Impact of Lignite Combustion Air Pollution on Acute Coronary Syndrome and Atrial Fibrillation Incidence in Western Macedonia, Greece
Highlights
- The study demonstrates that chronic exposure to PM10, SO2 and NOx from lignite combustion significantly increases population-level cardiovascular risk, particularly for Acute Coronary Syndromes (ACS) and Atrial Fibrillation (AF).
- By analyzing real-world data from a coal-dependent region, it shows how air pollution acts as a direct and measurable determinant of acute cardiac events at the community level.
- The sharp decline in pollutant levels after the lignite phase-out was accompanied by a large reduction in ACS and AF admissions, revealing that air quality improvements translate rapidly into improved cardiovascular outcomes.
- The findings provide robust regional evidence that emission-reduction policies function as effective cardiovascular prevention strategies, complementing clinical and behavioral interventions.
- Policymakers should treat air quality management and fossil-fuel phase-out as essential public health interventions, with substantial potential to reduce cardiac morbidity and healthcare burden.
- Clinicians and public health authorities should incorporate air pollution exposure into cardiovascular risk communication and develop targeted advisories for vulnerable populations during high-pollution periods.
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Population
2.2. Air Pollution Data
2.3. Hospital Admission Data
2.4. Statistical Analysis
3. Results
3.1. Air Pollution Levels in High- vs. Low-Exposure Areas
3.2. Trends in Pollution from 2011–2014 to 2021
3.3. Hospital Admissions for Cardiovascular Conditions
3.4. Associations Between Air Pollution and Cardiac Admissions
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ACS | Acute Coronary Syndromes |
| AF | Atrial Fibrillation |
| PPC | Public Power Corporation |
References
- Evagelopoulos, V.; Begou, P.; Zoras, S. In-Depth Study of PM2.5 and PM10 Concentrations over a 12-Year Period and Their Elemental Composition in the Lignite Center of Western Macedonia, Greece. Atmosphere 2022, 13, 1900. [Google Scholar] [CrossRef]
- Schucht, S.; Colette, A.; Rao, S.; Holland, M.; Schöpp, W.; Kolp, P.; Klimont, Z.; Bessagnet, B.; Szopa, S.; Vautard, R.; et al. Moving towards Ambitious Climate Policies: Monetised Health Benefits from Improved Air Quality Could Offset Mitigation Costs in Europe. Environ. Sci. Policy 2015, 50, 252–269. [Google Scholar] [CrossRef]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate Matter Air Pollution and Cardiovascular Disease: An update to the scientific statement from the american heart association. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [PubMed]
- Newby, D.E.; Mannucci, P.M.; Tell, G.S.; Baccarelli, A.A.; Brook, R.D.; Donaldson, K.; Forastiere, F.; Franchini, M.; Franco, O.H.; Graham, I.; et al. Expert Position Paper on Air Pollution and Cardiovascular Disease. Eur. Heart J. 2015, 36, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Mustafić, H.; Jabre, P.; Caussin, C.; Murad, M.H.; Escolano, S.; Tafflet, M.; Périer, M.-C.; Marijon, E.; Vernerey, D.; Empana, J.-P.; et al. Main Air Pollutants and Myocardial Infarction. JAMA 2012, 307, 713. [Google Scholar] [CrossRef]
