaf senescence coefficient fS, plant temperature constraint parameter ft, and soil water stress index fsw to correct α (MPT model); (2) combining the Penman–Monteith (PM) model to inversely calculate α (PT-M model); (3) using the machine learning XGBoost algorithm to optimize α (PT-M(XGB) model). Accordingly, this study observed the cumulative evaporation (Ep) of a 20 cm standard evaporation pan and set two different irrigation treatments (K0.9: 0.9Ep and K0.5: 0.5Ep). We conducted field measurements of meteorological data inside the greenhouse, tomato physiological and ecological indices, and ET during 2020 and 2021. The above three methods were then used to dynamically simulate greenhouse tomato ET. Results showed the following: (1) In 2020 and 2021, under K0.9 and K0.5 irrigation treatments, the MPT model mean coefficient α for the entire growth stage was 1.27 and 1.26, respectively, while the PT-M model mean coefficient α was 1.31 and 1.30. For both models, α was significantly lower than 1.26 (conventional value) during the seedling stage and the flowering and fruiting stage, rose rapidly during the fruit enlargement stage, and then gradually declined toward 1.26 during the harvest stage. (2) Predicted ET (ETe) using the PT-M model underestimated the observed ET (ETm) by 8.71~16.01% during the seedling stage and the harvest stage, and overestimated by 1.62~6.15% during the flowering and fruiting stage and the fruit enlargement stage; the errors compared to ETm under both irrigation treatments over two years was 0.1~3.3%, with an R2 of 0.92~0.96. (3) The PT-M(XGB) model achieved higher prediction accuracy, with errors compared to ETm under both irrigation treatments over two years of 0.35~0.65%, and R2 above 0.98. The PT-M(XGB) model combined with the XGBoost algorithm significantly improved prediction accuracy, providing a reference for the precise calculation of greenhouse tomato ET. Full article
Show Figures

Figure 1

Back to TopTop