Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (708)

Search Parameters:
Keywords = PCD

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 3861 KiB  
Review
Research Progress on Biomarkers and Their Detection Methods for Benzene-Induced Toxicity: A Review
by Runan Qin, Shouzhe Deng and Shuang Li
Chemosensors 2025, 13(8), 312; https://doi.org/10.3390/chemosensors13080312 (registering DOI) - 16 Aug 2025
Abstract
Benzene, a well-established human carcinogen and major industrial pollutant, poses significant health risks through occupational exposure due to its no-threshold effect, leading to multi-system damage involving the hematopoietic, nervous, and immune systems. This makes the investigation of its toxic mechanisms crucial for precise [...] Read more.
Benzene, a well-established human carcinogen and major industrial pollutant, poses significant health risks through occupational exposure due to its no-threshold effect, leading to multi-system damage involving the hematopoietic, nervous, and immune systems. This makes the investigation of its toxic mechanisms crucial for precise prevention and control of its health impacts. Programmed cell death (PCD), an orderly and regulated form of cellular demise controlled by specific intracellular genes in response to various stimuli, has emerged as a key pathway where dysfunction may underlie benzene-induced toxicity. This review systematically integrates evidence linking benzene toxicity to PCD dysregulation, revealing that benzene and its metabolites induce abnormal subtypes of PCD (apoptosis, autophagy, ferroptosis) in hematopoietic cells. This occurs through mechanisms including activation of Caspase pathways, regulation of long non-coding RNAs, and epigenetic modifications, with recent research highlighting the IRP1-DHODH-ALOX12 ferroptosis axis and oxidative stress–epigenetic interactions as pivotal. Additionally, this review describes a comprehensive monitoring system for early toxic effects comprising benzene exposure biomarkers (urinary t,t-muconic acid (t,t-MA), S-phenylmercapturic acid (S-PMA)), PCD-related molecules (Caspase-3, let-7e-5p, ACSL1), oxidative stress indicators (8-OHdG), and genetic damage markers (micronuclei, p14ARF methylation), with correlative analyses between PCD mechanisms and benzene toxicity elaborated to underscore their integrative roles in risk assessment. Furthermore, the review details analytical techniques for these biomarkers, including direct benzene detection methods—direct headspace gas chromatography with flame ionization detection (DHGC-FID), liquid chromatography-tandem mass spectrometry (LC-MS/MS), and portable headspace sampling (Portable HS)—alongside molecular imprinting and fluorescence probe technologies, as well as methodologies for toxic effect markers such as live-cell imaging, electrochemical techniques, methylation-specific PCR (MSP), and Western blotting, providing technical frameworks for mechanistic studies and translational applications. By synthesizing current evidence and mechanistic insights, this work offers novel perspectives on benzene toxicity through the PCD lens, identifies potential therapeutic targets associated with PCD dysregulation, and ultimately establishes a theoretical foundation for developing interventional strategies against benzene-induced toxicity while emphasizing the translational value of mechanistic research in occupational and environmental health. Full article
(This article belongs to the Special Issue Green Electrochemical Sensors for Trace Heavy Metal Detection)
Show Figures

Graphical abstract

14 pages, 1584 KiB  
Article
Murine Cytomegalovirus and Human Cytomegalovirus Differ in Pyroptosis Induction in Different Cell Types During Productive Replication
by Jessica J. Carter, Daniel H. Schneider, Arshaan M. Hisamuddin and Richard D. Dix
Viruses 2025, 17(8), 1106; https://doi.org/10.3390/v17081106 - 12 Aug 2025
Viewed by 281
Abstract
Pyroptosis is a proinflammatory programmed cell death (PCD) that protects the host against invading viruses. We previously reported that pyroptosis plays a prominent role in the pathogenesis of murine cytomegalovirus (MCMV) retinal necrosis using mice with MAIDS as a mouse model for AIDS-related [...] Read more.
Pyroptosis is a proinflammatory programmed cell death (PCD) that protects the host against invading viruses. We previously reported that pyroptosis plays a prominent role in the pathogenesis of murine cytomegalovirus (MCMV) retinal necrosis using mice with MAIDS as a mouse model for AIDS-related human cytomegalovirus (HCMV) retinal necrosis. Because MCMV and HCMV exhibit species specificity, we sought to determine if pyroptosis induction extends to different cell types of murine or human origin. In vitro studies were therefore performed in which MCMV-infected mouse fibroblasts and mouse macrophages were compared with HCMV-infected human fibroblasts and human ARPE-19 cells for stimulation of caspase-1, gasdermin G (GSDMD), and interleukin (IL)-18 and/or IL-1β transcripts as markers for canonical pyroptosis operation. Whereas MCMV stimulated significant stimulation of pyroptosis-associated transcripts during productive replication of mouse fibroblasts and mouse macrophages, significant stimulation of these transcripts was not detected during HCMV productive replication of human fibroblasts or ARPE-19 cells. Additional studies using UV-inactivated MCMV suggested that virion tegument proteins are not involved in the induction of pyroptosis in MCMV-infected mouse fibroblasts. We conclude that pyroptosis induction during productive replication of MCMV or HCMV is host cell type-dependent and may extend to species specificity, although virus-encoded PCD suppressors must be considered. Full article
(This article belongs to the Special Issue Viruses and Eye Diseases)
Show Figures