- Farhadi, Z.; Abulghasem Gorgi, H.; Shabaninejad, H.; Aghajani Delavar, M.; Torani, S. Association between PM2.5 and Risk of Hospitalization for Myocardial Infarction: A Systematic Review and a Meta-Analysis. BMC Public Health 2020, 20, 314. [Google Scholar] [CrossRef]
- Peters, A.; Liu, E.; Verrier, R.L.; Schwartz, J.; Gold, D.R.; Mittleman, M.; Baliff, J.; Oh, J.A.; Allen, G.; Monahan, K.; et al. Air Pollution and Incidence of Cardiac Arrhythmia. Epidemiology 2000, 11, 11–17. [Google Scholar] [CrossRef]
- Link, M.S.; Luttmann-Gibson, H.; Schwartz, J.; Mittleman, M.A.; Wessler, B.; Gold, D.R.; Dockery, D.W.; Laden, F. Acute Exposure to Air Pollution Triggers Atrial Fibrillation. J. Am. Coll. Cardiol. 2013, 62, 816–825. [Google Scholar] [CrossRef]
- Chen, M.; Zhao, J.; Zhuo, C.; Zheng, L. The Association Between Ambient Air Pollution and Atrial Fibrillation. Int. Heart J. 2021, 62, 290–297. [Google Scholar] [CrossRef]
- Yue, C.; Yang, F.; Li, F.; Chen, Y. Association between Air Pollutants and Atrial Fibrillation in General Population: A Systematic Review and Meta-Analysis. Ecotoxicol. Environ. Saf. 2021, 208, 111508. [Google Scholar] [CrossRef]
- Ferreira, D.; Hardy, J.; Meere, W.; Butel-Simoes, L.; McGee, M.; Whitehead, N.; Healey, P.; Ford, T.; Oldmeadow, C.; Attia, J.; et al. Safety and Care of No Fasting Prior to Catheterization Laboratory Procedures: A Non-Inferiority Randomized Control Trial Protocol (SCOFF Trial). Eur. Heart J. Open 2023, 3, oead111. [Google Scholar] [CrossRef]
- Lelieveld, J.; Pozzer, A.; Pöschl, U.; Fnais, M.; Haines, A.; Münzel, T. Loss of Life Expectancy from Air Pollution Compared to Other Risk Factors: A Worldwide Perspective. Cardiovasc. Res. 2020, 116, 1910–1917. [Google Scholar] [CrossRef]
- Liu, S.; Wang, Y.; Wang, L.; Li, X.; Fei, M.; Dong, P.; Yang, K.; Liu, H.; Xie, N.; Chen, H.; et al. Short-Term Effects of Extreme Air Pollutant Concentrations on Coronary Heart Disease Hospitalization in Henan Province: A Time-Stratified Case-Crossover Study. Front. Cardiovasc. Med. 2025, 12, 1538788. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A.; Burnett, R.T.; Krewski, D.; Jerrett, M.; Shi, Y.; Calle, E.E.; Thun, M.J. Cardiovascular Mortality and Exposure to Airborne Fine Particulate Matter and Cigarette Smoke: Shape of the exposure-response relationship. Circulation 2009, 120, 941–948. [Google Scholar] [CrossRef] [PubMed]
- Rückerl, R.; Schneider, A.; Breitner, S.; Cyrys, J.; Peters, A. Health Effects of Particulate Air Pollution: A Review of Epidemiological Evidence. Inhal. Toxicol. 2011, 23, 555–592. [Google Scholar] [CrossRef] [PubMed]
- Gaum, P.M.; Lang, J.; Esser, A.; Schettgen, T.; Neulen, J.; Kraus, T.; Gube, M. Exposure to Polychlorinated Biphenyls and the Thyroid Gland—Examining and Discussing Possible Longitudinal Health Effects in Humans. Environ. Res. 2016, 148, 112–121. [Google Scholar] [CrossRef]
- Mandaglio-Collados, D.; López-Gálvez, R.; Ruiz-Alcaraz, A.J.; López-García, C.; Roldán, V.; Lip, G.Y.H.; Marín, F.; Rivera-Caravaca, J.M. Impact of Particulate Matter on the Incidence of Atrial Fibrillation and the Risk of Adverse Clinical Outcomes: A Review. Sci. Total Environ. 2023, 880, 163352. [Google Scholar] [CrossRef]
