Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (125)

Search Parameters:
Keywords = PEM electrolyzer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 1981 KiB  
Article
Stochastic Control for Sustainable Hydrogen Generation in Standalone PV–Battery–PEM Electrolyzer Systems
by Mohamed Aatabe, Wissam Jenkal, Mohamed I. Mosaad and Shimaa A. Hussien
Energies 2025, 18(15), 3899; https://doi.org/10.3390/en18153899 - 22 Jul 2025
Viewed by 368
Abstract
Standalone photovoltaic (PV) systems offer a viable path to decentralized energy access but face limitations during periods of low solar irradiance. While batteries provide short-term storage, their capacity constraints often restrict the use of surplus energy, highlighting the need for long-duration solutions. Green [...] Read more.
Standalone photovoltaic (PV) systems offer a viable path to decentralized energy access but face limitations during periods of low solar irradiance. While batteries provide short-term storage, their capacity constraints often restrict the use of surplus energy, highlighting the need for long-duration solutions. Green hydrogen, generated via proton exchange membrane (PEM) electrolyzers, offers a scalable alternative. This study proposes a stochastic energy management framework that leverages a Markov decision process (MDP) to coordinate PV generation, battery storage, and hydrogen production under variable irradiance and uncertain load demand. The strategy dynamically allocates power flows, ensuring system stability and efficient energy utilization. Real-time weather data from Goiás, Brazil, is used to simulate system behavior under realistic conditions. Compared to the conventional perturb and observe (P&O) technique, the proposed method significantly improves system performance, achieving a 99.9% average efficiency (vs. 98.64%) and a drastically lower average tracking error of 0.3125 (vs. 9.8836). This enhanced tracking accuracy ensures faster convergence to the maximum power point, even during abrupt load changes, thereby increasing the effective use of solar energy. As a direct consequence, green hydrogen production is maximized while energy curtailment is minimized. The results confirm the robustness of the MDP-based control, demonstrating improved responsiveness, reduced downtime, and enhanced hydrogen yield, thus supporting sustainable energy conversion in off-grid environments. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

22 pages, 1725 KiB  
Article
Capacity Optimization for Coordinated Operation of Hybrid Electrolytic Cells Based on Wavelet Packet
by Yi Yang, Bowen Zhou, Yang Xu, Juan Zhang, Bo Yang, Guiping Zhou and Shunjiang Wang
Sustainability 2025, 17(14), 6412; https://doi.org/10.3390/su17146412 - 13 Jul 2025
Viewed by 330
Abstract
Hydrogen production through electrolysis of water can achieve efficient, stable and diversified utilization of renewable energy. To this end, a hybrid electrolyzer system for hydrogen production based on bi-layer optimization is constructed. Firstly, the wind and photovoltaic power is decomposed into high-frequency and [...] Read more.
Hydrogen production through electrolysis of water can achieve efficient, stable and diversified utilization of renewable energy. To this end, a hybrid electrolyzer system for hydrogen production based on bi-layer optimization is constructed. Firstly, the wind and photovoltaic power is decomposed into high-frequency and low-frequency components by an adaptive wavelet packet. The low-frequency power is allocated to the alkaline electrolyzers (AWE) to ensure its stability, and the high-frequency power is allocated to the proton exchange membrane electrolyzers (PEM) with a faster response characteristic, thereby improving the energy utilization rate. This paper proposes a bi-layer optimization model, in which the upper-layer objective is to minimize the cost of mixed hydrogen production, and the lower-layer optimization objective is to maximize the utilization rate of renewable energy. The differential evolution algorithm optimizes the upper-layer objective, with results sent to the lower layer. Then, the YALMIP toolbox is used to solve the lower-layer objective. Through case analysis, the optimal proportion of AWE and PEM hydrogen electrolyzers obtained by this optimization method is 89.5 and 10.5, respectively. Compared with a single type of electrolyzer, the method proposed in this paper effectively improves the energy utilization efficiency and reduces the cost of hydrogen production. Full article
(This article belongs to the Topic Clean Energy Technologies and Assessment, 2nd Edition)
Show Figures

