Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (785)

Search Parameters:
Keywords = PI3K/mTOR signalling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 21916 KiB  
Article
Pentoxifylline and Norcantharidin Synergistically Suppress Melanoma Growth in Mice: A Multi-Modal In Vivo and In Silico Study
by Israel Lara-Vega, Minerva Nájera-Martínez and Armando Vega-López
Int. J. Mol. Sci. 2025, 26(15), 7522; https://doi.org/10.3390/ijms26157522 (registering DOI) - 4 Aug 2025
Abstract
Melanoma is a highly aggressive skin cancer with limited therapeutic response. Targeting intracellular signaling pathways and promoting tumor cell differentiation are promising therapeutic strategies. Pentoxifylline (PTX) and norcantharidin (NCTD) have demonstrated antitumor properties, but their combined mechanisms of action in melanoma remain poorly [...] Read more.
Melanoma is a highly aggressive skin cancer with limited therapeutic response. Targeting intracellular signaling pathways and promoting tumor cell differentiation are promising therapeutic strategies. Pentoxifylline (PTX) and norcantharidin (NCTD) have demonstrated antitumor properties, but their combined mechanisms of action in melanoma remain poorly understood. The effects of PTX (30 and 60 mg/kg) and NCTD (0.75 and 3 mg/kg), administered alone or in combination, in a DBA/2J murine B16-F1 melanoma model via intraperitoneal and intratumoral (IT) routes were evaluated. Tumor growth was monitored, and molecular analyses included RNA sequencing and immunofluorescence quantification of PI3K, AKT1, mTOR, ERBB2, BRAF, and MITF protein levels, and molecular docking simulations were performed. In the final stage of the experiment, combination therapy significantly reduced tumor volume compared to monotherapies, with the relative tumor volume decreasing from 18.1 ± 1.2 (SD) in the IT Control group to 0.6 ± 0.1 (SD) in the IT combination-treated group (n = 6 per group; p < 0.001). RNA-seq revealed over 3000 differentially expressed genes in intratumoral treatments, with enrichment in pathways related to oxidative stress, immune response, and translation regulation (KEGG and Reactome analyses). Minimal transcript-level changes were observed for BRAF and PI3K/AKT/mTOR genes; however, immunofluorescence showed reduced total and phosphorylated levels of PI3K, AKT1, mTOR, BRAF, and ERBB2. MITF protein levels and pigmentation increased, especially in PTX-treated groups, indicating enhanced melanocytic differentiation. Docking analyses predicted direct binding of both drugs to PI3K, AKT1, mTOR, and BRAF, with affinities ranging from −5.7 to −7.4 kcal/mol. The combination of PTX and NCTD suppresses melanoma progression through dual mechanisms: inhibition of PI3K/AKT/mTOR signaling and promotion of tumor cell differentiation. Full article
Show Figures

Figure 1

14 pages, 548 KiB  
Review
Carboxypeptidase A4: A Biomarker for Cancer Aggressiveness and Drug Resistance
by Adeoluwa A. Adeluola, Md. Sameer Hossain and A. R. M. Ruhul Amin
Cancers 2025, 17(15), 2566; https://doi.org/10.3390/cancers17152566 - 4 Aug 2025
Abstract
Carboxypeptidase A4 (CPA4) is an exopeptidase that cleaves peptide bonds at the C-terminal domain within peptides and proteins. It preferentially cleaves peptides with terminal aromatic or branched chain amino acid residues such as phenylalanine, tryptophan, or leucine. CPA4 was first discovered in prostate [...] Read more.
Carboxypeptidase A4 (CPA4) is an exopeptidase that cleaves peptide bonds at the C-terminal domain within peptides and proteins. It preferentially cleaves peptides with terminal aromatic or branched chain amino acid residues such as phenylalanine, tryptophan, or leucine. CPA4 was first discovered in prostate cancer cells, but it is now known to be expressed in various tissues throughout the body. Its physiologic expression is governed by latexin, a noncompetitive endogenous inhibitor of CPA4. Nevertheless, the overexpression of CPA4 has been associated with the progression and aggressiveness of many malignancies, including prostate, pancreatic, breast and lung cancer, to name a few. CPA4’s role in cancer has been attributed to its disruption of many cellular signaling pathways, e.g., PI3K-AKT-mTOR, STAT3-ERK, AKT-cMyc, GPCR, and estrogen signaling. The dysregulation of these pathways by CPA4 could be responsible for inducing epithelial--mesenchymal transition (EMT), tumor invasion and drug resistance. Although CPA4 has been found to regulate cancer aggressiveness and poor prognosis, no comprehensive review summarizing the role of CPA4 in cancer is available so far. In this review, we provide a brief description of peptidases, their classification, history of CPA4, mechanism of action of CPA4 as a peptidase, its expression in various tissues, including cancers, its role in various tumor types, the associated molecular pathways and cellular processes. We further discuss the limitations of current literature linking CPA4 to cancers and challenges that prevent using CPA4 as a biomarker for cancer aggressiveness and predicting drug response and highlight a number of future strategies that can help to overcome the limitations. Full article
(This article belongs to the Special Issue Insights from the Editorial Board Member)
Show Figures