- Miller, S.E.; DeBoer, M.D.; Scharf, R.J. Executive Functions and Academic Outcomes of Low Birthweight Infants: A Prospective Longitudinal U.S. Cohort. Am. J. Perinatol. 2021, 38, 602–608. [Google Scholar] [CrossRef]
- Wang, Y.; Tuomilehto, J.; Jousilahti, P.; Antikainen, R.; Mähönen, M.; Katzmarzyk, P.T.; Hu, G. Occupational, Commuting, and Leisure-Time Physical Activity in Relation to Heart Failure Among Finnish Men and Women. J. Am. Coll. Cardiol. 2010, 56, 1140–1148. [Google Scholar] [CrossRef]
- Kampouris, I.D.; Klümper, U.; Agrawal, S.; Orschler, L.; Cacace, D.; Kunze, S.; Berendonk, T.U. Treated Wastewater Irrigation Promotes the Spread of Antibiotic Resistance into Subsoil Pore-Water. Environ. Int. 2021, 146, 106190. [Google Scholar] [CrossRef]
- Amegah, A.K. Proliferation of Low-Cost Sensors. What Prospects for Air Pollution Epidemiologic Research in Sub-Saharan Africa? Environ. Pollut. 2018, 241, 1132–1137. [Google Scholar] [CrossRef] [PubMed]
- Kavouridis, K. Lignite Industry in Greece within a World Context: Mining, Energy Supply and Environment. Energy Policy 2008, 36, 1257–1272. [Google Scholar] [CrossRef]
- Ziouzios, D.; Karlopoulos, E.; Fragkos, P.; Vrontisi, Z. Challenges and Opportunities of Coal Phase-Out in Western Macedonia. Climate 2021, 9, 115. [Google Scholar] [CrossRef]
- Papadopoulou, C.-I.; Kalogiannidis, S.; Kalfas, D.; Loizou, E.; Chatzitheodoridis, F. Spatial Variations in Perceptions of Decarbonization Impacts and Public Acceptance of the Bioeconomy in Western Macedonia. Land 2025, 14, 1533. [Google Scholar] [CrossRef]
- Koukouli, M.-E.; Pseftogkas, A.; Karagkiozidis, D.; Skoulidou, I.; Drosoglou, T.; Balis, D.; Bais, A.; Melas, D.; Hatzianastassiou, N. Air Quality in Two Northern Greek Cities Revealed by Their Tropospheric NO2 Levels. Atmosphere 2022, 13, 840. [Google Scholar] [CrossRef]
- Analitis, A.; Katsouyanni, K.; Dimakopoulou, K.; Samoli, E.; Nikoloulopoulos, A.K.; Petasakis, Y.; Touloumi, G.; Schwartz, J.; Anderson, H.R.; Cambra, K.; et al. Short-Term Effects of Ambient Particles on Cardiovascular and Respiratory Mortality. Epidemiology 2006, 17, 230–233. [Google Scholar] [CrossRef]
- Nawrot, T.S.; Perez, L.; Künzli, N.; Munters, E.; Nemery, B. Public Health Importance of Triggers of Myocardial Infarction: A Comparative Risk Assessment. Lancet 2011, 377, 732–740. [Google Scholar] [CrossRef]
- Camm, A.J.; Lip, G.Y.H.; De Caterina, R.; Savelieva, I.; Atar, D.; Hohnloser, S.H.; Hindricks, G.; Kirchhof, P.; Bax, J.J.; Baumgartner, H.; et al. 2012 Focused Update of the ESC Guidelines for the Management of Atrial Fibrillation. Eur. Heart J. 2012, 33, 2719–2747. [Google Scholar] [CrossRef]
- Rückerl, R.; Ibald-Mulli, A.; Koenig, W.; Schneider, A.; Woelke, G.; Cyrys, J.; Heinrich, J.; Marder, V.; Frampton, M.; Wichmann, H.E.; et al. Air Pollution and Markers of Inflammation and Coagulation in Patients with Coronary Heart Disease. Am. J. Respir. Crit. Care Med. 2006, 173, 432–441. [Google Scholar] [CrossRef]
- Christodoulidis, G.; Vittorio, T.J.; Fudim, M.; Lerakis, S.; Kosmas, C.E. Inflammation in Coronary Artery Disease. Cardiol. Rev. 2014, 22, 279–288. [Google Scholar] [CrossRef]
