Tensile and Flexural Behavior of Metal–Polymer Friction Stir Buttstrap Composite Panels
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Tensile Strength
3.2. Flexural Strength
3.3. Microstructure and Fracture Surfaces
3.4. Hardness Profile
4. Conclusions
- The tensile strength evidenced scattered results from 80.3 ± 6.7 MPa in panel P6 (2250 rpm and 140 mm/min) up to 138.9 ± 9.6 MPa in panel P2 (2250 rpm and 100 mm/min);
- The tensile strength was significantly hindered by two critical factors: (i) the presence of a defect within the joining regions, and (ii) the loss of hardness in the joining region;
- The tensile efficiency ranged from 27.7% to 47.9% with tensile strength of AA6082-T6 as reference value;
- The lowest flexural strength was observed in panel P3 (2150 rpm and 120 mm/min), with 41.9 ± 4.7 MPa, while the highest was found in panel P1 (2150 rpm and 100 mm/min), with 47.2 ± 0.1 MPa, evidencing stable results compared with the tensile ones;
- The flexural efficiency varied between 52.4% and 59.0%, with marginal contribution from the defect while the hardness loss played a major role in this domain;
- The travel speed during the joining process appears to have had a negative effect on mechanical performance.
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gökgöz, F.; Yalçın, E. Evaluating the European transportation sector via energy and climate change mitigation perspectives. Sustain. Futures 2025, 9, 100652. [Google Scholar] [CrossRef]
- Khurshid, A.; Khan, K.; Saleem, S.F.; Cifuentes-Faura, J.; Cantemir Calin, A. Driving towards a sustainable future: Transport sector innovation, climate change and social welfare. J. Clean. Prod. 2023, 427, 139250. [Google Scholar] [CrossRef]
- EEA. Decarbonising Road Transport—The Role of Vehicles, Fuels and Transport Demand; EEA: Copenhagen, Denmark, 2022.
- Nazir, H.; Muthuswamy, N.; Louis, C.; Jose, S.; Prakash, J.; Buan, M.E.M.; Flox, C.; Chavan, S.; Shi, X.; Kauranen, P.; et al. Is the H2 economy realizable in the foreseeable future? Part III: H2 usage technologies, applications, and challenges and opportunities. Int. J. Hydrogen Energy 2020, 45, 28217–28239. [Google Scholar] [CrossRef]
- Chakraborty, S.; Dash, S.K.; Elavarasan, R.M.; Kaur, A.; Elangovan, D.; Meraj, S.T.; Kasinathan, P.; Said, Z. Hydrogen Energy as Future of Sustainable Mobility. Front. Energy Res. 2022, 10, 893475. [Google Scholar] [CrossRef]
- Sacchi, R.; Bauer, C.; Cox, B.; Mutel, C. When, where and how can the electrification of passenger cars reduce greenhouse gas emissions? Renew. Sustain. Energy Rev. 2022, 162, 112475. [Google Scholar] [CrossRef]
- Correia, A.N.; Braga, D.F.O.; Moreira, P.M.G.P.; Infante, V. Review on dissimilar structures joints failure. Eng. Fail. Anal. 2021, 129, 105652. [Google Scholar] [CrossRef]
- Pereira, M.A.R.; Amaro, A.M.; Reis, P.N.B.; Loureiro, A. Effect of Friction Stir Welding Techniques and Parameters on Polymers Joint Efficiency-A Critical Review. Polymers 2021, 13, 2056. [Google Scholar] [CrossRef]
- Kumar, N.; Yuan, W.; Mishra, R.S. Friction Stir Welding of Dissimilar Alloys and Materials; Friction Stir Welding and Processing; Butterworth-Heinemann: Oxford, UK, 2015. [Google Scholar]
- Yousefpour, A.; Hojjati, M.; Immarigeon, J.-P. Fusion Bonding/Welding of Thermoplastic Composites. J. Thermoplast. Compos. Mater. 2004, 17, 303–341. [Google Scholar] [CrossRef]
- Correia, A.N.; Gaspar, B.M.; Cipriano, G.; Braga, D.F.O.; Baptista, R.; Infante, V. Thermo-Mechanical Characterization of Metal–Polymer Friction Stir Composite Joints—A Full Factorial Design of Experiments. Polymers 2024, 16, 602. [Google Scholar] [CrossRef] [PubMed]
- Correia, A.N.; Braga, D.F.O.; Baptista, R.; Infante, V. Experimental and numerical investigation on failure behaviour of aluminum-polymer friction stir composite joints. Eng. Fail. Anal. 2024, 165, 108805. [Google Scholar] [CrossRef]
- Amancio-Filho, S.T.; dos Santos, J.F. Joining of polymers and polymer-metal hybrid structures: Recent developments and trends. Polym. Eng. Sci. 2009, 49, 1461–1476. [Google Scholar] [CrossRef]