Figure 1

15 pages, 2451 KiB  
Article
Systematic Comparison of Temperature Effects on Antibody Performance via Automated Image Analysis: A Key for Primary Ciliary Dyskinesia Diagnostic
by Hanna Przystalowska-Maciola, Malgorzata Dabrowska, Ewa Zietkiewicz and Bukowy-Bieryllo Zuzanna
Cells 2025, 14(16), 1236; https://doi.org/10.3390/cells14161236 - 11 Aug 2025
Viewed by 233
Abstract
Immunofluorescence (IF) microscopy of ciliated epithelium is gaining increased popularity as a pre-genetic diagnostic method in primary ciliary dyskinesia (PCD). Ensuring reliable IF-based diagnostics in PCD requires robust standardization of staining methods and antibody performance. We applied whole slide scanning and automated image [...] Read more.
Immunofluorescence (IF) microscopy of ciliated epithelium is gaining increased popularity as a pre-genetic diagnostic method in primary ciliary dyskinesia (PCD). Ensuring reliable IF-based diagnostics in PCD requires robust standardization of staining methods and antibody performance. We applied whole slide scanning and automated image analysis to systematically evaluate the influence of various sample storage conditions on the specificity of IF staining. We tested eight polyclonal antibodies targeting diverse axonemal protein epitopes, routinely used for PCD diagnostics, under seven different temperature and time combinations. The storage conditions simulated handling of epithelial brushing on glass slides: after material collection at the clinic, during transport, or after reception at the diagnostic laboratory. Our study revealed that proper slide storage conditions are essential for the reliable PCD diagnosis via IF staining. We suggest continuous storage at −80 °C or −20 °C for slides prepared at the diagnostic laboratory, and storage at −20 °C or 4 °C for slides prepared remotely and shipped. Moreover, the IF sensitivity to slide storage conditions differs among antibodies targeting various ciliary elements, with molecular ruler proteins being particularly sensitive to prolonged storage at room temperature. We emphasize the inclusion of additional control slides to mitigate the inter-individual differences and the crucial correlation of IF results with comprehensive patient clinical history for enhanced diagnostic reliability. Full article
(This article belongs to the Special Issue Imaging Methods in Cell Biology)
Show Figures

Graphical abstract

14 pages, 1818 KiB  
Article
The Senescence of Cut Daffodil Flowers Correlates with Programmed Cell Death Symptoms
by Julita Rabiza-Świder, Sutrisno, Piotr Salachna, Agnieszka Zawadzińska and Ewa Skutnik
Int. J. Mol. Sci. 2025, 26(15), 7657; https://doi.org/10.3390/ijms26157657 - 7 Aug 2025
Viewed by 184
Abstract
Daffodils are among the most popular bulbous plants for cut flowers, especially Trumpet cultivars. The aim of this study was to evaluate changes in cut daffodil flowers and to determine the response of perianth senescence in cut daffodil flowers in a different way [...] Read more.
Daffodils are among the most popular bulbous plants for cut flowers, especially Trumpet cultivars. The aim of this study was to evaluate changes in cut daffodil flowers and to determine the response of perianth senescence in cut daffodil flowers in a different way than the corona does and to determine whether the senescence of cut daffodil flowers is correlated with PCD symptoms. During the senescence of cut daffodil flowers, there was an increase in free proline, malondialdehyde and hydrogen peroxide contents and increased catalase activity. Typically, senescence processes occurred faster in the perianth than in the corona, excluding carbohydrates, which had a higher content in the perianth than in the corona. One of the symptoms of daffodil flower senescence was the degradation of cell nuclei. In addition, chromatin fragmentation could also be observed in the corona. The nuclei in the perianth began to change their spherical shape and decay. In the corona, the nuclear envelope retained its continuity much longer and started to disintegrate later than in the perianth. This is possibly because the corona has a longer vase life than the perianth. Full article
(This article belongs to the Special Issue Latest Advances in Plant Abiotic Stress)
Show Figures

