Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,281)

Search Parameters:
Keywords = PIN7

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
9 pages, 1428 KB  
Communication
Nitrogen Enables Superior Strength–Ductility Synergy in Ultra-Low Carbon Steel via Copious Interphase Precipitation and Grain Refinement
by Qing Zhu, Rui Cao, Shuai Xu, Junheng Gao, Haitao Zhao, Qingxiao Feng, Hualong Li, Yixin Shi, Honghui Wu, Chaolei Zhang, Yuhe Huang, Jun Lu, Shuize Wang and Xinping Mao
Materials 2026, 19(3), 622; https://doi.org/10.3390/ma19030622 (registering DOI) - 6 Feb 2026
Abstract
The increasing use of electric arc furnace (EAF) in steelmaking inevitably elevates nitrogen (N) levels, which are traditionally regarded as a detrimental element to the formability of ultra-low carbon (ULC) steels due to the formation of Lüders band. Here, we demonstrate that N [...] Read more.
The increasing use of electric arc furnace (EAF) in steelmaking inevitably elevates nitrogen (N) levels, which are traditionally regarded as a detrimental element to the formability of ultra-low carbon (ULC) steels due to the formation of Lüders band. Here, we demonstrate that N could act as a beneficial microalloying element in strip casting ULC steels by promoting V(C, N) precipitation and grain refinement of ferrite. Thermodynamic calculations reveal that N significantly increases both the equilibrium volume fraction and equilibrium precipitation temperature of V(C, N), enabling copious interphase nanoprecipitation during ferrite transformation. Microstructural characterization confirms the enhanced formation of V(C, N) within interphase rows in the N-containing steels, leading to greater Zener pinning effect and smaller ferrite grain size (from 7.50 μm of 0N to 4.67 μm of 96 ppm N and 3.84 μm of 139 ppm N). As a result, owing to the enhanced nanoprecipitation and grain refinement, the N-containing ULC strip casting steels exhibit a superior strength–ductility synergy, with tensile strength increased from 666 MPa (0N) to 805 MPa (96 ppm N) and 825 MPa (139 ppm N), and a slight decrease in total elongation from 29.8% (0N) to 27.3% (96 ppm N) and 22.0% (139 ppm N). In addition, no Lüders plateau was observed in the tensile stress-strain curves as the extensive formation of V(C, N) consumed the N atoms in solid solution. These findings highlight that microalloying V in the steels produced by EAF can effectively leverage the high N content for achieving superior strength–ductility synergy. Full article
(This article belongs to the Special Issue Fundamental Metallurgy: From Impact Solutions to New Insight)
Show Figures

Figure 1

15 pages, 4298 KB  
Article
X-Shaped Dual-Band Slot Antenna with Simultaneous Pattern Diversity and Frequency Tuning
by Youngjin Cho and Youngje Sung
Sensors 2026, 26(3), 1047; https://doi.org/10.3390/s26031047 - 5 Feb 2026
Abstract
This paper proposes a frequency-reconfigurable and active beam-switching antenna based on an X-shaped slot array integrated with a diode-based switching network. The proposed antenna features four slots arranged at 90° intervals around the feed point. Each slot is integrated with two PIN diodes [...] Read more.
This paper proposes a frequency-reconfigurable and active beam-switching antenna based on an X-shaped slot array integrated with a diode-based switching network. The proposed antenna features four slots arranged at 90° intervals around the feed point. Each slot is integrated with two PIN diodes and one varactor diode. By selectively activating a specific slot through the PIN diodes, the radiation pattern can be switched in four directions at 90° intervals. Dual-band operation is achieved using varactor diodes, and by controlling their equivalent capacitance, the antenna covers two operating bands: a low-frequency band with a 29.51% bandwidth (2.6–3.5 GHz) and a high-frequency band with a 24.52% bandwidth (3.65–4.67 GHz). These frequency ranges include the 5G sub-6 GHz bands, specifically n77 and n78. Experimental results confirm stable beam-switching performance across the entire operating frequency range. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