Figure 1

33 pages, 4098 KiB  
Systematic Review
Pharmacological Inhibition of the PI3K/AKT/mTOR Pathway in Rheumatoid Arthritis Synoviocytes: A Systematic Review and Meta-Analysis (Preclinical)
by Tatiana Bobkova, Artem Bobkov and Yang Li
Pharmaceuticals 2025, 18(8), 1152; https://doi.org/10.3390/ph18081152 - 2 Aug 2025
Viewed by 84
Abstract
Background/Objectives: Constitutive activation of the PI3K/AKT/mTOR signaling cascade underlies the aggressive phenotype of fibroblast-like synoviocytes (FLSs) in rheumatoid arthritis (RA); however, a quantitative synthesis of in vitro data on pathway inhibition remains lacking. This systematic review and meta-analysis aimed to (i) aggregate [...] Read more.
Background/Objectives: Constitutive activation of the PI3K/AKT/mTOR signaling cascade underlies the aggressive phenotype of fibroblast-like synoviocytes (FLSs) in rheumatoid arthritis (RA); however, a quantitative synthesis of in vitro data on pathway inhibition remains lacking. This systematic review and meta-analysis aimed to (i) aggregate standardized effects of pathway inhibitors on proliferation, apoptosis, migration/invasion, IL-6/IL-8 secretion, p-AKT, and LC3; (ii) assess heterogeneity and identify key moderators of variability, including stimulus type, cell source, and inhibitor class. Methods: PubMed, Europe PMC, and the Cochrane Library were searched up to 18 May 2025 (PROSPERO CRD420251058185). Twenty of 2684 screened records met eligibility. Two reviewers independently extracted data and assessed study quality with SciRAP. Standardized mean differences (Hedges g) were pooled using a Sidik–Jonkman random-effects model with Hartung–Knapp confidence intervals. Heterogeneity (τ2, I2), 95% prediction intervals, and meta-regression by cell type were calculated; robustness was tested with REML-HK, leave-one-out, and Baujat diagnostics. Results: PI3K/AKT/mTOR inhibition markedly reduced proliferation (to –5.1 SD), IL-6 (–11.1 SD), and IL-8 (–6.5 SD) while increasing apoptosis (+2.7 SD). Fourteen of seventeen outcome clusters showed large effects (|g| ≥ 0.8), with low–moderate heterogeneity (I2 ≤ 35% in 11 clusters). Prediction intervals crossed zero only in small k-groups; sensitivity analyses shifted pooled estimates by ≤0.05 SD. p-AKT and p-mTOR consistently reflected functional changes and emerged as reliable pharmacodynamic markers. Conclusions: Targeted blockade of PI3K/AKT/mTOR robustly suppresses the proliferative and inflammatory phenotype of RA-FLSs, reaffirming this axis as a therapeutic target. The stability of estimates across multiple analytic scenarios enhances confidence in these findings and highlights p-AKT and p-mTOR as translational response markers. The present synthesis provides a quantitative basis for personalized dual-PI3K/mTOR strategies and supports the adoption of standardized long-term preclinical protocols. Full article
Show Figures