Figure 1

14 pages, 3230 KiB  
Article
CFAP300 Loss-of-Function Mutations with Primary Ciliary Dyskinesia: Evidence from Ex Vivo and ALI Cultures
by Anna G. Demchenko, Tatiana A. Kyian, Elena I. Kondratyeva, Elizaveta E. Bragina, Oksana P. Ryzhkova, Roman V. Veiko, Aleksandra G. Nazarova, Vyacheslav B. Chernykh, Svetlana A. Smirnikhina and Sergey I. Kutsev
Int. J. Mol. Sci. 2025, 26(15), 7655; https://doi.org/10.3390/ijms26157655 - 7 Aug 2025
Viewed by 280
Abstract
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder characterized by impaired mucociliary clearance due to defects in motile cilia. This study investigates the impact of loss-of-function mutations in the CFAP300 gene on the ciliary structure and function in three PCD patients. Using [...] Read more.
Primary ciliary dyskinesia (PCD) is a genetically heterogeneous disorder characterized by impaired mucociliary clearance due to defects in motile cilia. This study investigates the impact of loss-of-function mutations in the CFAP300 gene on the ciliary structure and function in three PCD patients. Using a multimodal approach, we integrated molecular genetic testing, transmission electron microscopy, the high-speed video microscopy assay and immunofluorescence staining to analyze ciliary motility and protein expression in both ex vivo and in vitro-obtained ciliary cells. Our results revealed that the pathogenic variant c.198_200delinsCC (p.Phe67ProfsTer10) in CFAP300 led to the absence of the functional CFAP300 protein, the complete loss of outer and inner dynein arms and immotile cilia. Air–liquid interface (ALI)-cultured cells from patients exhibited no ciliary beating, contrasting with healthy controls. Immunostaining confirmed the absence of CFAP300 in patient-derived cilia, underscoring its critical role in dynein arm assembly. These findings highlight the diagnostic utility of ALI cultures combined with functional and protein analyses for PCD, offering a clinically actionable framework that can be readily incorporated into standard diagnostic workflows. Full article
(This article belongs to the Special Issue Molecular and Cellular Therapeutics for Respiratory Diseases)
Show Figures

Figure 1

23 pages, 15881 KiB  
Article
Synergistic Multi-Mechanism Enhancement in Chemomechanical Abrasive Polishing of Polycrystalline Diamond via a New SiO2–Diamond Slurry in High-Concentration H2O2 Solution
by Xin Zheng, Ke Zheng, Jie Gao, Yan Wang, Pengtao An, Yongqiang Ma, Hongjun Hei, Shuaiwu Qu and Shengwang Yu
Materials 2025, 18(15), 3659; https://doi.org/10.3390/ma18153659 - 4 Aug 2025
Viewed by 358
Abstract
The high-efficiency polishing of large-sized polycrystalline diamond (PCD) wafers continues to pose significant challenges in its practical applications. Conventional mechanical polishing suffers from a low material removal rate (MRR) and surface damage. To improve the process efficiency, this study investigates the effect of [...] Read more.
The high-efficiency polishing of large-sized polycrystalline diamond (PCD) wafers continues to pose significant challenges in its practical applications. Conventional mechanical polishing suffers from a low material removal rate (MRR) and surface damage. To improve the process efficiency, this study investigates the effect of chemomechanical abrasive polishing (CMAP) with a slurry containing high-concentration H2O2 and varying mass percentages of SiO2 powder and diamond particles on surface morphology, surface roughness, material removal rate (MRR), and microstrain of PCD disks. The contributions of mechanical action, chemical action, and bubble cavitation to the CMAP process are analyzed. Scanning electron microscopy (SEM) observations indicate that large grains present in PCD are effectively eliminated after CMAP, leading to a notable reduction in surface roughness. The optimal results are obtained with 60 wt% SiO2 powder and 40 wt% diamond particles, achieving a maximum MRR of 1039.78 μm/(MPa·h) (15.5% improvement compared to the mechanical method) and a minimum surface roughness (Sa) of 3.59 μm. Additionally, the microstrain on the PCD disk shows a slight reduction following the CMAP process. The material removal mechanism is primarily attributed to mechanical action (70.8%), with bubble cavitation and chemical action (27.5%) and action of SiO2 (1.7%) playing secondary roles. The incorporation of SiO2 leads to the formation of a lubricating layer, significantly reducing surface damage and decreasing the surface roughness Sa to 1.39 µm. Full article
(This article belongs to the Section Materials Physics)
Show Figures