19 pages, 12818 KB  
Article
Mechanical Stability of Amorphous Silicon Thin-Film Devices on Polyimide for Flexible Sensor Platforms
by Giulia Petrucci, Fabio Cappelli, Martina Baldini, Francesca Costantini, Augusto Nascetti, Giampiero de Cesare, Domenico Caputo and Nicola Lovecchio
Sensors 2026, 26(3), 1026; https://doi.org/10.3390/s26031026 - 4 Feb 2026
Abstract
Hydrogenated amorphous silicon (a-Si:H) is a mature thin-film technology for large-area devices and thin-film sensors, and its low-temperature growth via Plasma-Enhanced Chemical Vapor Deposition (PECVD) makes it particularly suitable for biomedical flexible and wearable platforms. However, the reliable integration of a-Si:H sensors on [...] Read more.
Hydrogenated amorphous silicon (a-Si:H) is a mature thin-film technology for large-area devices and thin-film sensors, and its low-temperature growth via Plasma-Enhanced Chemical Vapor Deposition (PECVD) makes it particularly suitable for biomedical flexible and wearable platforms. However, the reliable integration of a-Si:H sensors on polymer substrates requires a quantitative assessment of their electrical stability under mechanical stress, since bending-induced variations may affect sensor accuracy. In this work, we provide a quantitative, direction-dependent evaluation of the static-bending robustness of both single-doped a-Si:H layers and complete p-i-n junction stacks on polyimide (Kapton®), thereby linking material-level strain sensitivity to device-level functionality. First, n- and p-doped a-Si:H layers were deposited on 50 µm thick Kapton® and then structured as two-terminal thin-film resistors to enable resistivity extraction under bending conditions. Electrical measurements were performed on multiple samples, with the current path oriented either parallel (longitudinal) or perpendicular (transverse) to the bending axis, and resistance profiles were determined as a function of bending radius. While n-type layers exhibited limited and mostly gradual variations, p-type layers showed a stronger sensitivity to mechanical stress, with a critical-radius behavior under transverse bending and a more progressive evolution in the longitudinal one. This directional response identifies a practical bending condition under which doped layers, particularly p-type films, are more susceptible to strain-induced degradation. Subsequently, a linear array of a-Si:H p-i-n sensors was fabricated on Kapton® substrates with two different thicknesses (25 and 50 µm thick) and characterized under identical bending conditions. Despite the increased strain sensitivity observed in the single-layers, the p-i-n diodes preserved their rectifying behavior down to the smallest radius tested. Indeed, across the investigated radii, the reverse current at −0.5 V remained consistent, confirming stable junction operation under bending. Only minor differences, related to substrate thickness, were observed in the reverse current and in the high-injection regime. Overall, these results demonstrate the mechanical robustness of stacked a-Si:H junctions on polyimide and support their use as sensors for wearable biosensing architectures. By establishing a quantitative, orientation-aware stability benchmark under static bending, this study supports the design of reliable a-Si:H flexible sensor platforms for curved and wearable surfaces. Full article
(This article belongs to the Special Issue Recent Innovations in Wearable Sensors for Biomedical Approaches)
Show Figures

