Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = PCCP

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 3700 KiB  
Article
Material–Structural Synergy in Ultra-High-Performance Concrete-Optimized Prestressed Concrete Cylinder Pipes: Achieving Lightweight Design for Sustainable Infrastructure
by Yunfei Xie, Chenyang Yuan, Yajun Lv, Weifeng Bai and Yizhen Zhang
Materials 2025, 18(9), 2144; https://doi.org/10.3390/ma18092144 - 6 May 2025
Viewed by 536
Abstract
While a large diameter is critical for maintaining water delivery efficiency in prestressed concrete cylinder pipes (PCCPs), excessive weight fundamentally limits their practical application. This study proposes a weight reduction strategy through material optimization and structural redesign. A full-scale experimental model of 2.8 [...] Read more.
While a large diameter is critical for maintaining water delivery efficiency in prestressed concrete cylinder pipes (PCCPs), excessive weight fundamentally limits their practical application. This study proposes a weight reduction strategy through material optimization and structural redesign. A full-scale experimental model of 2.8 m inner diameter PCCP was used to validate the finite element analysis method. Comparative numerical models were established to analyze strain/stress distribution in mortar coatings when using ultra-high-performance concrete (UHPC) versus conventional concrete cores. The key findings reveal that UHPC implementation reduces maximum coating strain by 20–30% compared to its conventional concrete counterparts. Multivariate linear regression analysis yielded a predictive formula that explicitly correlates the elastic modulus of the concrete core, core thickness, and mortar stress. This relationship permits the direct optimization of core thickness reductions according to the elastic modulus characteristics of UHPC materials. Verification through two case studies demonstrated a 25–35% core thickness reduction compared to the Chinese standard specifications while maintaining structural integrity, corresponding to an 18–22% total weight reduction. The proposed methodology successfully resolves the inherent weight limitation of conventional PCCPs while achieving equivalent hydraulic capacity, providing an effective pathway for sustainable infrastructure development through material-efficient design. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

17 pages, 1265 KiB  
Article
Citrus Peel Extract Powders as Reducing Agents for Naturally Cured Pork Sausages: Effects on Cured Color Development
by Su Min Bae, Yeongmi Yoo, Jibin Park, Minhyeong Kim and Jong Youn Jeong
Foods 2025, 14(8), 1397; https://doi.org/10.3390/foods14081397 - 17 Apr 2025
Cited by 1 | Viewed by 540
Abstract
Meat products contain synthetic additives such as sodium ascorbate and sodium erythorbate as reducing agents, raising concerns regarding their potential health implications. This study evaluated the effectiveness of grapefruit, lemon, mandarin, or orange peel extract powders (0.1% each) as natural reducing agents in [...] Read more.
Meat products contain synthetic additives such as sodium ascorbate and sodium erythorbate as reducing agents, raising concerns regarding their potential health implications. This study evaluated the effectiveness of grapefruit, lemon, mandarin, or orange peel extract powders (0.1% each) as natural reducing agents in pork sausages, in combination with pre-converted Chinese cabbage powder (PCCP, 0.44%) as a natural nitrite source. The physicochemical properties of the citrus extracts varied, with the lemon peel extract powder exhibiting the lowest pH (4.90) and the highest vitamin C content (874.84 mg/100 g). Sausages containing PCCP and citrus peel extract powders exhibited lower cooking loss (4.54–5.45%) than the control (5.93%), while their pH remained unaffected. Color analysis of the citrus extract-treated samples revealed no significant differences in lightness and redness and increased yellowness. The residual nitrite content was observed to be higher in the groups treated with citrus peel extract powders (53.91–54.98 ppm) compared to the groups treated with sodium ascorbate (29.88 and 34.16 ppm). However, the cured pigment content, curing efficiency, and lipid oxidation were consistent across all formulations. Our findings suggest that the use of citrus peel extract powders can replace the addition of sodium ascorbate in clean-label cured meat products without compromising color development and oxidative stability. Full article
(This article belongs to the Special Issue Trends and Prospects in Novel Meat Products with Healthier Properties)
Show Figures