Graphical abstract

13 pages, 1397 KiB  
Article
RSPH4A-PCDx: An Index to Predict Lung Function Decline in Primary Ciliary Dyskinesia
by Gabriel Román-Ríos, Gabriel Rosario-Ortiz, Marcos J. Ramos-Benitez, Ricardo A. Mosquera and Wilfredo De Jesús-Rojas
Adv. Respir. Med. 2025, 93(4), 27; https://doi.org/10.3390/arm93040027 - 2 Aug 2025
Viewed by 350
Abstract
Primary ciliary dyskinesia (PCD) is a rare, genetically heterogeneous disorder that impairs mucociliary clearance and leads to progressive lung disease. This study aimed to characterize lung function decline in a genetically homogeneous cohort of Puerto Rican patients with RSPH4A-associated PCD and to [...] Read more.
Primary ciliary dyskinesia (PCD) is a rare, genetically heterogeneous disorder that impairs mucociliary clearance and leads to progressive lung disease. This study aimed to characterize lung function decline in a genetically homogeneous cohort of Puerto Rican patients with RSPH4A-associated PCD and to develop a clinical tool to predict lung function decline and support transplant referral decisions. We conducted a retrospective chart review of patients (n = 25) with a confirmed RSPH4A [c.921+3_6delAAGT] genetic variant, collecting longitudinal spirometry data and applying linear regressions to calculate each patient’s individual FEV1 decline. The median FEV1 at diagnosis was 55%, with a median annual decline of −0.75% predicted. Adults exhibited significantly lower lung function compared to pediatric patients, while no difference was seen between males and females. Based on this observed decline, we developed the Predicted Capacity Decline Index (PCDx), an index that estimates the age and time until a patient reaches the 30% FEV1 threshold, the point at which lung transplant referral is typically considered. Our findings underscore the need for early intervention and suggest that genotype-specific tools like the PCDx may enhance clinical decision-making in managing progressive lung disease in PCD. Full article
Show Figures

Figure 1

22 pages, 6758 KiB  
Article
Screening of an FDA-Approved Drug Library: Menadione Induces Multiple Forms of Programmed Cell Death in Colorectal Cancer Cells via MAPK8 Cascades
by Liyuan Cao, Weiwei Song, Jinli Sun, Yang Ge, Wei Mu and Lei Li
Pharmaceuticals 2025, 18(8), 1145; https://doi.org/10.3390/ph18081145 - 31 Jul 2025
Viewed by 383
Abstract
Background: Colorectal cancer (CRC) is a prevalent gastrointestinal malignancy, ranking third in incidence and second in cancer-related mortality. Despite therapeutic advances, challenges such as chemotherapy toxicity and drug resistance persist. Thus, there is an urgent need for novel CRC treatments. However, developing [...] Read more.
Background: Colorectal cancer (CRC) is a prevalent gastrointestinal malignancy, ranking third in incidence and second in cancer-related mortality. Despite therapeutic advances, challenges such as chemotherapy toxicity and drug resistance persist. Thus, there is an urgent need for novel CRC treatments. However, developing new drugs is time-consuming and resource-intensive. As a more efficient approach, drug repurposing offers a promising alternative for discovering new therapies. Methods: In this study, we screened 1068 small molecular compounds from an FDA-approved drug library in CRC cells. Menadione was selected for further study based on its activity profile. Mechanistic analysis included a cell death pathway PCR array, differential gene expression, enrichment, and network analysis. Gene expressions were validated by RT-qPCR. Results: We identified menadione as a potent anti-tumor drug. Menadione induced three programmed cell death (PCD) signaling pathways: necroptosis, apoptosis, and autophagy. Furthermore, we found that the anti-tumor effect induced by menadione in CRC cells was mediated through a key gene: MAPK8. Conclusions: By employing methods of cell biology, molecular biology, and bioinformatics, we conclude that menadione can induce multiple forms of PCD in CRC cells by activating MAPK8, providing a foundation for repurposing the “new use” of the “old drug” menadione in CRC treatment. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