Figure 1

20 pages, 10694 KB  
Article
Fabrication and Surface Quality of Thermoformed Composite Saddles Using Hexagonal-Patterned Multi-Point Tooling
by Shouzhi Hao, Wenliang Wang, Xingjian Wang, Jing Yan, Hexuan Shi, Xianhe Cheng, Rundong Ding and Qigang Han
Eng 2026, 7(2), 69; https://doi.org/10.3390/eng7020069 - 3 Feb 2026
Viewed by 74
Abstract
To reduce mold costs in composite forming, multi-point tooling technology has been integrated into the hot diaphragm forming process. However, this approach still faces several challenges, including time-consuming prepreg layup, high energy consumption, and poor surface quality. This study proposes a heating pad-assisted [...] Read more.
To reduce mold costs in composite forming, multi-point tooling technology has been integrated into the hot diaphragm forming process. However, this approach still faces several challenges, including time-consuming prepreg layup, high energy consumption, and poor surface quality. This study proposes a heating pad-assisted multi-point thermoforming process: the prepreg is embedded in the thermal functional layers, placed on the lower mold, and formed via the downward movement of the upper mold to accomplish mold closure. Instead of the conventional rectangular array, this study adopted multi-point tooling with a hexagonal pin arrangement. Compared to traditional configurations, this hexagonal layout increases the punch support area by 9.8%, while its dense punch arrangement improves the accuracy of the molded curved surface. Taking a saddle-shaped surface as the target, a prototype part was fabricated. Subsequent analysis of the part’s surface quality identified three defects: dimples, fiber distortion, and ridge protrusions. The surface dimples were eliminated by adjusting the distance between the upper and lower molds. Notably, ridge protrusion is a defect unique to the hexagonal pin arrangement. We conducted a detailed analysis of its causes and solutions, finding that this defect arises from the combined effect of the pin arrangement and the saddle-shaped surface. Through a series of height compensation experiments, the maximum deviation at the ridges was reduced from 0.46 mm to approximately 0.35 mm, which is consistent with the deviation of defect-free areas. This work demonstrates that the multi-point hot-pressing process provides a potential, efficient, and low-cost method for manufacturing double-curvature composite components, whose effectiveness has been verified through the saddle-shaped case study. Full article
(This article belongs to the Topic Surface Engineering and Micro Additive Manufacturing)
Show Figures

Figure 1

14 pages, 3655 KB  
Article
Pin-Plane Electrical Discharge Driven by a MOSFET DC Current Source
by Myles Perry, Sidmar Holoman, Daniel Wozniak and Shirshak Kumar Dhali
Plasma 2026, 9(1), 5; https://doi.org/10.3390/plasma9010005 - 3 Feb 2026
Viewed by 188
Abstract
The generation of atmospheric pressure nonequilibrium plasma using electrical discharges is an active area of research due to its significance in a wide spectrum of applications including medicine, combustion, and manufacturing. In our attempt to create a helium plasma jet in a pin-plane [...] Read more.
The generation of atmospheric pressure nonequilibrium plasma using electrical discharges is an active area of research due to its significance in a wide spectrum of applications including medicine, combustion, and manufacturing. In our attempt to create a helium plasma jet in a pin-plane discharge with a constant current source, we observed self-pulsating behavior. We present the results of the electrical, optical, and spectroscopic measurements carried out to characterize the discharge. The duration of the discharge is a few tens of nanoseconds, and the repetition rate is in the few tens of kHz. The effect of the gap distance and gas flow is discussed. The effective capacitance formed by the space charge in the discharge region plays an important role in determining the pulsing frequency. The results of voltage swing, current pulse, and light emission are also discussed. Such self-pulsating discharges can be used to produce helium plasmas under ambient conditions in applications such as plasma medicine. Full article
(This article belongs to the Special Issue New Insights into Plasma Theory, Modeling and Predictive Simulations)
Show Figures

Figure 1

21 pages, 18415 KB  
Article
Graded Brittle–Ductile Transition via Laser-Induced Thermal Gradient for Broaching of Z10C13 Steel
by Guozhen Liu, Zhen Meng, Junqiang Zheng, Weiguang Liu, Xinghua Wu, Jing Ni and Haohan Zhang
Micromachines 2026, 17(2), 204; https://doi.org/10.3390/mi17020204 - 2 Feb 2026
Viewed by 176
Abstract
This paper presents a breakthrough in activating the skin effect at conventional broaching speeds (1–8 m/min) by using laser defocus gradient modification to induce surface embrittlement in martensitic stainless steel Z10C13. Through controlled defocusing, a 50 μm gradient remelting layer was created, which [...] Read more.
This paper presents a breakthrough in activating the skin effect at conventional broaching speeds (1–8 m/min) by using laser defocus gradient modification to induce surface embrittlement in martensitic stainless steel Z10C13. Through controlled defocusing, a 50 μm gradient remelting layer was created, which features ultrafine grains (0.8 μm) and a high-density geometrically necessary dislocation (GND) zone (ρGND = 2.27 μm−3). The quasi-cleavage fracture was triggered via dislocation pinning by non-oriented low-angle grain boundaries (28.4% LAGBs). Multiscale characterization confirms that this microstructural transformation enhances surface hardness by 12.95% (reaching 31.4 HRC), reduces cutting force by 34.07%, and improves surface roughness by 63.74% (Sz = 28.80 μm). Simultaneously, a parallel crack-deflection mechanism restricts subsurface damage propagation, resulting in a crack-free subsurface zone. These results demonstrate the effectiveness of the embrittlement–toughening dichotomy for precision machining of difficult-to-cut materials under low-speed constraints. Full article
(This article belongs to the Section D:Materials and Processing)
Show Figures