Graphical abstract

30 pages, 4011 KiB  
Article
Multitarget Design of Steroidal Inhibitors Against Hormone-Dependent Breast Cancer: An Integrated In Silico Approach
by Juan Rodríguez-Macías, Oscar Saurith-Coronell, Carlos Vargas-Echeverria, Daniel Insuasty Delgado, Edgar A. Márquez Brazón, Ricardo Gutiérrez De Aguas, José R. Mora, José L. Paz and Yovanni Marrero-Ponce
Int. J. Mol. Sci. 2025, 26(15), 7477; https://doi.org/10.3390/ijms26157477 (registering DOI) - 2 Aug 2025
Viewed by 156
Abstract
Hormone-dependent breast cancer, particularly in its treatment-resistant forms, remains a significant therapeutic challenge. In this study, we applied a fully computational strategy to design steroid-based compounds capable of simultaneously targeting three key receptors involved in disease progression: progesterone receptor (PR), estrogen receptor alpha [...] Read more.
Hormone-dependent breast cancer, particularly in its treatment-resistant forms, remains a significant therapeutic challenge. In this study, we applied a fully computational strategy to design steroid-based compounds capable of simultaneously targeting three key receptors involved in disease progression: progesterone receptor (PR), estrogen receptor alpha (ER-α), and HER2. Using a robust 3D-QSAR model (R2 = 0.86; Q2_LOO = 0.86) built from 52 steroidal structures, we identified molecular features associated with high anticancer potential, specifically increased polarizability and reduced electronegativity. From a virtual library of 271 DFT-optimized analogs, 31 compounds were selected based on predicted potency (pIC50 > 7.0) and screened via molecular docking against PR (PDB 2W8Y), HER2 (PDB 7JXH), and ER-α (PDB 6VJD). Seven candidates showed strong binding affinities (ΔG ≤ −9 kcal/mol for at least two targets), with Estero-255 emerging as the most promising. This compound demonstrated excellent conformational stability, a robust hydrogen-bonding network, and consistent multitarget engagement. Molecular dynamics simulations over 100 nanoseconds confirmed the structural integrity of the top ligands, with low RMSD values, compact radii of gyration, and stable binding energy profiles. Key interactions included hydrophobic contacts, π–π stacking, halogen–π interactions, and classical hydrogen bonds with conserved residues across all three targets. These findings highlight Estero-255, alongside Estero-261 and Estero-264, as strong multitarget candidates for further development. By potentially disrupting the PI3K/AKT/mTOR signaling pathway, these compounds offer a promising strategy for overcoming resistance in hormone-driven breast cancer. Experimental validation, including cytotoxicity assays and ADME/Tox profiling, is recommended to confirm their therapeutic potential. Full article
Show Figures

Graphical abstract

18 pages, 1263 KiB  
Review
Fertility Protection in Female Cancer Patients: From Molecular Mechanisms of Gonadotoxic Therapies to Pharmacotherapeutic Possibilities
by Weronika Zajączkowska, Maria Buda, Witold Kędzia and Karina Kapczuk
Int. J. Mol. Sci. 2025, 26(15), 7314; https://doi.org/10.3390/ijms26157314 - 29 Jul 2025
Viewed by 333
Abstract
Chemotherapeutic agents and radiotherapy are highly effective in treating malignancies. However, they carry a significant risk of harming the gonads and may lead to endocrine dysfunction and reproductive issues. This review outlines the molecular mechanisms of gonadotoxic therapies, focusing on radiation, alkylating agents, [...] Read more.
Chemotherapeutic agents and radiotherapy are highly effective in treating malignancies. However, they carry a significant risk of harming the gonads and may lead to endocrine dysfunction and reproductive issues. This review outlines the molecular mechanisms of gonadotoxic therapies, focusing on radiation, alkylating agents, and platinum compounds. It discusses the loss of PMFs due to gonadotoxic exposure, including DNA double-strand breaks, oxidative stress, and dysregulated signaling pathways like PI3K/PTEN/Akt/mTOR and TAp63-mediated apoptosis. Furthermore, it explores strategies to mitigate gonadal damage, including GnRH agonists, AMH, imatinib, melatonin, sphingolipid metabolites, G-CSF, mTOR inhibitors, AS101, and LH. These therapies, paired with existing fertility preservation methods, could safeguard reproductive and hormonal functions and improve the quality of life for young cancer patients. Despite the progress made in recent years in understanding gonadotoxic mechanisms, gaps remain due to questionable reliance on mouse models and the lack of models replicating human ovarian dynamics. Long-term studies are vital for wider analyses and exploration of protective strategies based on various animal models and clinical trials. It is essential to verify that these substances do not hinder the anti-cancer effectiveness of treatments or cause lasting DNA changes in granulosa cells, raising the risk of miscarriages and infertility. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