- Garcia, J.-M.; Lai, J.C. Production of Influenza Pseudotyped Lentiviral Particles and Their Use in Influenza Research and Diagnosis: An Update. Expert Rev. Anti. Infect. Ther. 2011, 9, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulou, C.-I.; Foutri, A.; Martinidis, G.; Kalea, T.; Fallas, Y. Developing Blueprints for Robust Regional Bioeconomy Strategies: The Case of Western Macedonia. Land 2025, 14, 418. [Google Scholar] [CrossRef]
- Tranoulidis, A.; Sotiropoulou, R.-E.P.; Bithas, K.; Tagaris, E. Decarbonization and Transition to the Post-Lignite Era: Analysis for a Sustainable Transition in the Region of Western Macedonia. Sustainability 2022, 14, 10173. [Google Scholar] [CrossRef]
- Begou, P.; Evagelopoulos, V.; Charisiou, N.D. Variability of Air Pollutant Concentrations and Their Relationships with Meteorological Parameters during COVID-19 Lockdown in Western Macedonia. Atmosphere 2023, 14, 1398. [Google Scholar] [CrossRef]
- Chan, D.Z.L.; Kerr, A.J.; Tavleeva, T.; Debray, D.; Poppe, K.K. Validation Study of Cardiovascular International Statistical Classification of Diseases and Related Health Problems, Tenth Edition, Australian Modification (ICD-10-AM) Codes in Administrative Healthcare Databases (ANZACS–QI 77). Heart Lung Circ. 2024, 33, 1163–1172. [Google Scholar] [CrossRef]
- Daoudi, S.; John, K.; Chalhoub, F.; Chee, J.; Infeld, M.; Elbaz-Greener, G.; Homoud, M.; Ruskin, J.N.; Heist, E.K.; Madias, C.; et al. Nationwide Trends in Hospitalizations for Atrial Fibrillation and Flutter in the United States before and during the Outbreak of the COVID-19 Pandemic. J. Clin. Med. 2024, 13, 4883. [Google Scholar] [CrossRef]
- Ko, D.T.; Dattani, N.D.; Austin, P.C.; Schull, M.J.; Ross, J.S.; Wijeysundera, H.C.; Tu, J.V.; Eberg, M.; Koh, M.; Krumholz, H.M. Emergency Department Volume and Outcomes for Patients After Chest Pain Assessment. Circ. Cardiovasc. Qual. Outcomes 2018, 11, e004683. [Google Scholar] [CrossRef]
- Aturinde, A.; Farnaghi, M.; Pilesjö, P.; Sundquist, K.; Mansourian, A. Spatial Analysis of Ambient Air Pollution and Cardiovascular Disease (CVD) Hospitalization Across Sweden. GeoHealth 2021, 5, e2020GH000323. [Google Scholar] [CrossRef]
- Dias, D.; Tchepel, O. Spatial and Temporal Dynamics in Air Pollution Exposure Assessment. Int. J. Environ. Res. Public Health 2018, 15, 558. [Google Scholar] [CrossRef]
- Li, Z.; Lv, S.; Lu, F.; Guo, M.; Wu, Z.; Liu, Y.; Li, W.; Liu, M.; Yu, S.; Jiang, Y.; et al. Causal Associations of Air Pollution with Cardiovascular Disease and Respiratory Diseases Among Elder Diabetic Patients. GeoHealth 2023, 7, e2022GH000730. [Google Scholar] [CrossRef]
- Mohammadi Dashtaki, N.; Fararouei, M.; Mirahmadizadeh, A.; Hoseini, M. Association between Exposure to Air Pollutants and Cardiovascular Mortality in Iran: A Case-Crossover Study. Sci. Rep. 2025, 15, 18762. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, Y.; Liu, Y.; Tang, S.; Han, Y.; Fu, J.; Chang, Z.; Zhao, X.; Zhuang, Y.; Lei, J.; et al. Short-Term Exposure to Air Pollution Associated with an Increased Risk of ST-Elevation and Non-ST-Elevation Myocardial Infarction Hospital Admissions: A Case-Crossover Study from Beijing (2013–2019), China. Atmosphere 2025, 16, 715. [Google Scholar] [CrossRef]
- Whitehead, G.S.; Thomas, S.Y.; Cook, D.N. Modulation of Distinct Asthmatic Phenotypes in Mice by Dose-Dependent Inhalation of Microbial Products. Environ. Health Perspect. 2014, 122, 34–42. [Google Scholar] [CrossRef] [PubMed]