Figure 1

18 pages, 6634 KB  
Article
Study on La Doping Modification and Transport Characteristics of Indium Oxide-Based Thermoelectric Materials for Waste-Heat Power Generation Application
by Jie Zhang, Bo Feng, Zhengxiang Yang, Xuan Liu, Shilang Guo, Guoji Cai, Yaoyang Zhang, Rong Zhang, Xiaoqiong Zuo, Zhiwen Yang, Tongqiang Xiong, Jiang Zhu, Suoluoyan Yang and Ruolin Ruan
Inorganics 2026, 14(2), 46; https://doi.org/10.3390/inorganics14020046 - 2 Feb 2026
Viewed by 84
Abstract
To address the trade-off between thermoelectric efficiency in oxide thermoelectric materials used in Aiye Processing Equipment, this study investigates the effect of La doping on the thermoelectric properties of indium oxide (In2O3) through experimental characterization and mechanism analysis. The [...] Read more.
To address the trade-off between thermoelectric efficiency in oxide thermoelectric materials used in Aiye Processing Equipment, this study investigates the effect of La doping on the thermoelectric properties of indium oxide (In2O3) through experimental characterization and mechanism analysis. The results show that La doping induces synergistic optimization of the electronic structure, lattice dynamics, and defect state of In2O3, leading to simultaneous enhancements in thermoelectric and mechanical properties. Specifically, La3+ substitution for In3+ significantly increases carrier concentration, which, combined with the band convergence-induced elevation of density of states (DOS) near the Fermi level, results in a remarkable improvement in power factor (from the intrinsic enhancement driven by electrical conductivity) while mitigating the reduction in Seebeck coefficient. Meanwhile, lattice distortion caused by ionic radius mismatch and decreased Young’s modulus (due to weakened In-O bonds) jointly enhance phonon scattering and reduce phonon propagation velocity, leading to a significant decrease in lattice thermal conductivity and total thermal conductivity. Consequently, the thermoelectric figure of merit (ZT) of La-doped In2O3 increases from 0.055 to 0.358, a six-fold enhancement. Additionally, La doping improves Vickers hardness through three synergistic mechanisms: internal stress from lattice distortion, enhanced interatomic bonding (synergistic reinforcement of ionic and covalent bond components), and dislocation pinning by substitutional defects (La_In). This study demonstrates that La doping achieves the dual regulation of “promoting electrical transport, suppressing thermal conduction, and enhancing mechanical strength” in In2O3, breaking the traditional trade-off between thermoelectric and mechanical properties. The findings provide a feasible strategy for the performance optimization of oxide thermoelectrics and lay a foundation for their practical applications in energy conversion systems requiring high efficiency and structural reliability. Full article
Show Figures