18 pages, 7295 KiB  
Article
Genome-Wide Identification, Evolution, and Expression Analysis of the DMP Gene Family in Peanut (Arachis hypogaea L.)
by Pengyu Qu, Lina He, Lulu Xue, Han Liu, Xiaona Li, Huanhuan Zhao, Liuyang Fu, Suoyi Han, Xiaodong Dai, Wenzhao Dong, Lei Shi and Xinyou Zhang
Int. J. Mol. Sci. 2025, 26(15), 7243; https://doi.org/10.3390/ijms26157243 - 26 Jul 2025
Viewed by 396
Abstract
Peanut (Arachis hypogaea L.) is a globally important oilseed cash crop, yet its limited genetic diversity and unique reproductive biology present persistent challenges for conventional crossbreeding. Traditional breeding approaches are often time-consuming and inadequate, mitigating the pace of cultivar development. Essential for [...] Read more.
Peanut (Arachis hypogaea L.) is a globally important oilseed cash crop, yet its limited genetic diversity and unique reproductive biology present persistent challenges for conventional crossbreeding. Traditional breeding approaches are often time-consuming and inadequate, mitigating the pace of cultivar development. Essential for double fertilization and programmed cell death (PCD), DUF679 membrane proteins (DMPs) represent a membrane protein family unique to plants. In the present study, a comprehensive analysis of the DMP gene family in peanuts was conducted, which included the identification of 21 family members. Based on phylogenetic analysis, these genes were segregated into five distinct clades (I–V), with AhDMP8A, AhDMP8B, AhDMP9A, and AhDMP9B in clade IV exhibiting high homology with known haploid induction genes. These four candidates also displayed significantly elevated expression in floral tissues compared to other organs, supporting their candidacy for haploid induction in peanuts. Subcellular localization prediction, confirmed through co-localization assays, demonstrated that AhDMPs primarily localize to the plasma membrane, consistent with their proposed roles in the reproductive signaling process. Furthermore, chromosomal mapping and synteny analyses revealed that the expansion of the AhDMP gene family is largely driven by whole-genome duplication (WGD) and segmental duplication events, reflecting the evolutionary dynamics of the tetraploid peanut genome. Collectively, these findings establish a foundational understanding of the AhDMP gene family and highlight promising targets for future applications in haploid induction-based breeding strategies in peanuts. Full article
Show Figures

Graphical abstract

16 pages, 1786 KiB  
Article
Repurposing Analysis of Nitroxoline (8-Hydroxy-5-nitroquinoline) as an Antichagasic Compound
by Carlos J. Bethencourt-Estrella, Atteneri López-Arencibia, Isabel M. Calero-Docina, Frieder Fuchs, Patrick Scheid, Jacob Lorenzo-Morales and José E. Piñero
Pharmaceuticals 2025, 18(8), 1106; https://doi.org/10.3390/ph18081106 - 25 Jul 2025
Viewed by 421
Abstract
Background/Objectives: Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, remains a major neglected tropical disease, with over six million cases concentrated, primarily in Latin America. Despite decades of research, treatment continues to rely on two outdated drugs—benznidazole and nifurtimox—both of which [...] Read more.
Background/Objectives: Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, remains a major neglected tropical disease, with over six million cases concentrated, primarily in Latin America. Despite decades of research, treatment continues to rely on two outdated drugs—benznidazole and nifurtimox—both of which exhibit limited efficacy and are associated with severe side effects. In this context, drug repurposing presents a promising strategy to accelerate the development of safer and more effective therapies. Nitroxoline, a hydroxyquinoline compound widely used in Europe to treat bacterial urinary tract infections, has recently garnered attention for its broad-spectrum antimicrobial and anticancer activities. This study evaluated the antitrypanosomal potential of nitroxoline against both epimastigote and intracellular amastigote forms of T. cruzi, demonstrating significantly greater efficacy than benznidazole. Methods: In addition to its antiparasitic activity, we investigated the mechanism of parasite death and found that nitroxoline induces hallmarks of programmed cell death, including chromatin condensation, mitochondrial membrane depolarization, ATP depletion, reactive oxygen species accumulation, and increased membrane permeability. These cellular events are critical for minimizing host tissue inflammation and suggest a safer therapeutic profile. Results: The nitroxoline was shown to induce greater activity than the reference treatment, benznidazole, in addition to triggering events related to apoptotic or silent cell death. Conclusions: Given its established clinical use and favorable safety data, nitroxoline emerges as a strong candidate for further investigation as a repurposed treatment for Chagas disease. Future work should focus on in vivo efficacy, pharmacokinetics, and drug delivery strategies to enhance systemic bioavailability. Full article
(This article belongs to the Special Issue Recent Advancements in the Development of Antiprotozoal Agents)
Show Figures