Figure 1

20 pages, 2436 KiB  
Article
Advanced Hybrid Nanocatalysts for Green Hydrogen: Carbon-Supported MoS2 and ReS2 as Noble Metal Alternatives
by Maria Jarząbek-Karnas, Zuzanna Bojarska, Patryk Klemczak, Łukasz Werner and Łukasz Makowski
Int. J. Mol. Sci. 2025, 26(14), 6640; https://doi.org/10.3390/ijms26146640 - 10 Jul 2025
Viewed by 504
Abstract
One of the key challenges in commercializing proton exchange membrane (PEM) electrolyzer technology is reducing the production costs while maintaining high efficiency and operational stability. Significant contributors to the overall cost of the device are the electrode catalysts with IrO2 and Pt/C. [...] Read more.
One of the key challenges in commercializing proton exchange membrane (PEM) electrolyzer technology is reducing the production costs while maintaining high efficiency and operational stability. Significant contributors to the overall cost of the device are the electrode catalysts with IrO2 and Pt/C. Due to the high cost and limited availability of noble metals, there is growing interest in developing alternative, low-cost catalytic materials. In recent years, two-dimensional transition metal dichalcogenides (2D TMDCs), such as molybdenum disulfide (MoS2) and rhenium disulfide (ReS2), have attracted considerable attention due to their promising electrochemical properties for hydrogen evolution reactions (HERs). These materials exhibit unique properties, such as a high surface area or catalytic activity localized at the edges of the layered structure, which can be further enhanced through defect engineering or phase modulation. To increase the catalytically active surface area, the investigated materials were deposited on a carbon-based support—Vulcan XC-72R—selected for its high electrical conductivity and large specific surface area. This study investigated the physicochemical and electrochemical properties of six catalyst samples with varying MoS2 and ReS2 to carbon support ratios. Among the composites analyzed, the best sample on MoS2 (containing the most carbon soot) and the best sample on ReS2 (containing the least carbon soot) were selected. These were then used as cathode catalysts in an experimental PEM electrolyzer setup. The results confirmed satisfactory catalytic activity of the tested materials, indicating their potential as alternatives to conventional noble metal-based catalysts and providing a foundation for further research in this area. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

21 pages, 2552 KiB  
Article
Technical, Economic, and Environmental Optimization of the Renewable Hydrogen Production Chain for Use in Ammonia Production: A Case Study
by Halima Khalid, Victor Fernandes Garcia, Jorge Eduardo Infante Cuan, Elias Horácio Zavala, Tainara Mendes Ribeiro, Dimas José Rua Orozco and Adriano Viana Ensinas
Processes 2025, 13(7), 2211; https://doi.org/10.3390/pr13072211 - 10 Jul 2025
Viewed by 298
Abstract
Conventional ammonia production uses fossil-based hydrogen, resulting in high greenhouse gas emissions. Given the growing demand for sustainable solutions, it is essential to replace fossil hydrogen with renewable alternatives. This study assessed the technical, economic, and environmental viability of renewable ammonia production in [...] Read more.
Conventional ammonia production uses fossil-based hydrogen, resulting in high greenhouse gas emissions. Given the growing demand for sustainable solutions, it is essential to replace fossil hydrogen with renewable alternatives. This study assessed the technical, economic, and environmental viability of renewable ammonia production in Minas Gerais. To this end, an optimization model based on mixed integer linear programming (MILP) was developed and implemented in LINGO 20® software. The model incorporated investment costs; raw materials; transportation; emissions; and indicators such as NPV, payback, and minimum sale price. Hydrogen production routes integrated into the Haber–Bosch process were analyzed: biomass gasification (GS_WGS), anaerobic digestion of vinasse (Vinasse_BD_SMR), ethanol reforming (Ethanol_ESR), and electrolysis (PEM_electrolysis). Vinasse_BD_SMR showed the lowest costs and the greatest economic viability, with a payback of just 2 years, due to the use of vinasse waste as a raw material. In contrast, the electrolysis-based route had the longest payback time (8 years), mainly due to the high cost of the electrolyzers. The substitution of conventional hydrogen made it possible to avoid 580,000 t CO2 eq/year for a plant capacity of 200,000 t NH3/year, which represents 13% of the Brazilian emissions from the nitrogenated fertilizer sector. It can be concluded that the viability of renewable ammonia depends on the choice of hydrogen source and logistical optimization and is essential for reducing emissions at large scale. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