Figure 1

18 pages, 3407 KB  
Article
SMG6’s PIN (PilT N-Terminus) Domain Is Required for Nonsense-Mediated mRNA Decay (NMD) In Vivo
by Baihui Chai, Xiao Tan, Yan Li, Chengyan Chen, Xin Ma and Tangliang Li
Cells 2026, 15(3), 282; https://doi.org/10.3390/cells15030282 - 2 Feb 2026
Viewed by 228
Abstract
Nonsense-mediated mRNA decay (NMD) is a highly conserved RNA quality and quantity surveillance machinery in eukaryotic cells, serving as an important node in the post-transcriptional gene expression. Previous studies using the complete knockout of individual NMD factors in cells or animals reveal that [...] Read more.
Nonsense-mediated mRNA decay (NMD) is a highly conserved RNA quality and quantity surveillance machinery in eukaryotic cells, serving as an important node in the post-transcriptional gene expression. Previous studies using the complete knockout of individual NMD factors in cells or animals reveal that NMD deficiency causes developmental defects and compromises tissue homeostasis. However, because most NMD factors participate in multiple molecular functions, a direct link between NMD and cell fate determination is missing. SMG6 is a core NMD effector and the only endoribonuclease among all NMD factors. The NMD function of SMG6 is exclusively mediated by its PIN (PilT N-terminus) domain. In this study, we engineered a mouse model with the capability of specifically deactivating the SMG6’s PIN domain/endoribonuclease activity (Smg6-PINF/F), but not knocking out the complete SMG6 protein. We found that SMG6’s PIN domain is essential for NMD activity in embryonic stem cells (ESCs) and various tissues of adult mice. Furthermore, loss of SMG6’s PIN domain is dispensable for the mouse ESC self-renewal, but severely compromises the differentiation, which consequently causes the mutant mice to die during the process of organogenesis. Through the induced deletion of SMG6’s PIN domain in adult mice, we found that loss of SMG6’s NMD function affects the homeostasis of several mouse tissues, including the testis and the intestine. In sum, our study establishes a mechanistic link between NMD per se and cell fate determination of mouse ESCs, as well as in the tissues of adult mice, where cell fate transitions are actively ongoing. The Smg6-PINF/F mouse line could be a valuable strain for elucidating the biology of NMD per se. Full article
(This article belongs to the Special Issue Post-Transcriptional Control of Stem Cell Fate and Neural Development)
Show Figures

Figure 1

21 pages, 1800 KB  
Article
Bipartite Synchronization for Signed Luré Networks via Semi-Markovian Jump Switching and Quantized Pinning Control
by Suresh Rasappan, Sathish Kumar Kumaravel, Regan Murugesan, Wardah Abdullah Al Majrafi and Pugalarasu Rajan
Eng 2026, 7(2), 66; https://doi.org/10.3390/eng7020066 - 1 Feb 2026
Viewed by 75
Abstract
This paper investigates bipartite synchronization in signed Lur’e networks influenced by semi-Markovian jump dynamics. A control strategy is proposed that adapts to mode-dependent switching by combining quantized feedback with selective pinning. The approach accommodates both leaderless and leader–following synchronization scenarios. For each switching [...] Read more.
This paper investigates bipartite synchronization in signed Lur’e networks influenced by semi-Markovian jump dynamics. A control strategy is proposed that adapts to mode-dependent switching by combining quantized feedback with selective pinning. The approach accommodates both leaderless and leader–following synchronization scenarios. For each switching mode, Lyapunov–Krasovskii-based analysis is employed to establish sufficient conditions using linear matrix inequalities (LMIs). The robustness and convergence of the method are confirmed through simulation studies, even in the presence of stochastic switching and limited communication precision. Full article
(This article belongs to the Section Electrical and Electronic Engineering)
Show Figures

Figure 1

19 pages, 2709 KB  
Article
Design Compensation in Pin-Hole Dimensional Changes in Annealed FDM HTPLA Cutting Guides for Orthopedic Surgery
by Leonardo Frizziero, Grazia Chiara Menozzi, Giulia Alessandri, Alessandro Depaoli, Giampiero Donnici, Paola Papaleo, Giovanni Trisolino and Gino Rocca
Eng 2026, 7(2), 63; https://doi.org/10.3390/eng7020063 - 1 Feb 2026
Viewed by 68
Abstract
(1) Background: HTPLA FDM-printed cutting guides enable the low-cost, in-hospital production of patient-specific instruments. However, annealing, which is required for steam sterilization, may alter the dimensions of fit-critical fixation pin holes. (2) Methods: HTPLA cylindrical specimens (height 5 mm) were printed with fixed [...] Read more.
(1) Background: HTPLA FDM-printed cutting guides enable the low-cost, in-hospital production of patient-specific instruments. However, annealing, which is required for steam sterilization, may alter the dimensions of fit-critical fixation pin holes. (2) Methods: HTPLA cylindrical specimens (height 5 mm) were printed with fixed process parameters and vertical orientation. Inner diameter (1.6–5.0 mm) and wall thickness (2–6 mm) were varied using a two-factor Central Composite Design (n = 13). Following a two-stage annealing treatment (80 °C, 10 min; 100 °C, 50 min), post-annealing dimensions were measured and modeled using Response Surface Methodology. An illustrative verification was performed on additional specimens. (3) Results: Annealing induced a systematic decrease in inner diameter (−0.4 to −0.9 mm) and an increase in wall thickness (+0.1 to +0.4 mm). A reduced quadratic model accurately captured these trends within the investigated range, with small residuals observed during verification (≤0.1 mm). (4) Conclusions: The proposed local, geometry-driven model supports compensation in fixation pin-hole dimensions in annealed HTPLA cutting guides, improving dimensional predictability within a defined design and process window. Full article
(This article belongs to the Special Issue Emerging Trends and Technologies in Manufacturing Engineering)
Show Figures