Figure 1

18 pages, 10549 KiB  
Article
A Prestressed Concrete Cylinder Pipe Broken Wire Detection Algorithm Based on Improved YOLOv5
by Haoze Li, Ruizhen Gao, Fang Sun, Yv Wang and Baolong Ma
Sensors 2025, 25(3), 977; https://doi.org/10.3390/s25030977 - 6 Feb 2025
Viewed by 1105
Abstract
The failure accidents of prestressed concrete cylinder pipe (PCCP) seriously affect the economic feasibility of the construction site. The traditional method of needing to stop construction for pipe inspection is time-consuming and laborious. This paper studies the PCCP broken wire identification algorithm based [...] Read more.
The failure accidents of prestressed concrete cylinder pipe (PCCP) seriously affect the economic feasibility of the construction site. The traditional method of needing to stop construction for pipe inspection is time-consuming and laborious. This paper studies the PCCP broken wire identification algorithm based on deep learning. A PCCP wire-breaking test platform was built; the Distributed Fiber Acoustic Sensing Monitoring System (DAS) monitors wire-breakage events in DN4000mm PCCPs buried underground. The collected broken wire signal creates a time-frequency spectrum diagram dataset of the simulated broken wire signal through continuous wavelet transform (CWT). Considering the location of equipment limitations, based on the YOLOv5 algorithm, a lightweight algorithm, YOLOv5-Break is proposed for broken wire monitoring. Firstly, MobileNetV3 is used to replace the YOLOv5 network backbone, and Dynamic Conv is used to replace Conv in C3 to reduce redundant computation and memory access; the coordinate attention mechanism is integrated into the C3 module to make the algorithm pay more attention to location information; at the same time, CIOU is replaced by Focal_EIoU to make the algorithm pay more attention to high-quality samples and balance the uneven problem of complex and easy examples. The YOLOv5-Break algorithm achieves a mAP of 97.72% on the self-built broken wire dataset, outperforming YOLOv8, YOLOv9, and YOLOv10. Notably, YOLOv5-Break reduces the model weight to 7.74 MB, 46.25% smaller than YOLOv5 and significantly lighter than YOLOv8s and YOLOv9s. With a computational cost of 8.3 GFLOPs, YOLOv5-Break is 71.0% and 78.5% more efficient than YOLOv8s and YOLOv9s. It can be seen that the lightweight algorithm YOLOv5-Break proposed in this article simplifies the algorithm without losing accuracy. Moreover, the lightweight algorithm does not require high hardware computing power and can be better arranged in the PCCP broken wire monitoring system. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

15 pages, 13544 KiB  
Article
Mechanical and Numerical Assessment of Localized Soil Voids Under PCCP Joints
by Haizhen Li, Xin Feng and Ankui Hu
Buildings 2024, 14(11), 3624; https://doi.org/10.3390/buildings14113624 - 14 Nov 2024
Cited by 1 | Viewed by 851
Abstract
Uniform support from the surrounding soil is important for maintaining the stable operation of buried pipelines. For segmented prestressed concrete cylinder pipe (PCCP), localized soil voids around the joint due to leakage or engineering activities make the pipe unsupported partially and threaten its [...] Read more.
Uniform support from the surrounding soil is important for maintaining the stable operation of buried pipelines. For segmented prestressed concrete cylinder pipe (PCCP), localized soil voids around the joint due to leakage or engineering activities make the pipe unsupported partially and threaten its integrity and strength. In this paper, the impact of a localized soil void on a pipe joint is qualitatively assessed using a beam-on-elastic-spring approximation model. It further provides quantitative analysis through a nonlinear finite element (FE) model of PCCPs and the surrounding soil. The derived algebraic solutions indicate that a unilateral local void induces shear force and rotation at the joint, whereas shear force becomes negligible when the void spans the joint, leading to increased rotation. Moreover, the rotation angle shows a positive correlation with soil load and a negative correlation with pipe diameter. Numerical analysis reveals that void elongation along the pipe length has a more pronounced effect on structural response than void depth and angle. When the void length reaches 2.5 m, the maximum principal stress on the mortar layer of the PCCP increases approximately eight-fold compared to the scenario without voids. Due to the rigidity and safety factor of the PCCP, small voids in the bedding typically do not cause immediate pipe damage or joint leakage; however, they can significantly alter the stress distribution within both the pipe and surrounding soil. As the void develops, the soil may collapse and compromise support, leading to additional secondary disaster risks and potential threats to pipeline safety. This research emphasizes the importance of effective pipe-soil interactions and provides theoretical insights for developing repair strategies for PCCP. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