34 pages, 5074 KiB  
Review
Natural Metabolites as Modulators of Sensing and Signaling Mechanisms: Unlocking Anti-Ovarian Cancer Potential
by Megha Verma, Prem Shankar Mishra, SK. Abdul Rahaman, Tanya Gupta, Abid Ali Sheikh, Ashok Kumar Sah, Velilyaeva Aliya Sabrievna, Karomatov Inomdzhon Dzhuraevich, Anass M. Abbas, Manar G. Shalabi, Muhayyoxon Khamdamova, Baymuradov Ravshan Radjabovich, Feruza Rakhmatbayevna Karimova, Ranjay Kumar Choudhary and Said Al Ghenaimi
Biomedicines 2025, 13(8), 1830; https://doi.org/10.3390/biomedicines13081830 - 26 Jul 2025
Viewed by 668
Abstract
Cancer presents significant challenges owing to its complex molecular pathways and resistance to therapy. Natural metabolites have significant medicinal potential by regulating the sensing and signaling pathways associated with cancer development. Recognizing their interactions within the tumor microenvironment may unveil innovative techniques for [...] Read more.
Cancer presents significant challenges owing to its complex molecular pathways and resistance to therapy. Natural metabolites have significant medicinal potential by regulating the sensing and signaling pathways associated with cancer development. Recognizing their interactions within the tumor microenvironment may unveil innovative techniques for inhibiting malignant activities and improve therapy success. This article highlights studies regarding ovarian cancer metabolism, signaling mechanisms, and therapeutic natural substances. This study summarizes clinical and experimental results to emphasise the synergistic effects of alkaloids, flavonoids, and terpenoids in improving therapeutic effectiveness and alleviating drug resistance. Bioactive compounds are essential in regulating ovarian cancer metabolism and signaling pathways, affecting glycolysis, lipid metabolism, and the survival of tumor cells. This review examines metabolic programming and essential pathways, including glycolysis, TCA cycle, lipid metabolism, PI3K/AKT/mTOR, AMPK, and MAPK, emphasizing their therapeutic significance. The integration of metabolic treatments with medicines based on natural compounds has significant potential for enhancing treatment effectiveness and mitigating therapeutic resistance. Ovarian cancer needs an integrated strategy that includes metabolic reprogramming, signaling modulation, and drugs derived from natural products. Natural chemicals provide intriguing approaches to address chemotherapy resistance and improve treatment efficacy. Further research is required to enhance these methodologies and evaluate their practical applicability for improved patient outcomes. Full article
(This article belongs to the Special Issue Ovarian Physiology and Reproduction)
Show Figures

Figure 1

39 pages, 1806 KiB  
Review
Microglia-Mediated Neuroinflammation Through Phosphatidylinositol 3-Kinase Signaling Causes Cognitive Dysfunction
by Mohammad Nazmul Hasan Maziz, Srikumar Chakravarthi, Thidar Aung, Phone Myint Htoo, Wana Hla Shwe, Sergey Gupalo, Manglesh Waran Udayah, Hardev Singh, Mohammed Shahjahan Kabir, Rajesh Thangarajan and Maheedhar Kodali
Int. J. Mol. Sci. 2025, 26(15), 7212; https://doi.org/10.3390/ijms26157212 - 25 Jul 2025
Viewed by 369
Abstract
Microglia, as the immune guardians of the central nervous system (CNS), have the ability to maintain neural homeostasis, respond to environmental changes, and remodel the synaptic landscape. However, persistent microglial activation can lead to chronic neuroinflammation, which can alter neuronal signaling pathways, resulting [...] Read more.
Microglia, as the immune guardians of the central nervous system (CNS), have the ability to maintain neural homeostasis, respond to environmental changes, and remodel the synaptic landscape. However, persistent microglial activation can lead to chronic neuroinflammation, which can alter neuronal signaling pathways, resulting in accelerated cognitive decline. Phosphoinositol 3-kinase (PI3K) has emerged as a critical driver, connecting inflammation to neurodegeneration, serving as the nexus of numerous intracellular processes that govern microglial activation. This review focuses on the relationship between PI3K signaling and microglial activation, which might lead to cognitive impairment, inflammation, or even neurodegeneration. The review delves into the components of the PI3K signaling cascade, isoforms, and receptors of PI3K, as well as the downstream effects of PI3K signaling, including its effectors such as protein kinase B (Akt) and mammalian target of rapamycin (mTOR) and the negative regulator phosphatase and tensin homolog (PTEN). Experiments have shown that the overproduction of certain cytokines, coupled with abnormal oxidative stress, is a consequence of poor PI3K regulation, resulting in excessive synapse pruning and, consequently, impacting learning and memory functions. The review also highlights the implications of autonomously activated microglia exhibiting M1/M2 polarization driven by PI3K on hippocampal, cortical, and subcortical circuits. Conclusions from behavioral studies, electrophysiology, and neuroimaging linking cognitive performance and PI3K activity were evaluated, along with new approaches to therapy using selective inhibitors or gene editing. The review concludes by highlighting important knowledge gaps, including the specific effects of different isoforms, the risks associated with long-term pathway modulation, and the limitations of translational potential, underscoring the crucial role of PI3K in mitigating cognitive impairment driven by neuroinflammation. Full article
(This article belongs to the Special Issue Therapeutics and Pathophysiology of Cognitive Dysfunction)
Show Figures