- Pavloudakis, F.; Sachanidis, C.; Roumpos, C. The Effects of Surface Lignite Mines Closure on the Particulates Concentrations in the Vicinity of Large-Scale Extraction Activities. Minerals 2022, 12, 347. [Google Scholar] [CrossRef]
- Liu, T.; Huang, H.; Hu, G. A Time Series Study for Effects of PM10 on Coronary Heart Disease in Ganzhou, China. Int. J. Environ. Res. Public Health 2022, 20, 86. [Google Scholar] [CrossRef]
- Wang, W.; Ming, X.; Chen, L.; Chen, Y.; Yang, Z.; Hu, C.; Zhang, Q. Impact of Short-Term Exposure to Ambient Air Pollution on Cardiovascular Disease Outpatient Visits: A Time-Series Study in Yichang, China. Environ. Health 2025, 24, 63. [Google Scholar] [CrossRef]
- Clancy, L.; Goodman, P.; Sinclair, H.; Dockery, D.W. Effect of Air-Pollution Control on Death Rates in Dublin, Ireland: An Intervention Study. Lancet 2002, 360, 1210–1214. [Google Scholar] [CrossRef]
- Rich, D.Q.; Kipen, H.M.; Huang, W.; Wang, G.; Wang, Y.; Zhu, P.; Ohman-Strickland, P.; Hu, M.; Philipp, C.; Diehl, S.R.; et al. Association Between Changes in Air Pollution Levels During the Beijing Olympics and Biomarkers of Inflammation and Thrombosis in Healthy Young Adults. JAMA 2012, 307, 2068–2078. [Google Scholar] [CrossRef]
- Strobl, K.; Irfan, S.A.; Masood, H.; Latif, N.; Kurmi, O. Association between PM10 Exposure and Risk of Myocardial Infarction in Adults: A Systematic Review and Meta-Analysis. PLoS ONE 2024, 19, e0301374. [Google Scholar] [CrossRef]
- Collart, P.; Dubourg, D.; Levêque, A.; Sierra, N.B.; Coppieters, Y. Short-Term Effects of Nitrogen Dioxide on Hospital Admissions for Cardiovascular Disease in Wallonia, Belgium. Int. J. Cardiol. 2018, 255, 231–236. [Google Scholar] [CrossRef]
- Wolf, K.; Hoffmann, B.; Andersen, Z.J.; Atkinson, R.W.; Bauwelinck, M.; Bellander, T.; Brandt, J.; Brunekreef, B.; Cesaroni, G.; Chen, J.; et al. Long-Term Exposure to Low-Level Ambient Air Pollution and Incidence of Stroke and Coronary Heart Disease: A Pooled Analysis of Six European Cohorts within the ELAPSE Project. Lancet Planet. Health 2021, 5, e620–e632. [Google Scholar] [CrossRef]
- Cesaroni, G.; Forastiere, F.; Stafoggia, M.; Andersen, Z.J.; Badaloni, C.; Beelen, R.; Caracciolo, B.; de Faire, U.; Erbel, R.; Eriksen, K.T.; et al. Long Term Exposure to Ambient Air Pollution and Incidence of Acute Coronary Events: Prospective Cohort Study and Meta-Analysis in 11 European Cohorts from the ESCAPE Project. BMJ 2014, 348, f7412. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.H.; Pan, S.C.; Chen, B.Y.; Lo, S.H.; Guo, Y.L. Atrial Fibrillation Hospitalization Is Associated with Exposure to Fine Particulate Air Pollutants. Environ. Health 2019, 18, 117. [Google Scholar] [CrossRef] [PubMed]
- Stafoggia, M.; Renzi, M.; Forastiere, F.; Ljungman, P.; Davoli, M.; de’ Donato, F.; Gariazzo, C.; Michelozzi, P.; Scortichini, M.; Solimini, A.; et al. Short-Term Effects of Particulate Matter on Cardiovascular Morbidity in Italy: A National Analysis. Eur. J. Prev. Cardiol. 2022, 29, 1202–1211. [Google Scholar] [CrossRef] [PubMed]
- Gallo, E.; Folino, F.; Buja, G.; Zanotto, G.; Bottigliengo, D.; Comoretto, R.; Marras, E.; Allocca, G.; Vaccari, D.; Gasparini, G.; et al. Daily Exposure to Air Pollution Particulate Matter Is Associated with Atrial Fibrillation in High-Risk Patients. Int. J. Environ. Res. Public Health 2020, 17, 6017. [Google Scholar] [CrossRef]