Graphical abstract

19 pages, 23526 KiB  
Article
Improvement of Positive and Negative Feedback Power Hardware-in-the-Loop Interfaces Using Smith Predictor
by Lucas Braun, Jonathan Mader, Michael Suriyah and Thomas Leibfried
Energies 2025, 18(14), 3773; https://doi.org/10.3390/en18143773 - 16 Jul 2025
Viewed by 346
Abstract
Power hardware-in-the-loop (PHIL) creates a safe test environment to connect simulations with real hardware under test (HuT). Therefore, an interface algorithm (IA) must be chosen. The ideal transformer method (ITM) and the partial circuit duplication (PCD) are popular IAs, where a distinction is [...] Read more.
Power hardware-in-the-loop (PHIL) creates a safe test environment to connect simulations with real hardware under test (HuT). Therefore, an interface algorithm (IA) must be chosen. The ideal transformer method (ITM) and the partial circuit duplication (PCD) are popular IAs, where a distinction is made between voltage- (V-) and current-type (C-) IAs. Depending on the sample time of the simulator and further delays, simulation accuracy is reduced and instability can occur due to negative feedback in the V-ITM and C-ITM control loops, which makes PHIL operation impossible. In the case of positive feedback, such as with the V-PCD and C-PCD, the delay causes destructive interference, which results in a phase shift and attenuation of the output signal. In this article, a novel damped Smith predictor (SP) for positive feedback PHIL IAs is presented, which significantly reduces destructive interference while allowing stable operation at low linking impedances at V-PCD and high linking impedances at C-PCD, thus reducing losses in the system. Experimental results show a reduction in phase shift by 21.17° and attenuation improvement of 24.3% for V-PCD at a sample time of 100 µs. The SP transfer functions are also derived and integrated into the listed negative feedback IAs, resulting in an increase in the gain margin (GM) from approximately one to three, which significantly enhances system stability. The proposed methods can improve stability and accuracy, which can be further improved by calculating the HuT impedance in real-time and dynamically adapting the SP model. Stable PHIL operation with SP is also possible with SP model errors or sudden HuT impedance changes, as long as deviations stay within the presented limits. Full article
Show Figures

Figure 1

12 pages, 1041 KiB  
Article
Assessment of Bronchodilator Response in Patients with CF and Non-CF Bronchiectasis—A Randomized Controlled Study
by Mordechai Pollak, Ronen Bar-Yoseph, Moneera Hanna, Noa Serruya, Guy Gut, Lea Bentur and Michal Gur
J. Clin. Med. 2025, 14(13), 4778; https://doi.org/10.3390/jcm14134778 - 7 Jul 2025
Viewed by 490
Abstract
Objectives: Although patients with bronchiectasis tend to have obstructive nonreversible lung functions, some have bronchodilator response (BDR), and a relatively large number are treated with bronchodilators. We assessed BDR in patients with cystic fibrosis (CF) and other bronchiectatic diseases and healthy controls (HCs) [...] Read more.
Objectives: Although patients with bronchiectasis tend to have obstructive nonreversible lung functions, some have bronchodilator response (BDR), and a relatively large number are treated with bronchodilators. We assessed BDR in patients with cystic fibrosis (CF) and other bronchiectatic diseases and healthy controls (HCs) in a randomized controlled setup. Methods: Patients with cystic fibrosis (CF), primary ciliary dyskinesia (PCD) and non-CF non-PCD bronchiectasis (non-CF/PCD), as well as HCs, were recruited. Participants were randomly assigned to receive salbutamol (four puffs) and then a placebo or a placebo and then salbutamol. BDR was calculated using the American Thoracic Society (ATS)/European Respiratory Society (ERS) standard, defined as the change related to the individual’s predicted value (new method) or to the initial value (old method). Results: Sixty-nine patients (CF = 30, PCD = 20, non-CF/PCD = 19) and 20 HCs were included. Patients with CF and PCD (but not non-CF/PCD) had a statistically greater mean response to salbutamol compared with the placebo, (CF–salbutamol first: 2.82 vs. 0.85%, p = 0.01; placebo first: 2.39 vs. −0.27%, p = 0.02; PCD–salbutamol first: 5.32 vs. 1.88%, p = 0.01; placebo first: 2.24 vs. 0.77%, p = 0.05). Few patients had significant BDR (new method, >10%)—CF (0), PCD (2), non-CF/PCD (0) and HCs (2)): using the old method, an additional PCD patient and three non-CF/PCD had significant BDR (>12%). Conclusions: Significant BDR seems to be rare in patients with bronchiectasis. In CF and PCD, the response was greater than the placebo; the clinical significance of this difference and its therapeutic implications, as well as the best method to determine BDR, have yet to be determined. Full article
(This article belongs to the Section Respiratory Medicine)
Show Figures