Figure 1

28 pages, 2732 KiB  
Review
Molecular Mechanisms of Radiation Resistance in Breast Cancer: A Systematic Review of Radiosensitization Strategies
by Emma Mageau, Ronan Derbowka, Noah Dickinson, Natalie Lefort, A. Thomas Kovala, Douglas R. Boreham, T. C. Tai, Christopher Thome and Sujeenthar Tharmalingam
Curr. Issues Mol. Biol. 2025, 47(8), 589; https://doi.org/10.3390/cimb47080589 - 24 Jul 2025
Viewed by 504
Abstract
Breast cancer remains one of the most prevalent malignancies worldwide, and radiation therapy is a central component of its management. However, intrinsic or acquired resistance to radiation significantly compromises therapeutic efficacy. This systematic review aimed to identify and evaluate molecular mechanisms and interventions [...] Read more.
Breast cancer remains one of the most prevalent malignancies worldwide, and radiation therapy is a central component of its management. However, intrinsic or acquired resistance to radiation significantly compromises therapeutic efficacy. This systematic review aimed to identify and evaluate molecular mechanisms and interventions that influence radiation sensitivity in breast cancer models. A comprehensive PubMed search was conducted using the terms “breast cancer” and “radiation resistance” for studies published between 2002 and 2024. Seventy-nine eligible studies were included. The most frequently investigated mechanisms included the dysregulation of the PI3K/AKT/mTOR and MAPK signaling pathways, enhanced DNA damage repair via non-homologous end joining (NHEJ), and the overexpression of cancer stem cell markers such as CD44+/CD24/low and ALDH1. Several studies highlighted the role of non-coding RNAs, particularly the lncRNA DUXAP8 and microRNAs such as miR-21, miR-144, miR-33a, and miR-634, in modulating radiation response. Components of the tumor microenvironment, including cancer-associated fibroblasts and immune regulators, also contributed to radiation resistance. By synthesizing current evidence, this review provides a consolidated resource to guide future mechanistic studies and therapeutic development. This review highlights promising molecular targets and emerging strategies to enhance radiosensitivity and offers a foundation for translational research aimed at improving outcomes in radiation-refractory breast cancer. Full article
Show Figures

Figure 1

34 pages, 2764 KiB  
Review
The Inositol-5-Phosphatase SHIP1: Expression, Regulation and Role in Acute Lymphoblastic Leukemia
by Patrick Ehm and Manfred Jücker
Int. J. Mol. Sci. 2025, 26(14), 6935; https://doi.org/10.3390/ijms26146935 - 19 Jul 2025
Viewed by 413
Abstract
Despite the successes achieved in recent years in the treatment of childhood acute lymphoblastic leukemia (ALL), high-risk ALL in particular still represents a considerable challenge, with poorer outcomes. The PI3K/AKT/mTOR signaling pathway is frequently constitutively activated in ALL and consequently leads to unrestricted [...] Read more.
Despite the successes achieved in recent years in the treatment of childhood acute lymphoblastic leukemia (ALL), high-risk ALL in particular still represents a considerable challenge, with poorer outcomes. The PI3K/AKT/mTOR signaling pathway is frequently constitutively activated in ALL and consequently leads to unrestricted cell proliferation, without showing frequent mutations in the most important representatives of the signaling pathway. Recent studies have shown that fine balanced protein expression is a common way to adjust oncogenic B cell directed receptor signaling and to mediate malignant cell proliferation and survival in leukemic cells. Too low expression of inhibitory phosphatases can lead to constitutive signaling of kinases, which are important for cell proliferation and survival. In contrast, marked high expression levels of key phosphatases enable cells with distinct pronounced oncogenic B cell directed receptor signaling to escape negative selection by attenuating signal strength and thus raising the threshold for deletion checkpoint activation. One of the most important B cell receptor-dependent signaling cascades is the PI3K/AKT signaling pathway, with its important antagonist SHIP1. However, recent data show that the inositol-5-phosphatase SHIP1 is differentially expressed across the heterogeneity of the ALL subtypes, making the overall therapeutic strategy targeting SHIP1 more complex. The aim of this article is therefore to provide an overview of the current knowledge about SHIP1, its expression in the various subtypes of ALL, its regulation, and the molecules that influence its gene and protein expression, to better understand its role in the pathogenesis of leukemia and other human cancers. Full article
(This article belongs to the Collection Latest Review Papers in Molecular Oncology)
Show Figures