- Lambiase, F.; Paoletti, A.; Grossi, V.; Genna, S. Improving energy efficiency in friction assisted joining of metals and polymers. J. Mater. Process. Technol. 2017, 250, 379–389. [Google Scholar] [CrossRef]
- Thomas, W.M.; Dolby, R.E.; Thomas, W.M. Friction Stir Welding Developments. In Proceedings of the 6th International Conference on Trends in Welding Research, Pine Mountain, GA, USA, 15–19 April 2002. [Google Scholar]
- Thomas, W.M.; Staines, D.G.; Norris, I.M.; de Frias, R. Friction Stir Welding Tools and Developments. Weld. World 2003, 47, 10–17. [Google Scholar] [CrossRef]
- Ahmed, M.M.Z.; El-Sayed Seleman, M.M.; Fydrych, D.; Cam, G. Friction Stir Welding of Aluminum in the Aerospace Industry: The Current Progress and State-of-the-Art Review. Materials 2023, 16, 2971. [Google Scholar] [CrossRef]
- Sambasivam, S.; Gupta, N.; Jassim, A.S.; Pratap Singh, D.; Kumar, S.; Mohan Giri, J.; Gupta, M. A review paper of FSW on dissimilar materials using aluminum. Mater. Today Proc. 2023. [Google Scholar] [CrossRef]
- Barakat, A.A.; Darras, B.M.; Nazzal, M.A.; Ahmed, A.A. A Comprehensive Technical Review of the Friction Stir Welding of Metal-to-Polymer Hybrid Structures. Polymers 2022, 15, 220. [Google Scholar] [CrossRef]
- Ambrosio, D.; Morisada, Y.; Ushioda, K.; Fujii, H. Material flow in friction stir welding: A review. J. Mater. Process. Technol. 2023, 320, 118116. [Google Scholar] [CrossRef]
- Ahmad Mir, F.; Zaman Khan, N.; Noor Siddiquee, A.; Parvez, S. Friction based solid state welding—A review. Mater. Today Proc. 2022, 62, 55–62. [Google Scholar] [CrossRef]
- Correia, A.N.; Santos, P.A.M.; Braga, D.F.O.; Cipriano, G.P.; Moreira, P.M.G.P.; Infante, V. Effects of processing temperature on failure mechanisms of dissimilar aluminum-to-polymer joints produced by friction stir welding. Eng. Fail. Anal. 2023, 146, 107155. [Google Scholar] [CrossRef]
- Li, M.; Xiong, X.; Ji, S.; Hu, W.; Yue, Y. Achieving high-quality metal to polymer-matrix composites joint via top-thermic solid-state lap joining. Compos. Part B Eng. 2021, 219, 108941. [Google Scholar] [CrossRef]
- Ratanathavorn, W.; Melander, A. Dissimilar joining between aluminium alloy (AA 6111) and thermoplastics using friction stir welding. Sci. Technol. Weld. Join. 2015, 20, 222–228. [Google Scholar] [CrossRef]
- Huang, Y.; Meng, X.; Wang, Y.; Xie, Y.; Zhou, L. Joining of aluminum alloy and polymer via friction stir lap welding. J. Mater. Process. Technol. 2018, 257, 148–154. [Google Scholar] [CrossRef]
- Correia, A.N.; Santos, P.A.M.; Braga, D.F.O.; Baptista, R.; Infante, V. Effects of Friction Stir Welding Process Control and Tool Penetration on Mechanical Strength and Morphology of Dissimilar Aluminum-to-Polymer Joints. J. Manuf. Mater. Process. 2023, 7, 106. [Google Scholar] [CrossRef]
- Arici, A.; Sinmazçelýk, T. Effects of double passes of the tool on friction stir welding of polyethylene. J. Mater. Sci. 2005, 40, 3313–3316. [Google Scholar] [CrossRef]
- Mirabzadeh, R.; Parvaneh, V.; Ehsani, A. Estimating and optimizing the flexural strength of bonding welded polypropylene sheets by friction-stir welding method. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2020, 235, 73–86. [Google Scholar] [CrossRef]
- Derazkola, H.A.; Kashiry Fard, R.; Khodabakhshi, F. Effects of processing parameters on the characteristics of dissimilar friction-stir-welded joints between AA5058 aluminum alloy and PMMA polymer. Weld. World 2017, 62, 117–130. [Google Scholar] [CrossRef]
- Correia, A.N.; Coelho, R.J.; Braga, D.F.O.; Guedes, M.; Baptista, R.; Infante, V. Effect of Service Temperature on the Mechanical and Fatigue Behaviour of Metal-Polymer Friction Stir Composite Joints. Polymers 2025, 17, 1366. [Google Scholar] [CrossRef]
- Peters, E.N. Poly(phenylene ether) Based Amphiphilic Block Copolymers. Polymers 2017, 9, 433. [Google Scholar] [CrossRef]
- Warren, R.I. Polyphenylene ethers and their alloys. Polym. Eng. Sci. 1985, 25, 477–482. [Google Scholar] [CrossRef]
- BV, S.I.P.I. Noryl resin—Modified PPE-PS Americas, 2007.