Figure 1

33 pages, 6167 KB  
Article
Comprehensive Insights into Friction Stir Butt Welding (FSBW) of 3D-Printed Novel Nano Chromium (Cr) Particles-Reinforced PLA Composites
by Syed Farhan Raza, Muhammad Umair Furqan, Sarmad Ali Khan, Khurram Hameed Mughal, Ehsan Ul Haq and Ahmed Murtaza Mehdi
J. Compos. Sci. 2026, 10(2), 72; https://doi.org/10.3390/jcs10020072 - 1 Feb 2026
Viewed by 198
Abstract
Additive manufacturing (AM) is a significant contributor to Industry 4.0. However, one considerable challenge is usually encountered by AM due to the bed size limitations of 3D printers, which prevent them from being adopted. An appropriate post-joining technique should be employed to address [...] Read more.
Additive manufacturing (AM) is a significant contributor to Industry 4.0. However, one considerable challenge is usually encountered by AM due to the bed size limitations of 3D printers, which prevent them from being adopted. An appropriate post-joining technique should be employed to address this issue properly. This study investigates the influence of key friction stir butt welding (FSBW) factors (FSBWFs), such as tool rotational speed (TRS), tool traverse speed (TTS), and pin profile (PP), on the weldability of 3D-printed PLA–Chromium (PC) composites (3PPCC). A filament containing 10% by weight of chromium reinforced in PLA was used to prepare samples. The material extrusion additive manufacturing process (MEX) was employed to prepare the 3D-printed PCC. A Taguchi-based design of experiments (DOE) (L9 orthogonal array) was employed to systematically assess weld hardness (WH), weld temperature (WT), weld strength (WS), and weld efficiency. As far as the 3D-printed samples were concerned, two distinct infill patterns (linear and tri-hexagonal) were also examined to evaluate their effect on joint performance; however, all other 3D printing factors were kept constant. Experimentally validated findings revealed that weld efficiency varied significantly with PP and infill pattern, with the square PP and tri-hexagonal infill pattern yielding the highest weld efficiency, i.e., 108%, with the corresponding highest WS of 30 MPa. The conical PP resulted in reduced WS. Hardness analysis demonstrated that tri-hexagonal infill patterns exhibited superior hardness retention, i.e., 46.1%, as compared to that of linear infill patterns, i.e., 34%. The highest WTs observed with conical PP were 132 °C and 118 °C for both linear and tri-hexagonal infill patterns, which were far below the melting point of PLA. The lowest WT was evaluated to be 65 °C with a tri-hexagonal infill, which is approximately equal to the glass transition temperature of PLA. Microscopic analysis using a coordinate measuring machine (CMM) indicated that optimal weld zones featured minimal void formation, directly contributing to improved weld performance. In addition, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX) were also performed on four deliberately selected samples to examine the microstructural features and elemental distribution in the weld zones, providing deeper insight into the correlation between morphology, chemical composition, and weld performance. Full article
(This article belongs to the Special Issue Welding and Friction Stir Processes for Composite Materials)
Show Figures