26 pages, 3957 KiB  
Article
Techno-Economic Assessment of Linear Fresnel-Based Hydrogen Production in the MENA Region: Toward Affordable, Locally Driven Deployment for Enhanced Profitability and Reduced Costs
by Abdellatif Azzaoui, Mohammed Attiaoui, Elmiloud Chaabelasri, Hugo Gonçalves Silva and Ahmed Alami Merrouni
Energies 2025, 18(14), 3633; https://doi.org/10.3390/en18143633 - 9 Jul 2025
Viewed by 398
Abstract
The MENA region, with its high solar potential and increasing investments in renewable energy, is transitioning away from fossil fuels toward more sustainable energy systems. To fully benefit from this transition and address issues such as intermittency and energy storage, “green” hydrogen is [...] Read more.
The MENA region, with its high solar potential and increasing investments in renewable energy, is transitioning away from fossil fuels toward more sustainable energy systems. To fully benefit from this transition and address issues such as intermittency and energy storage, “green” hydrogen is emerging as a key parameter. When produced using simple and cost-effective technologies like linear Fresnel reflector (LFR), it offers a practical solution. Therefore, assessing the potential of hydrogen production from LFR technology is essential to support the development of the energy sector and promote local industrial growth. This study investigates “green” hydrogen production using a 50 MW concentrated solar power (CSP) system based on LFR technology, where the CSP system generates electricity to power a proton exchange membrane electrolyzer for hydrogen production for three locations, including Ain Beni Mathar in Morocco, Assiout in Egypt, and Tabuk in Saudi Arabia. The results show that Tabuk achieved the highest annual hydrogen production (45.02 kg/kWe), followed by Assiout (38.72 kg/kWe) and Ain Beni Mathar (32.42 kg/kWe), with corresponding levelized costs of hydrogen (LCOH2) of 6.47 USD/kg, 6.84 USD/kg, and 7.35 USD/kg, respectively. In addition, several sensitivity analyses were conducted addressing the impact of thermal energy storage (TES) on the hydrogen production and costs, the effect of reduced investment costs resulting from the local manufacturing of LFR components, and the futuristic assumption of the electrolyzer cost drop. The integration of TES enhanced hydrogen output and reduced LCOH2 by up to 9%. Additionally, a future PEM electrolyzer costs projected for 2030 showed that LCOH2 could decrease by up to 1.3 USD/kg depending on site conditions. These findings demonstrate that combining TES with cost optimization strategies can significantly improve both technical performance and economic feasibility in the MENA region. Full article
(This article belongs to the Special Issue Hydrogen Energy Generation, Storage, Transportation and Utilization)
Show Figures

Figure 1

30 pages, 4875 KiB  
Article
Stochastic Demand-Side Management for Residential Off-Grid PV Systems Considering Battery, Fuel Cell, and PEM Electrolyzer Degradation
by Mohamed A. Hendy, Mohamed A. Nayel and Mohamed Abdelrahem
Energies 2025, 18(13), 3395; https://doi.org/10.3390/en18133395 - 27 Jun 2025
Viewed by 366
Abstract
The proposed study incorporates a stochastic demand side management (SDSM) strategy for a self-sufficient residential system powered from a PV source with a hybrid battery–hydrogen storage system to minimize the total degradation costs associated with key components, including Li-io batteries, fuel cells, and [...] Read more.
The proposed study incorporates a stochastic demand side management (SDSM) strategy for a self-sufficient residential system powered from a PV source with a hybrid battery–hydrogen storage system to minimize the total degradation costs associated with key components, including Li-io batteries, fuel cells, and PEM electrolyzers. The uncertainty in demand forecasting is addressed through a scenario-based generation to enhance the robustness and accuracy of the proposed method. Then, stochastic optimization was employed to determine the optimal operating schedules for deferable appliances and optimal water heater (WH) settings. The optimization problem was solved using a genetic algorithm (GA), which efficiently explores the solution space to determine the optimal operating schedules and reduce degradation costs. The proposed SDSM technique is validated through MATLAB 2020 simulations, demonstrating its effectiveness in reducing component degradation costs, minimizing load shedding, and reducing excess energy generation while maintaining user comfort. The simulation results indicate that the proposed method achieved total degradation cost reductions of 16.66% and 42.6% for typical summer and winter days, respectively, in addition to a reduction of the levelized cost of energy (LCOE) by about 22.5% compared to the average performance of 10,000 random operation scenarios. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