Figure 1

29 pages, 1461 KiB  
Review
The Role of PI3K/AKT/mTOR Signaling in Tumor Radioresistance and Advances in Inhibitor Research
by Jian Zhan and Manfred Jücker
Int. J. Mol. Sci. 2025, 26(14), 6853; https://doi.org/10.3390/ijms26146853 - 17 Jul 2025
Viewed by 450
Abstract
Cancer is a major threat to human health, and radiotherapy is a key treatment method. However, its effectiveness is often limited by tumor radioresistance. The PI3K/AKT/mTOR signaling pathway is commonly dysregulated in cancers and plays a significant role in radioresistance, though its exact [...] Read more.
Cancer is a major threat to human health, and radiotherapy is a key treatment method. However, its effectiveness is often limited by tumor radioresistance. The PI3K/AKT/mTOR signaling pathway is commonly dysregulated in cancers and plays a significant role in radioresistance, though its exact mechanisms remain unclear. This review discusses how this pathway regulates tumor radioresistance and highlights recent progress in the development of related inhibitors in preclinical and clinical studies. These findings aim to guide clinical treatment strategies and provide new approaches to overcoming radioresistance. Full article
(This article belongs to the Special Issue Latest Review Papers in Molecular Oncology 2024)
Show Figures

Figure 1

19 pages, 2076 KiB  
Article
Capacity for Compensatory Cyclin D2 Response Confers Trametinib Resistance in Canine Mucosal Melanoma
by Bih-Rong Wei, Vincenzo Verdi, Shuling Zhang, Beverly A. Mock, Heather R. Shive and R. Mark Simpson
Cancers 2025, 17(14), 2357; https://doi.org/10.3390/cancers17142357 - 15 Jul 2025
Viewed by 463
Abstract
Background/objective: Mucosal melanoma (MM) is a poorly responsive, rare and aggressive subtype with few cases having targetable recurrent driver mutations, although Ras/MAPK and PI3K/AKT/mTOR signaling pathway activations are common. Eventual tumor evasion of targeted therapy continues to limit treatment success. Adequate models are [...] Read more.
Background/objective: Mucosal melanoma (MM) is a poorly responsive, rare and aggressive subtype with few cases having targetable recurrent driver mutations, although Ras/MAPK and PI3K/AKT/mTOR signaling pathway activations are common. Eventual tumor evasion of targeted therapy continues to limit treatment success. Adequate models are necessary to address therapeutic resistance. The relatively greater incidence of naturally occurring MM in dogs, as well as its comparable clinical and pathological characteristics to human MM, represents an opportunity for study as a human MM patient surrogate. Resistance-promoting crosstalk between Ras/MAPK and PI3K/AKT/mTOR signaling under trametinib inhibition of MEK was studied in canine MM. Emphasis was placed on the suppressive effect of trametinib on cell cycle entry and its potential role in drug resistance. Methods: D-type cyclins were investigated following trametinib treatment of five MM cell lines exhibiting differential drug sensitivities. Signaling pathway activation, proliferation, survival, cell death, and cell cycle were analyzed in the context of D-type cyclin expression. Cyclin D2 expression was manipulated using siRNA knockdown or inducible recombinant overexpression. Results: Trametinib diminished cyclin D1 in all cell lines. While relatively trametinib-resistant MM cells exhibited capacity to upregulate cyclin D2, which promoted proliferation, sensitive MM cells lacked similar cyclin D2 compensation. Inhibition of the compensatory cyclin D2 in resistant cells conferred sensitivity. Induced cyclin D2 overexpression in otherwise trametinib-sensitive MM cells promoted survival. Upregulated PI3K/AKT/mTOR signaling under trametinib treatment was suppressed by mTORC1/2 inhibition, which similarly diminished cyclin D2 response. Conclusions: The compensatory switch from preferential reliance on cyclin D1 to D2 plays a role in MM resistance to MEK inhibition. Full article
(This article belongs to the Special Issue Molecular Insights into Drug Resistance in Cancer)
Show Figures