Figure 1

18 pages, 3219 KiB  
Article
Mobilome of Environmental Isolates of Clostridioides difficile
by Khald Blau and Claudia Gallert
Antibiotics 2025, 14(7), 678; https://doi.org/10.3390/antibiotics14070678 - 4 Jul 2025
Viewed by 473
Abstract
Background/Objectives: Clostridioides difficile is a “One Health” pathogen and a cause of antibiotics-associated diarrhea and pseudomembranous colitis. Mobile genetic elements (MGEs) have been documented in the genomes of clinical C. difficile strains; however, the presence of MGEs in environmental strains remains poorly characterized. [...] Read more.
Background/Objectives: Clostridioides difficile is a “One Health” pathogen and a cause of antibiotics-associated diarrhea and pseudomembranous colitis. Mobile genetic elements (MGEs) have been documented in the genomes of clinical C. difficile strains; however, the presence of MGEs in environmental strains remains poorly characterized. Thus, the present study was conducted with the objective of identifying the prevalence of MGEs, including mobilizable transposons (MTns), conjugative transposons (CTns), plasmids, and insertion sequences, in whole genome sequences (WGSs) of environmental C. difficile isolates. Methods: The analysis of MGEs was conducted using 166 WGSs obtained from C. difficile strains isolated from various environmental sources contaminated with feces. The MGEs were identified using bioinformatic tools. Results: A total of 48.2% (80/166) of the studied genomes were identified to harbor nine transposons, including Tn916, Tn6194-like, Tn5397, Tn6215, Tn4001, Tn6073, Tn6110, Tn6107, or Tn5801-like. The majority of MTns and CTns could be found within C. difficile sequence types ST11, ST3, and ST35. The results demonstrated close genetic relatedness among the studied genomes, the array of antimicrobial resistance (AMR) genes, such as tetM, ermB, and aac(6′)-aph(2″), and the presence of CTns. Furthermore, the analysis revealed that 24.7% (41/166) of the genome sequences of isolates were associated with various predominant plasmid groups, including pCD6, pCD-ECE4-6, pCD-WTSI1-4, pCDBI1, and pCd1_3, which belonged to 16 different sequence types. Furthermore, several plasmids were identified as harboring the prophage phiCDHM19. Conclusions: The results of the current study suggest that the identified plasmids are abundant and may encode functions that are relevant to C. difficile physiology. The genomes of C. difficile strains examined contain closely related CTns, suggesting that horizontal transfer of AMR is important in this species or other bacterial species. Further research is required to ascertain the effect of these genetic elements and their transferability on the biology of C. difficile. Full article
Show Figures