Figure 1

14 pages, 8471 KB  
Article
Enhancing Discharge Performance and Image Lag Characteristics in PIN Diode X-Ray Sensors with a Reset Transistor
by Hanbin Jang, Jinwook Heo, Moonjeong Bok and Eunju Lim
Sensors 2026, 26(3), 929; https://doi.org/10.3390/s26030929 - 1 Feb 2026
Viewed by 169
Abstract
With the advent of electric vehicles, the demand for non-destructive inspection methods for battery evaluation has increased. Among various requirements, achieving high-frame-rate performance is particularly critical for rapid inspection in end-user systems. However, image delay, which increases with frame rate, has emerged as [...] Read more.
With the advent of electric vehicles, the demand for non-destructive inspection methods for battery evaluation has increased. Among various requirements, achieving high-frame-rate performance is particularly critical for rapid inspection in end-user systems. However, image delay, which increases with frame rate, has emerged as a significant challenge due to inherent limitations in sensor design. As a result, extensive research has been conducted to improve image lag performance. In this study, we conducted an in-depth analysis of the fundamental causes of image lag in image sensors. Based on these findings, we fabricated a novel sensor with a reset transistor separate from the readout transistor used for data transfer. This approach effectively increased the reset current of the photodiode, significantly reducing image lag. The transistor material used in this study was InGaZnO, which showed a significant improvement in image lag compared to conventional methods. By introducing a dedicated reset transistor, the allowable reset current of the PIN diode was increased by a factor of 100 compared to the ROIC-limited condition, resulting in a significant reduction in image lag from 3.8% (STS) to 0.9% (DTS) under high-frame-rate operation. This research provides a theoretical basis for proposing various new X-ray digital image sensor structures. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Graphical abstract

37 pages, 8167 KB  
Article
SIFT-SNN for Traffic-Flow Infrastructure Safety: A Real-Time Context-Aware Anomaly Detection Framework
by Munish Rathee, Boris Bačić and Maryam Doborjeh
J. Imaging 2026, 12(2), 64; https://doi.org/10.3390/jimaging12020064 - 31 Jan 2026
Viewed by 135
Abstract
Automated anomaly detection in transportation infrastructure is essential for enhancing safety and reducing the operational costs associated with manual inspection protocols. This study presents an improved neuromorphic vision system, which extends the prior SIFT-SNN (scale-invariant feature transform–spiking neural network) proof-of-concept by incorporating temporal [...] Read more.
Automated anomaly detection in transportation infrastructure is essential for enhancing safety and reducing the operational costs associated with manual inspection protocols. This study presents an improved neuromorphic vision system, which extends the prior SIFT-SNN (scale-invariant feature transform–spiking neural network) proof-of-concept by incorporating temporal feature aggregation for context-aware and sequence-stable detection. Analysis of classical stitching-based pipelines exposed sensitivity to motion and lighting variations, motivating the proposed temporally smoothed neuromorphic design. SIFT keypoints are encoded into latency-based spike trains and classified using a leaky integrate-and-fire (LIF) spiking neural network implemented in PyTorch. Evaluated across three hardware configurations—an NVIDIA RTX 4060 GPU, an Intel i7 CPU, and a simulated Jetson Nano—the system achieved 92.3% accuracy and a macro F1 score of 91.0% under five-fold cross-validation. Inference latencies were measured at 9.5 ms, 26.1 ms, and ~48.3 ms per frame, respectively. Memory footprints were under 290 MB, and power consumption was estimated to be between 5 and 65 W. The classifier distinguishes between safe, partially dislodged, and fully dislodged barrier pins, which are critical failure modes for the Auckland Harbour Bridge’s Movable Concrete Barrier (MCB) system. Temporal smoothing further improves recall for ambiguous cases. By achieving a compact model size (2.9 MB), low-latency inference, and minimal power demands, the proposed framework offers a deployable, interpretable, and energy-efficient alternative to conventional CNN-based inspection tools. Future work will focus on exploring the generalisability and transferability of the work presented, additional input sources, and human–computer interaction paradigms for various deployment infrastructures and advancements. Full article
27 pages, 5961 KB  
Article
Experimental Study of the Effect of Surface Texture in Sliding Contacts Using Infrared Thermography
by Milan Omasta, Tomáš Knoth, Petr Šperka, Michal Hajžman, Ivan Křupka, Pavel Polach and Martin Hartl
Lubricants 2026, 14(2), 64; https://doi.org/10.3390/lubricants14020064 - 31 Jan 2026
Viewed by 134
Abstract
This study investigates the influence of surface texturing on temperature distribution in lubricated sliding contacts using infrared thermography. The work addresses the broader challenge of understanding thermal effects in conformal hydrodynamic contacts, where localized heating and viscosity variations can significantly affect tribological performance. [...] Read more.
This study investigates the influence of surface texturing on temperature distribution in lubricated sliding contacts using infrared thermography. The work addresses the broader challenge of understanding thermal effects in conformal hydrodynamic contacts, where localized heating and viscosity variations can significantly affect tribological performance. A pin-on-disc configuration was employed, featuring steel pins with laser-etched micro-dimples that slid against a sapphire disc, allowing for thermal imaging of the contact zone. A dual-bandpass filter infrared thermography technique was developed and rigorously calibrated to distinguish between the temperatures of the steel surface and the lubricant film. Friction measurements and laser-induced fluorescence were used in parallel to assess contact conditions and the behavior of the lubricant film. The results show that surface textures can alter local frictional heating and contribute to non-uniform temperature distributions, particularly in parallel contact geometries. Lubricant temperature was consistently higher than the surface temperature, highlighting the role of shear heating within the fluid film. However, within the tested parameter range, no unambiguous viscosity-wedge signature was identified beyond the dominant temperature-driven viscosity reduction captured by the in situ correction. The method provides a novel means of experimentally resolving temperature fields in sliding textured contacts, offering a valuable foundation for validating thermo-hydrodynamic models in lubricated tribological systems. Full article
(This article belongs to the Special Issue Mechanical Tribology and Surface Technology, 2nd Edition)
Show Figures