Figure 1

35 pages, 10190 KiB  
Article
Molecular Mechanisms of Lobelia nummularia Extract in Breast Cancer: Targeting EGFR/TP53 and PI3K-AKT-mTOR Signaling via ROS-Mediated Apoptosis
by Fahu Yuan, Yu Qiao, Zhongqiang Chen, Huihuang He, Fuyan Wang and Jiangyuan Chen
Curr. Issues Mol. Biol. 2025, 47(7), 546; https://doi.org/10.3390/cimb47070546 - 14 Jul 2025
Viewed by 391
Abstract
Lobelia nummularia Lam. is a traditional medicinal herb of which the anticancer mechanisms remain largely unexplored. Here, we demonstrated that its ethanolic extract (LNE) exerts potent anti-breast cancer activity by inducing ROS-dependent mitochondrial apoptosis in MDA-MB-231 cells, a mechanism confirmed via rescue experiments [...] Read more.
Lobelia nummularia Lam. is a traditional medicinal herb of which the anticancer mechanisms remain largely unexplored. Here, we demonstrated that its ethanolic extract (LNE) exerts potent anti-breast cancer activity by inducing ROS-dependent mitochondrial apoptosis in MDA-MB-231 cells, a mechanism confirmed via rescue experiments with the antioxidant N-acetylcysteine (NAC). This pro-apoptotic program is driven by a dual mechanism: potent suppression of the pro-survival EGFR/PI3K/AKT signaling pathway and simultaneous activation of the TP53-mediated apoptotic cascade, culminating in the cleavage of executor caspase-3. Phytochemical analysis identified numerous flavonoids, and quantitative HPLC confirmed that key bioactive compounds, including luteolin and apigenin, are substantially present in the extract. These mechanisms translated to significant in vivo efficacy, where LNE administration suppressed primary tumor growth and lung metastasis in a 4T1 orthotopic model in BALB/c mice. Furthermore, a validated molecular docking protocol provided a plausible structural basis for these multi-target interactions. Collectively, this study provides a comprehensive, multi-layered validation of LNE’s therapeutic potential, establishing it as a mechanistically well-defined candidate for natural product-based anticancer drug discovery. Full article
Show Figures

Figure 1

27 pages, 1730 KiB  
Review
Harnessing Liquiritigenin: A Flavonoid-Based Approach for the Prevention and Treatment of Cancer
by Anjana Sajeev, Babu Santha Aswani, Mohammed S. Alqahtani, Mohamed Abbas, Gautam Sethi and Ajaikumar B. Kunnumakkara
Cancers 2025, 17(14), 2328; https://doi.org/10.3390/cancers17142328 - 13 Jul 2025
Viewed by 362
Abstract
Background/Objectives: The integration of natural compounds in cancer research marked a crucial shift in the modern medical landscape, through a growing acknowledgment of their potential as efficient, less toxic, and cost-effective alternatives to contemporary chemotherapeutics. Liquiritigenin (LIQ) is a compound obtained from different [...] Read more.
Background/Objectives: The integration of natural compounds in cancer research marked a crucial shift in the modern medical landscape, through a growing acknowledgment of their potential as efficient, less toxic, and cost-effective alternatives to contemporary chemotherapeutics. Liquiritigenin (LIQ) is a compound obtained from different plants, the most important being the Glycyrrhiza species, commonly known as licorice. Methods: This review compiles findings from previously published preclinical studies and experimental research articles focusing on LIQ’s pharmacological effects, with particular attention to its anticancer potential. The relevant literature was identified using established scientific databases and selected based on relevance to cancer biology and LIQ-associated signaling pathways. Results: LIQ demonstrates anti-oxidant, anti-inflammatory, and anti-proliferative effects. It exerts its potential anticancer activities by inducing apoptosis, preventing cell proliferation, and modulating various signaling pathways such as nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), phosphoinositide 3 kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR), mitogen-activated protein kinase (MAPK), and so on. Conclusions: LIQ represents a promising natural agent for cancer therapy, with evidence supporting its multifunctional role in targeting tumor growth and survival mechanisms. By providing a detailed analysis of LIQ, this review aims to highlight its therapeutic efficacy across various cancer types and emphasize its importance as a promising compound in cancer research. In addition, this review seeks to bridge the gap between traditional medicine and modern pharmacology and paves the way for LIQ’s clinical application in cancer therapy. Full article
(This article belongs to the Special Issue Recent Updates and Future Perspectives of Anti-Cancer Agents)
Show Figures