Figure 1

20 pages, 4127 KiB  
Article
Comparative Analysis of Machine Learning and Deep Learning Models for Individual Tree Structure Segmentation Using Terrestrial LiDAR Point Cloud Data
by Sangjin Lee, Woodam Sim, Yongkyu Lee, Jeongmook Park, Jintaek Kang and Jungsoo Lee
Remote Sens. 2025, 17(13), 2245; https://doi.org/10.3390/rs17132245 - 30 Jun 2025
Viewed by 589
Abstract
This study aims to segment individual tree structures (stem, crown, and ground) from terrestrial LiDAR-derived point cloud data (PCD) and to compare the segmentation accuracy between two models: XGBoost (machine learning) and PointNet++ (deep learning). A total of 17 input features were categorized [...] Read more.
This study aims to segment individual tree structures (stem, crown, and ground) from terrestrial LiDAR-derived point cloud data (PCD) and to compare the segmentation accuracy between two models: XGBoost (machine learning) and PointNet++ (deep learning). A total of 17 input features were categorized into spatial coordinates and normals, geometric structure features, and local distribution features. These were combined into four input configurations and evaluated under three downsampling conditions (2048, 4096, and 8192 points), resulting in 12 experimental setups. XGBoost achieved the highest stem segmentation F1-score of 87.8% using all features with 8192 points, whereas Point-Net++ reached 92.1% using only spatial coordinates and normals with 4096 points. The analysis of missegmentation patterns showed that XGBoost frequently confused structures near stem-to-ground boundaries and around branch junctions, while PointNet++ occasionally missegmented complex regions between stems and crowns. Regarding processing time, XGBoost required 10 to 47 min across all conditions, whereas Point-Net++ required 49 min for the 2048-point condition and up to 168 min for 8192 points. Overall, XGBoost provided advantages in computational efficiency and in generating feature-importance scores, while PointNet++ outperformed XGBoost in segmentation accuracy and the recognition of structurally complex regions. Full article
Show Figures

Graphical abstract

13 pages, 3883 KiB  
Article
Optimizing Imaging Parameters for Assessment of Hepatocellular Carcinoma Using Photon-Counting Detector Computed Tomography—Impact of Reconstruction Kernel and Slice Thickness
by Anna Szelenyi, Philipp Stelzer, Christian Wassipaul, Jakob Kittinger, Andreas Strassl, Victor Schmidbauer, Martin Luther Watzenböck, Florian Lindenlaub, Michael Arnoldner, Michael Weber, Matthias Pinter, Ruxandra-Iulia Milos and Dietmar Tamandl
Tomography 2025, 11(7), 77; https://doi.org/10.3390/tomography11070077 - 27 Jun 2025
Viewed by 415
Abstract
Background: The use of photon-counting detector computed tomography (PCD-CT) has improved image quality in cardiac, pulmonary, and musculoskeletal imaging. Abdominal imaging research, especially about the use of PCD-CT in hepatocellular carcinoma (HCC), is sparse. Objectives: We aimed to compare the image quality of [...] Read more.
Background: The use of photon-counting detector computed tomography (PCD-CT) has improved image quality in cardiac, pulmonary, and musculoskeletal imaging. Abdominal imaging research, especially about the use of PCD-CT in hepatocellular carcinoma (HCC), is sparse. Objectives: We aimed to compare the image quality of tumors, the liver parenchyma, and the vasculature in patients with HCC using PCD-CT reconstructions at different slice thicknesses and kernels to identify the most appropriate settings for the clinical routine. Methods: CT exams from twenty adult patients with HCC performed with a clinically approved, first-generation PCD-CT scanner (Naeotom Alpha®, Siemens Healthineers), were retrospectively reviewed. For each patient, images were reconstructed at four different sharp kernels, designed for abdominal imaging (Br40; Br44; Br48; Br56) and at three slice thicknesses (0.4 mm; 1 mm; 3 mm). The reconstruction with the Br40 kernel at 3 mm (Br403 mm) was used as a clinical reference. Three readers independently assessed the image quality of different anatomical abdominal structures and hypervascular HCC lesions using a five-point Likert scale. In addition, image sharpness was assessed using line-density profiles. Results: Compared with the clinical reference, the Br441 mm and Br481 mm reconstructions were rated superior for the assessment of the hepatic vasculature (median difference +0.67 [+0.33 to +1.33], p < 0.001 and +1.00 [+0.67 to +1.67], p < 0.001). Reconstructions for Br401 mm (+0.33 [−0.67 to +1.00], p < 0.001), and Br443 mm (+0.0 [0.0 to +1.00], p = 0.030) were scored superior for overall image quality. The noise demonstrated a continuous increase when using sharper kernels and thinner slices than Br403 mm (p < 0.001), leading to a decrease in contrast-to-noise ratio. Although there was a trend toward increased image sharpness using the slope analysis with higher kernels, this was not significantly different compared with the reference standard. Conclusion: PCD-CT reconstruction Br401 mm was the most suitable setting for overall image quality, while reconstructions with sharper kernels (Br441 mm and Br481 mm) can be considered for the assessment of the hepatic vasculature in patients with HCC. Full article
Show Figures

Figure 1

Back to TopTop