36 pages, 5420 KiB  
Article
Modeling Porosity Distribution Strategies in PEM Water Electrolyzers: A Comparative Analytical and Numerical Study
by Ali Bayat, Prodip K. Das and Suvash C. Saha
Mathematics 2025, 13(13), 2077; https://doi.org/10.3390/math13132077 - 23 Jun 2025
Viewed by 486
Abstract
Proton exchange membrane water electrolyzers (PEMWEs) are a promising technology for green hydrogen production. However, the adoption of PEMWE-based hydrogen production systems remains limited due to several challenges, including high material costs, limited performance and durability, and difficulties in scaling the technology. Computational [...] Read more.
Proton exchange membrane water electrolyzers (PEMWEs) are a promising technology for green hydrogen production. However, the adoption of PEMWE-based hydrogen production systems remains limited due to several challenges, including high material costs, limited performance and durability, and difficulties in scaling the technology. Computational modeling serves as a powerful tool to address these challenges by optimizing system design, improving material performance, and reducing overall costs, thereby accelerating the commercial rollout of PEMWE technology. Despite this, conventional models often oversimplify key components, such as porous transport and catalyst layers, by assuming constant porosity and neglecting the spatial heterogeneity found in real electrodes. This simplification can significantly impact the accuracy of performance predictions and the overall efficiency of electrolyzers. This study develops a mathematical framework for modeling variable porosity distributions—including constant, linearly graded, and stepwise profiles—and derives analytical expressions for permeability, effective diffusivity, and electrical conductivity. These functions are integrated into a three-dimensional multi-domain COMSOL simulation to assess their impact on electrochemical performance and transport behavior. The results reveal that although porosity variations have minimal effect on polarization at low voltages, they significantly influence internal pressure, species distribution, and gas evacuation at higher loads. A notable finding is that reversing stepwise porosity—placing high porosity near the membrane rather than the channel—can alleviate oxygen accumulation and improve current density. A multi-factor comparison highlights this reversed configuration as the most favorable among the tested strategies. The proposed modeling approach effectively connects porous media theory and system-level electrochemical analysis, offering a flexible platform for the future design of porous electrodes in PEMWE and other energy conversion systems. Full article
Show Figures

Figure 1

22 pages, 1451 KiB  
Article
Techno-Economic Assessment of Hydrogen-Based Power-to-Power Systems: Operational Strategies and Feasibility Within Energy Communities
by Lucia Pera, Marta Gandiglio and Paolo Marocco
Energies 2025, 18(13), 3254; https://doi.org/10.3390/en18133254 - 21 Jun 2025
Cited by 1 | Viewed by 387
Abstract
In the context of the evolving energy landscape, the need to harness renewable energy sources (RESs) has become increasingly imperative. Within this framework, hydrogen emerges as a promising energy storage vector, offering a viable solution to the flexibility challenges caused by the inherent [...] Read more.
In the context of the evolving energy landscape, the need to harness renewable energy sources (RESs) has become increasingly imperative. Within this framework, hydrogen emerges as a promising energy storage vector, offering a viable solution to the flexibility challenges caused by the inherent variability of RESs. This work investigates the feasibility of integrating a hydrogen-based energy storage system within an energy community in Barcelona, using surplus electricity from photovoltaic (PV) panels. A power-to-power configuration is modelled through a comprehensive methodology that determines optimal component sizing, based on high-resolution real-world data. This analysis explores how different operational strategies influence the system’s cost-effectiveness. The methodology is thus intended to assist in the early-stage decision-making process, offering a flexible approach that can be adapted to various market conditions and operational scenarios. The results show that, under the current conditions, the combination of PV generation, energy storage, and low-cost grid electricity purchases yield the most favourable outcomes. However, in a long-term perspective, considering projected cost reductions for hydrogen technologies, strategies including energy sales back to the grid become more profitable. This case study offers a practical example of balancing engineering and economic considerations, providing replicable insights for designing hydrogen storage systems in similar energy communities. Full article
(This article belongs to the Special Issue Techno-Economic Evaluation of Hydrogen Energy)
Show Figures