Figure 1

28 pages, 2285 KiB  
Review
The Impact of Flavonoids and Omega-3 in Mitigating Frailty Syndrome to Improve Treatment Outcomes in Peripheral Artery Disease (PAD) Patients
by Sanaz Jamshidi, Zahra Eskandari, Amirhossein Faghih Ojaroodi, Shayan Keramat and Agata Stanek
Nutrients 2025, 17(14), 2303; https://doi.org/10.3390/nu17142303 - 12 Jul 2025
Viewed by 821
Abstract
Peripheral artery disease (PAD) is a common vascular disorder in the elderly, often accompanied by frailty syndrome, which is associated with increased inflammation, oxidative stress, and functional decline. Nutritional strategies, particularly those involving bioactive compounds like flavonoids and omega-3 fatty acids, have been [...] Read more.
Peripheral artery disease (PAD) is a common vascular disorder in the elderly, often accompanied by frailty syndrome, which is associated with increased inflammation, oxidative stress, and functional decline. Nutritional strategies, particularly those involving bioactive compounds like flavonoids and omega-3 fatty acids, have been suggested as potential approaches to modulate these pathological processes. This narrative review summarizes current evidence regarding the anti-inflammatory and antioxidant effects of flavonoids and omega-3 fatty acids, and their possible roles in mitigating frailty syndrome in patients with PAD. We examine mechanistic pathways including NF-κB, AMPK, PI3K/Akt/mTOR, and Nrf2, which are implicated in chronic inflammation, endothelial dysfunction, and muscle wasting. Although studies in general and aging populations suggest beneficial effects of these compounds on vascular and muscle health, specific evidence in PAD patients remains limited. Flavonoids may reduce pro-inflammatory cytokine production and enhance antioxidant responses, while omega-3 fatty acids have shown potential in modulating inflammatory signaling and supporting vascular repair. Current data provide a basis for further investigation into the dietary modulation of frailty syndrome in PAD. Understanding the impact of these nutrients may offer insights into adjunctive strategies for improving patient outcomes. Full article
(This article belongs to the Special Issue Featured Reviews on Geriatric Nutrition)
Show Figures

Graphical abstract

23 pages, 4624 KiB  
Review
Farnesoid X Receptor (FXR) Agonists and Protein Kinase Regulation in NAFLD and NASH: Mechanisms and Therapeutic Potential
by Ayan Saha, Emily Wood, Luna Omeragic, Maya Minkara, Kethain Marma, Shipan Das Gupta and Jannatul Ferdoush
Kinases Phosphatases 2025, 3(3), 16; https://doi.org/10.3390/kinasesphosphatases3030016 - 11 Jul 2025
Viewed by 734
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a common metabolic condition characterized by hepatic lipid deposits, insulin resistance, and inflammation which may progress to non-alcoholic steatohepatitis (NASH) and fibrosis. Protein kinases play an important role in NAFLD development by regulating metabolic and inflammatory pathways. [...] Read more.
Non-alcoholic fatty liver disease (NAFLD) is a common metabolic condition characterized by hepatic lipid deposits, insulin resistance, and inflammation which may progress to non-alcoholic steatohepatitis (NASH) and fibrosis. Protein kinases play an important role in NAFLD development by regulating metabolic and inflammatory pathways. Mitogen-activated protein kinases (MAPKs), protein kinase C (PKC), AMP-activated protein kinase (AMPK), phosphoinositide 3-kinase (PI3K)/AKT, and mechanistic target of rapamycin (mTOR) are all involved in NAFLD and NASH progression. Emerging evidence indicates that Farnesoid X Receptor (FXR) agonists have therapeutic potential by modulating bile acid metabolism, lipid balance, and inflammatory responses. This review examines the mechanistic interplay between FXR agonists and important protein kinases in NAFLD and NASH. FXR agonists activate AMPK, which promotes fatty acid oxidation and reduces hepatic steatosis. They also regulate MAPK signaling, which reduces c-Jun NH2-terminal kinase (JNK)- and p38 MAPK-mediated inflammation. Furthermore, FXR agonists activate the PI3K/AKT pathway, enhancing insulin sensitivity and modulating mTOR signaling to reduce hepatic fibrosis. Clinical studies in NAFLD/NASH indicate that FXR agonists confer metabolic and anti-inflammatory benefits, although optimizing efficacy and minimizing adverse effects remain challenging. Future studies should focus on combination therapies targeting FXR alongside specific kinases to improve therapeutic outcomes. This review highlights the potential of FXR agonists to modulate protein kinase signaling, opening new avenues for targeted NAFLD/NASH therapy. Full article
Show Figures

Figure 1

Back to TopTop