- Pinto, L.; Cipriano, G.; Braga, D.F.O.; Vidal, C.; Machado, M.A.; Correia, A.; Infante, V. Mechanical behavior of friction stir butt welded joints under different loading and temperature conditions. Mech. Adv. Mater. Struct. 2022, 31, 1413–1422. [Google Scholar] [CrossRef]
- Jones, R.M. Mechanics of Composite Materials, 2nd ed.; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Mishra, R.S.; Ma, Z.Y. Friction stir welding and processing. Mater. Sci. Eng. R Rep. 2005, 50, 1–78. [Google Scholar] [CrossRef]
- Chinchanikar, S.; Gharde, S.; Gadge, M. Investigation of tool forces, weld bead micro-hardness and surface roughness during friction stir welding of Aluminium 6063 alloy. Adv. Mater. Process. Technol. 2022, 8 (Suppl. 1), 231–239. [Google Scholar] [CrossRef]
- Hibbeler, R.C. Mechanics of Materials; Pearson: London, UK, 2018. [Google Scholar]
- Xu, X.; Liu, Q.; Qi, S.; Hou, H.; Wang, J.; Ren, X. Effect of incomplete penetration defects on mechanical and fatigue properties of friction-stir-welded 6802-T6 joint. J. Mater. Res. Technol. 2021, 15, 4021–4031. [Google Scholar] [CrossRef]
- Dai, Q.; Jin, L.; Meng, K.; Liu, H.; Shi, Q.; Chen, G. Influence of welding speed on the root defects formation and mechanical properties of FSWed 6082-T6 Al alloy joint. Int. J. Adv. Manuf. Technol. 2024, 131, 1097–1106. [Google Scholar] [CrossRef]
- Robitaille, B.; Provencher, P.R.; St-Georges, L.; Brochu, M. Mechanical properties of 2024-T3 AlClad aluminum FSW lap joints and impact of surface preparation. Int. J. Fatigue 2021, 143, 105979. [Google Scholar] [CrossRef]
- Infante, V.; Braga, D.F.O.; Duarte, F.; Moreira, P.M.G.; de Freitas, M.; de Castro, P.M.S.T. Study of the fatigue behaviour of dissimilar aluminium joints produced by friction stir welding. Int. J. Fatigue 2016, 82, 310–316. [Google Scholar] [CrossRef]
- Costa, M.I.; Rodrigues, D.M.; Leitão, C. Analysis of AA 6082-T6 welds strength mismatch: Stress versus hardness relationships. Int. J. Adv. Manuf. Technol. 2015, 79, 719–727. [Google Scholar] [CrossRef]
- Baratzadeh, F.; Boldsaikhan, E.; Nair, R.; Burford, D.; Lankarani, H. Investigation of mechanical properties of AA6082-T6/AA6063-T6 friction stir lap welds. J. Adv. Join. Process. 2020, 1, 100011. [Google Scholar] [CrossRef]
Base Materials | (g/cm3) | E (GPa) | (MPa) | (%) | Tmelt (°C) | K (W/(m °C)) |
---|---|---|---|---|---|---|
Noryl GFN2 | 1.25 | 6 | 80 | 2.5 | 280 | 0.26 |
AA6082-T6 | 2.70 | 70 | >290 | >7 | 582 | 180 |
Parameter | Panel 1 | Panel 2 | Panel 3 | Panel 4 | Panel 5 | Panel 6 |
---|---|---|---|---|---|---|
(rpm) | 2150 | 2250 | 2150 | 2250 | 2150 | 2250 |
(mm/min) | 100 | 100 | 120 | 120 | 140 | 140 |
E (GPa) | (mm2) | (mm) | (mm4) |
---|---|---|---|
70 | 60.7 | 5.38 | 146.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Correia, A.N.; Braga, D.F.O.; Baptista, R.; Infante, V. Tensile and Flexural Behavior of Metal–Polymer Friction Stir Buttstrap Composite Panels. Polymers 2025, 17, 2084. https://doi.org/10.3390/polym17152084
Correia AN, Braga DFO, Baptista R, Infante V. Tensile and Flexural Behavior of Metal–Polymer Friction Stir Buttstrap Composite Panels. Polymers. 2025; 17(15):2084. https://doi.org/10.3390/polym17152084
Chicago/Turabian StyleCorreia, Arménio N., Daniel F. O. Braga, Ricardo Baptista, and Virgínia Infante. 2025. "Tensile and Flexural Behavior of Metal–Polymer Friction Stir Buttstrap Composite Panels" Polymers 17, no. 15: 2084. https://doi.org/10.3390/polym17152084
APA StyleCorreia, A. N., Braga, D. F. O., Baptista, R., & Infante, V. (2025). Tensile and Flexural Behavior of Metal–Polymer Friction Stir Buttstrap Composite Panels. Polymers, 17(15), 2084. https://doi.org/10.3390/polym17152084