Graphical abstract

25 pages, 6575 KiB  
Article
Hydrogen Production Using PVs with MPPT Optimization
by Kristián Ondrejička, Vladimír Goga, Šimon Berta, Michal Miloslav Uličný and Vladimír Kutiš
Hydrogen 2025, 6(2), 41; https://doi.org/10.3390/hydrogen6020041 - 18 Jun 2025
Viewed by 459
Abstract
This article examines hydrogen production using Proton Exchange Membrane Electrolyzers (PEMELs) and photovoltaic (PV) panels using Maximum Power Point Tracking (MPPT). This method has great potential to maximize the production of pure hydrogen, making it possible to reduce and potentially eliminate the difficulties [...] Read more.
This article examines hydrogen production using Proton Exchange Membrane Electrolyzers (PEMELs) and photovoltaic (PV) panels using Maximum Power Point Tracking (MPPT). This method has great potential to maximize the production of pure hydrogen, making it possible to reduce and potentially eliminate the difficulties associated with sudden drops and interruptions in output power. The use of MPPT algorithms in conjunction with Direct Current to Direct Current (DC/DC) converters helps improve the energy efficiency of systems. This study aims to enhance green hydrogen production by optimizing PV-PEMEL performance using commercial power electronics, while improving energy storage and reducing costs for sustainable hydrogen generation. Full article
Show Figures

Figure 1

15 pages, 2144 KiB  
Article
Optimizing Porous Transport Layers in PEM Water Electrolyzers: A 1D Two-Phase Model
by Lu Zhang, Jie Liu and Shaojie Du
Batteries 2025, 11(6), 222; https://doi.org/10.3390/batteries11060222 - 6 Jun 2025
Viewed by 711
Abstract
The proton exchange membrane electrolyzer (PEMWE) has been regarded as a promising technology for converting surplus intermittent renewable energy into green hydrogen through electrochemical water splitting. However, the multiphase mass and charge transport processes with countercurrent flow within the PEMWE create complex structure–property [...] Read more.
The proton exchange membrane electrolyzer (PEMWE) has been regarded as a promising technology for converting surplus intermittent renewable energy into green hydrogen through electrochemical water splitting. However, the multiphase mass and charge transport processes with countercurrent flow within the PEMWE create complex structure–property relationships that are difficult to optimize. The interdependent effects of multiple structural parameters on the coupled heat transfer, mass transfer, and charge transfer processes further obscure performance optimization mechanisms. To decouple these phenomena and elucidate the underlying mechanisms, a multiphase one-dimensional mathematical model was developed and experimentally validated. Based on the model, the mass transfer, charge conduction, and heat transfer processes inside the PEMWE have been systematically investigated, with a particular focus on the performance-related parameters of the porous transport layer (PTL). The results reveal that PTL thickness and porosity exhibit opposite effects on activation and ohmic overpotential at an elevated current density. Furthermore, a sharp performance decline occurs when PTL gas permeability falls below the critical threshold. These findings provide quantitative guidelines for multiphysics-informed component optimization in high-performance PEMWEs. Full article
(This article belongs to the Special Issue Challenges, Progress, and Outlook of High-Performance Fuel Cells)
Show Figures

Figure 1

22 pages, 21215 KiB  
Article
High-Performance Two-Stage DC/DC Converter Based on LADRC-PI Hybrid Control for PEM Electrolyzer Hydrogen Production
by Qingshuai Yu, Zhenao Sun, Yetong Han, Tuanlong Zhang, Rongxing Zhang and Muhua Lin
Micromachines 2025, 16(6), 665; https://doi.org/10.3390/mi16060665 - 31 May 2025
Viewed by 583
Abstract
While DC/DC converters for water electrolysis systems have been widely investigated, they inherently face a critical compromise between wide voltage regulation capabilities and dynamic response characteristics. This study is based on a two-stage hybrid topology (TSIB-TPLLC) that synergistically combines a two-phase interleaved buck [...] Read more.
While DC/DC converters for water electrolysis systems have been widely investigated, they inherently face a critical compromise between wide voltage regulation capabilities and dynamic response characteristics. This study is based on a two-stage hybrid topology (TSIB-TPLLC) that synergistically combines a two-phase interleaved buck converter with a three-phase LLC resonant converter to resolve this challenge. The first-stage interleaved buck converter enables wide-range voltage regulation while reducing input current ripple and minimizing intermediate bus capacitance through phase-interleaved operation. The subsequent three-phase LLC stage operates at a fixed resonant frequency, achieving inherent output current ripple suppression through multi-phase cancellation while maintaining high conversion efficiency. A dual-loop control architecture incorporating linear active disturbance rejection control (LADRC) with PI compensation is developed to improve transient response compared to conventional PI-based methods. Finally, a 1.2 kW experimental prototype with an input voltage of 250 V and an output voltage of 24 V demonstrates the converter’s operational feasibility and enhanced steady-state/transient performance, confirming its suitability for hydrogen production applications. Full article
Show Figures