- Mostafavi, N.; Vlaanderen, J.; Chadeau-Hyam, M.; Beelen, R.; Modig, L.; Palli, D.; Bergdahl, I.A.; Vineis, P.; Hoek, G.; Kyrtopoulos, S.A.; et al. Inflammatory Markers in Relation to Long-Term Air Pollution. Environ. Int. 2015, 81, 1–7. [Google Scholar] [CrossRef]
- Wendler, O.; MacCarthy, P. Renal Failure After Transcatheter Aortic Valve Implantation. J. Am. Coll. Cardiol. 2013, 62, 878–880. [Google Scholar] [CrossRef][Green Version]
- Langrish, J.P.; Lundbäck, M.; Mills, N.L.; Johnston, N.R.; Webb, D.J.; Sandström, T.; Blomberg, A.; Newby, D.E. Contribution of Endothelin 1 to the Vascular Effects of Diesel Exhaust Inhalation in Humans. Hypertension 2009, 54, 910–915. [Google Scholar] [CrossRef]
- Morishita, M.; Adar, S.D.; D’Souza, J.; Ziemba, R.A.; Bard, R.L.; Spino, C.; Brook, R.D. Effect of Portable Air Filtration Systems on Personal Exposure to Fine Particulate Matter and Blood Pressure Among Residents in a Low-Income Senior Facility. JAMA Intern. Med. 2018, 178, 1350–1357. [Google Scholar] [CrossRef]
- Guan, T.; Hu, S.; Han, Y.; Wang, R.; Zhu, Q.; Hu, Y.; Fan, H.; Zhu, T. The Effects of Facemasks on Airway Inflammation and Endothelial Dysfunction in Healthy Young Adults: A Double-Blind, Randomized, Controlled Crossover Study. Part. Fibre Toxicol. 2018, 15, 30. [Google Scholar] [CrossRef]
- Yang, Y.; Pei, Y.; Gu, Y.; Zhu, J.; Yu, P.; Chen, X. Association between Short-Term Exposure to Ambient Air Pollution and Heart Failure: An Updated Systematic Review and Meta-Analysis of More than 7 Million Participants. Front. Public Health 2023, 10, 948765. [Google Scholar] [CrossRef]


| Facility Type | Name | Municipality/Area | Latitude (°N) | Longitude (°E) |
|---|---|---|---|---|
| Monitoring station | Filotas | Florina | 40.781 | 21.610 |
| Monitoring station | Koilada | Kozani | 40.294 | 21.798 |
| Monitoring station | Kato Komi | Kozani | 40.236 | 21.784 |
| Monitoring station | Amyntaio | Florina | 40.689 | 21.679 |
| Monitoring station | Florina | Florina | 40.781 | 21.409 |
| Monitoring station | Agios Dimitrios | Kozani | 40.496 | 21.803 |
| Monitoring station | Meliti | Florina | 40.878 | 21.584 |
| Monitoring station | Pontokomi | Kozani | 40.350 | 21.733 |
| Monitoring station | Anargyroi | Florina | 40.671 | 21.702 |
| Monitoring station | Grevena | Grevena | 40.084 | 21.427 |
| Hospital | General Hospital of Kozani | Kozani | 40.300 | 21.788 |
| Hospital | General Hospital of Ptolemaida | Ptolemaida | 40.514 | 21.679 |
| Hospital | General Hospital of Florina | Florina | 40.781 | 21.409 |
| Hospital | General Hospital of Grevena | Grevena | 40.083 | 21.427 |
| Pollutant | Grevena (Low Exposure, Control) | Kozani (Moderate Exposure) | Ptolemaida (High Exposure) | Florina (High Exposure) |
|---|---|---|---|---|
| PM10 (μg/m3) | 18.5 ± 6.7 c | 25.6 ± 7.8 a | 38.9 ± 10.5 b | 40.3 ± 11.2 b |
| SO2 (μg/m3) | 4.0 ± 2.5 a | 5.2 ± 3.4 a | 14.7 ± 5.8 b | 23.8 ± 6.5 c |
| NO (ppb) | 3.8 ± 1.9 a | 4.5 ± 2.2 a | 7.8 ± 3.3 b | 11.5 ± 4.7 c |
| NO2 (ppb) | 12.8 ± 3.9 a | 17.2 ± 4.8 a | 27.5 ± 6.3 b | 35.4 ± 8.1 c |
| NOx (ppb) | 15.6 ± 5.1 a | 22.4 ± 5.9 a | 35.1 ± 7.8 b | 45.8 ± 9.3 c |