Figure 1

12 pages, 13719 KB  
Article
Effect of Gd Alloying on Magnetic Properties of Direct-Quenched Fe-Gd-B Nanocrystalline Alloys
by Linli Wang, Yuanyuan Wang, Zhongao Wang, Ming Nie, Feng Huang, Wangyan Lv, Huameng Fu, Haifeng Zhang and Zhengwang Zhu
Materials 2026, 19(3), 561; https://doi.org/10.3390/ma19030561 - 30 Jan 2026
Viewed by 221
Abstract
Nanocrystalline Fe-Gd-B alloys were successfully synthesized via Gd alloying in a binary Fe-B system using a single-roller melt-spinning technique. A systematic investigation of Gd content variation (0–4.35 at.%) reveals its critical role in tuning microstructure evolution, thermal stability, and magnetic properties. Crucially, the [...] Read more.
Nanocrystalline Fe-Gd-B alloys were successfully synthesized via Gd alloying in a binary Fe-B system using a single-roller melt-spinning technique. A systematic investigation of Gd content variation (0–4.35 at.%) reveals its critical role in tuning microstructure evolution, thermal stability, and magnetic properties. Crucially, the Fe90.70Gd2.32B6.98 alloy ribbon exhibits optimized magnetic performance, achieving a high saturation magnetic induction (Bs) of 1.67 T and a low coercivity (Hc) of 2.737 kA/m. This enhancement is attributed to the suppression α-Fe grain growth through Gd-induced elevation of the thermal stability of the amorphous matrix, which confines the average crystallite size to 26.3 nm. The refined α-Fe phase contributes to elevated Bs through an increased ferromagnetic fraction, while its nanoscale grain structure, combined with wide magnetic domain configurations, effectively reduces Hc by limiting domain wall pinning sites. These findings establish that the synergistic effect of Gd alloying and Fe/B ratio adjustment is a viable strategy for designing high-performance Fe-based magnetic alloys. Full article
(This article belongs to the Special Issue Physical Metallurgy of Metals and Alloys (4th Edition))
Show Figures

Figure 1

Back to TopTop