Figure 1

29 pages, 3271 KiB  
Article
Offshore Platform Decarbonization Methodology Based on Renewable Energies and Offshore Green Hydrogen: A Techno-Economic Assessment of PLOCAN Case Study
by Alejandro Romero-Filgueira, Maria José Pérez-Molina, José Antonio Carta and Pedro Cabrera
J. Mar. Sci. Eng. 2025, 13(6), 1083; https://doi.org/10.3390/jmse13061083 - 29 May 2025
Viewed by 509
Abstract
The decarbonization of offshore infrastructures is relevant to advancing global climate goals. This study presents a renewable-based energy system tailored for the Oceanic Platform of the Canary Islands (PLOCAN), designed to achieve full energy autonomy and eliminate greenhouse gas emissions. A hybrid configuration [...] Read more.
The decarbonization of offshore infrastructures is relevant to advancing global climate goals. This study presents a renewable-based energy system tailored for the Oceanic Platform of the Canary Islands (PLOCAN), designed to achieve full energy autonomy and eliminate greenhouse gas emissions. A hybrid configuration integrating photovoltaic panels, vertical-axis wind turbines, lithium-ion batteries, a proton exchange membrane (PEM) electrolyzer, and a PEM fuel cell was developed and evaluated through detailed resource assessment, system simulation, and techno-economic analysis under real offshore constraints. The results confirm that complete decarbonization is technically feasible, with a net present cost approximately 15% lower than the current diesel-based system and a total suppression of pollutant emissions. Although the transition entails a higher initial investment, the long-term economic and environmental gains are substantial. Offshore green hydrogen emerges as a key vector for achieving energy resilience and sustainability in isolated marine infrastructures, offering a replicable pathway towards fully decarbonized ocean platforms. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

16 pages, 12585 KiB  
Article
Experimental Analysis on a Commercial Power Electronic Converter in Power-to-Hydrogen System Based on PEM Electrolysis and Metal Hydrides
by Paolo Pilati, Federico Ferrari, Riccardo Alleori, Francesco Falcetelli, Maria Alessandra Ancona, Francesco Melino, Michele Bianchi and Mattia Ricco
Energies 2025, 18(11), 2831; https://doi.org/10.3390/en18112831 - 29 May 2025
Viewed by 399
Abstract
As the presence of renewable energy production grows, so does the need to find alternative solutions for long–term energy storage. One solution may be hydrogen, and more generally, power-to-gas systems, which could allow energy storage for longer periods than batteries. However, the problem [...] Read more.
As the presence of renewable energy production grows, so does the need to find alternative solutions for long–term energy storage. One solution may be hydrogen, and more generally, power-to-gas systems, which could allow energy storage for longer periods than batteries. However, the problem of hydrogen storage remains a limitation to the deployment of this technology. A possible solution for the hydrogen storage could be metal hydrides. In this work, a power-to-gas system based on a 2.5kW commercial electrolyzer coupled to a pair of AB2-type metal hydride cylinders with a total volume of 4L is studied. A special focus is placed on the electrolyzer power converter. In particular, the current ripple generated on the side connected to the stack and the efficiency of the converter are studied. A series of tests are carried out to verify the behavior of the system with varying types of thermal conditioning of the hydrides. The results show that the converter used is not optimized for the chosen application, and the thermal conditioning influences the hydrogen adsorption rate and thus the electrolyzer’s behavior. Finally, a technique to operate the system at maximum efficiency is proposed. Full article
(This article belongs to the Section A5: Hydrogen Energy)
Show Figures