| O3 (ppb) | 38.6 ± 6.9 c | 32.7 ± 6.2 b | 25.9 ± 5.7 a | 24.3 ± 5.5 a |
| Hospital | Diagnostic Category | χ2 | df | p-Value |
|---|---|---|---|---|
| Kozani | Acute Coronary Syndrome (ACS) | 18.05 | 4 | 0.001 |
| Atrial Fibrillation (AF) | 13.77 | 4 | 0.008 | |
| Heart Failure | 17.72 | 4 | 0.001 | |
| Stroke | 4.62 | 4 | 0.329 | |
| Other cardiac diagnoses | 3.91 | 4 | 0.418 | |
| Ptolemaida | Acute Coronary Syndrome (ACS) | 11.26 | 4 | 0.024 |
| Atrial Fibrillation (AF) | 6.14 | 4 | 0.189 | |
| Heart Failure | 10.87 | 4 | 0.028 | |
| Stroke | 3.48 | 4 | 0.482 | |
| Other cardiac diagnoses | 9.96 | 4 | 0.041 | |
| Florina | Acute Coronary Syndrome (ACS) | 10.78 | 4 | 0.029 |
| Atrial Fibrillation (AF) | 10.85 | 4 | 0.028 | |
| Heart Failure | 9.75 | 4 | 0.045 | |
| Stroke | 5.02 | 4 | 0.285 | |
| Other cardiac diagnoses | 8.67 | 4 | 0.070 | |
| Grevena | Acute Coronary Syndrome (ACS) | 3.12 | 4 | 0.538 |
| Atrial Fibrillation (AF) | 2.74 | 4 | 0.602 | |
| Heart Failure | 3.46 | 4 | 0.485 | |
| Stroke | 4.08 | 4 | 0.395 | |
| Other cardiac diagnoses | 5.11 | 4 | 0.276 |
| Area | Pollutant | Spearman ρ | p-Value |
|---|---|---|---|
| Kozani | PM10 | 0.041 | 0.712 |
| SO2 | 0.067 | 0.548 | |
| NO | 0.052 | 0.641 | |
| NO2 | 0.115 | 0.045 | |
| NOX | 0.081 | 0.402 | |
| O3 | −0.029 | 0.781 | |
| Ptolemaida | PM10 | 0.112 | 0.052 |
| SO2 | 0.098 | 0.088 | |
| NO | 0.073 | 0.312 | |
| NO2 | 0.084 | 0.221 | |
| NOX | 0.091 | 0.176 | |
| O3 | −0.046 | 0.604 | |
| Florina | PM10 | 0.138 | 0.017 |
| SO2 | 0.094 | 0.101 | |
| NO | 0.109 | 0.061 | |
| NO2 | 0.102 | 0.079 | |
| NOX | 0.117 | 0.054 | |
| O3 | −0.062 | 0.421 | |
| Grevena | PM10 | 0.028 | 0.816 |
| SO2 | 0.031 | 0.792 | |
| NO | 0.019 | 0.881 | |
| NO2 | 0.024 | 0.847 | |
| NOX | 0.036 | 0.741 | |
| O3 | −0.041 | 0.683 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2026 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
Vasilakopoulos, V.; Kanonidis, I.; Papadopoulou, C.-I.; Fragulis, G.; Ganatsios, S. Impact of Lignite Combustion Air Pollution on Acute Coronary Syndrome and Atrial Fibrillation Incidence in Western Macedonia, Greece. Int. J. Environ. Res. Public Health 2026, 23, 113. https://doi.org/10.3390/ijerph23010113
Vasilakopoulos V, Kanonidis I, Papadopoulou C-I, Fragulis G, Ganatsios S. Impact of Lignite Combustion Air Pollution on Acute Coronary Syndrome and Atrial Fibrillation Incidence in Western Macedonia, Greece. International Journal of Environmental Research and Public Health. 2026; 23(1):113. https://doi.org/10.3390/ijerph23010113
Chicago/Turabian StyleVasilakopoulos, Vasileios, Ioannis Kanonidis, Christina-Ioanna Papadopoulou, George Fragulis, and Stergios Ganatsios. 2026. "Impact of Lignite Combustion Air Pollution on Acute Coronary Syndrome and Atrial Fibrillation Incidence in Western Macedonia, Greece" International Journal of Environmental Research and Public Health 23, no. 1: 113. https://doi.org/10.3390/ijerph23010113
APA StyleVasilakopoulos, V., Kanonidis, I., Papadopoulou, C.-I., Fragulis, G., & Ganatsios, S. (2026). Impact of Lignite Combustion Air Pollution on Acute Coronary Syndrome and Atrial Fibrillation Incidence in Western Macedonia, Greece. International Journal of Environmental Research and Public Health, 23(1), 113. https://doi.org/10.3390/ijerph23010113