Figure 1

17 pages, 11603 KiB  
Article
Numerical Simulation of Gas–Liquid Flow Field in PEM Water Electrolyzer
by Yusheng Zhang, Xiaoying Yuan, Sheng Yao, Hairui Yang and Cuiping Wang
Energies 2025, 18(11), 2773; https://doi.org/10.3390/en18112773 - 26 May 2025
Viewed by 838
Abstract
Hydrogen is an excellent clean energy, and hydrogen production by electrolyzing water has become the preferred method. Due to its high electrolysis efficiency and great potential for energy conversion and storage, water electrolysis in a proton exchange membrane (PEM) electrolyzer has attracted considerable [...] Read more.
Hydrogen is an excellent clean energy, and hydrogen production by electrolyzing water has become the preferred method. Due to its high electrolysis efficiency and great potential for energy conversion and storage, water electrolysis in a proton exchange membrane (PEM) electrolyzer has attracted considerable attention. In order to explore the factors affecting the internal resistance of PEM water electrolyzers and optimize them, a three-dimensional steady-state model of PEM water electrolyzers coupled with a porous media physical field was established. First, the flow fields in multi-channel and single-channel electrolyzers were designed and comparably simulated. It was found that both flow field configuration and flow modes affected the mass transfer and current distribution. The multi-channel parallel flow field had the lowest flow pressure drop and uniform flow field, which is beneficial to efficient catalytic electrolysis. Secondly, the simulation results of mass transfer in the PEM cell were highly consistent with the reference experimental data, and the increased reference exchange current density (i0) can improve the oxygen/hydrogen production performance of the cell. These findings are helpful in optimizing the design of the PEM water electrolyzer. Full article
(This article belongs to the Special Issue Catalytic Hydrogen Production and Hydrogen Energy Utilization)
Show Figures

Graphical abstract

19 pages, 2859 KiB  
Article
Produced Water Use for Hydrogen Production: Feasibility Assessment in Wyoming, USA
by Cilia Abdelhamid, Abdeldjalil Latrach, Minou Rabiei and Kalyan Venugopal
Energies 2025, 18(11), 2756; https://doi.org/10.3390/en18112756 - 26 May 2025
Cited by 1 | Viewed by 602
Abstract
This study evaluates the feasibility of repurposing produced water—an abundant byproduct of hydrocarbon extraction—for green hydrogen production in Wyoming, USA. Analysis of geospatial distribution and production volumes reveals that there are over 1 billion barrels of produced water annually from key basins, with [...] Read more.
This study evaluates the feasibility of repurposing produced water—an abundant byproduct of hydrocarbon extraction—for green hydrogen production in Wyoming, USA. Analysis of geospatial distribution and production volumes reveals that there are over 1 billion barrels of produced water annually from key basins, with a general total of dissolved solids (TDS) ranging from 35,000 to 150,000 ppm, though Wyoming’s sources are often at the lower end of this spectrum. Optimal locations for hydrogen production hubs have been identified, particularly in high-yield areas like the Powder River Basin, where the top 2% of fields contribute over 80% of the state’s produced water. Detailed water-quality analysis indicates that virtually all of the examined sources exceed direct electrolyzer feed requirements (e.g., <2000 ppm TDS, <0.1 ppm Fe/Mn for target PEM systems), necessitating pre-treatment. A review of advanced treatment technologies highlights viable solutions, with estimated desalination and purification costs ranging from USD 0.11 to USD 1.01 per barrel, potentially constituting 2–6% of the levelized cost of hydrogen (LCOH). Furthermore, Wyoming’s substantial renewable-energy potential (3000–4000 GWh/year from wind and solar) could sustainably power electrolysis, theoretically yielding approximately 0.055–0.073 million metric tons (MMT) of green hydrogen annually (assuming 55 kWh/kg H2), a volume constrained more by energy availability than water supply. A preliminary economic analysis underscores that, while water treatment (2–6% LCOH) and transportation (potentially > 10% LCOH) are notable, electricity pricing (50–70% LCOH) and electrolyzer CAPEX (20–40% LCOH) are dominant cost factors. While leveraging produced water could reduce freshwater consumption and enhance hydrogen production sustainability, further research is required to optimize treatment processes and assess economic viability under real-world conditions. This study emphasizes the need for integrated approaches combining water treatment, renewable energy, and policy incentives to advance a circular economy model for hydrogen production. Full article
(This article belongs to the Special Issue Advances in Hydrogen Energy IV)
Show Figures

Figure 1

Back to TopTop