20 pages, 6808 KiB  
Review
Microplastics (MPs) in Cosmetics: A Review on Their Presence in Personal-Care, Cosmetic, and Cleaning Products (PCCPs) and Sustainable Alternatives from Biobased and Biodegradable Polymers
by Nikolaos Bikiaris, Nikolaos F. Nikolaidis and Panagiotis Barmpalexis
Cosmetics 2024, 11(5), 145; https://doi.org/10.3390/cosmetics11050145 - 23 Aug 2024
Cited by 19 | Viewed by 9778
Abstract
Since the emergence of microplastics, the scientific community has been extremely alarmed regarding their potential risks for and threats to both the environment and human lives. MPs are traced in freshwater and marine environments, day-to-day-life ecosystems, and the bodies of animals and humans. [...] Read more.
Since the emergence of microplastics, the scientific community has been extremely alarmed regarding their potential risks for and threats to both the environment and human lives. MPs are traced in freshwater and marine environments, day-to-day-life ecosystems, and the bodies of animals and humans. Due to their usage advancements, MPs have become directly or indirectly an integral part of personal care, cosmetics, and cleaning products and appeared as a domestic cause of environmental pollution. Over the years, researchers have ascertained the harmful effects of MPs on the environment. In this regard, the monitoring and assessment of MPs in PCCPs necessitates considerable attention. The worldwide ban legislation on plastic μBs used in cosmetic products has driven researchers to investigate sustainable and eco-friendly alternatives. This review paper summarizes the potential threats of MPs used in cosmetics and the utilization of potential alternatives. Full article
Show Figures

Figure 1

21 pages, 2923 KiB  
Article
Dynamic Response of PCCP under the Rockfall Impact Based on the Continuous–Discontinuous Method: A Case Study
by Chunhui Ma, Ying Tu, Yonglin Zhou, Jie Yang and Lin Cheng
Water 2024, 16(6), 801; https://doi.org/10.3390/w16060801 - 7 Mar 2024
Cited by 1 | Viewed by 1772
Abstract
Rockfalls are major geological hazards threatening prestressed concrete cylinder pipes (PCCPs) in water diversion projects. To accurately assess the impact of large deformation movements of rockfalls on PCCPs, this study utilized the continuous–discontinuous method to investigate the dynamic response of a PCCP under [...] Read more.
Rockfalls are major geological hazards threatening prestressed concrete cylinder pipes (PCCPs) in water diversion projects. To accurately assess the impact of large deformation movements of rockfalls on PCCPs, this study utilized the continuous–discontinuous method to investigate the dynamic response of a PCCP under a rockfall. The impact mode of rockfalls, the mechanical characteristics of PCCP, and the nonlinear-contact characteristics between soil and PCCP were considered in this study. The advantages of continuous and discontinuous numerical simulation methods were utilized to establish a continuous and discontinuous coupling model of “tube-soil-rock” considering the interaction of soil and structure. The impact mechanism and process of PCCP under the rockfall were investigated by simulating the rockfall process and analyzing its spatiotemporal evolution. The influence of PCCP under rockfalls with different heights and radii was studied to clarify the effects of these two parameters on the PCCP. Combined with a practical application example of large-scale water transfer projects, there is a tendency of center flattening under static load and dynamic impact load, and the PCCP part directly below the impact point is the most dangerous. This investigation provided a comprehensive understanding of the impact mechanism of the PCCPs under rockfall. The findings of this study have significant implications for the design of the protection engineering of PCCPs and ensuring the safe operation of water diversion projects. Full article
Show Figures

Figure 1

53 pages, 5295 KiB  
Review
The Unsettled Number: Hubble’s Tension
by Jorge L. Cervantes-Cota, Salvador Galindo-Uribarri and George F. Smoot
Universe 2023, 9(12), 501; https://doi.org/10.3390/universe9120501 - 29 Nov 2023
Cited by 14 | Viewed by 7048
Abstract
One of main sources of uncertainty in modern cosmology is the present rate of the universe’s expansion, H0, called the Hubble constant. Once again, different observational techniques bring about different results, causing new “Hubble tension”. In the present work, we review [...] Read more.
One of main sources of uncertainty in modern cosmology is the present rate of the universe’s expansion, H0, called the Hubble constant. Once again, different observational techniques bring about different results, causing new “Hubble tension”. In the present work, we review the historical roots of the Hubble constant from the beginning of the twentieth century, when modern cosmology originated, to the present. We develop the arguments that gave rise to the importance of measuring the expansion of the Universe and its discovery, and we describe the different pioneering works attempting to measure it. There has been a long dispute on this matter, even in the present epoch, which is marked by high-tech instrumentation and, therefore, in smaller uncertainties in the relevant parameters. It is, again, currently necessary to conduct a careful and critical revision of the different methods before one invokes new physics to solve the so-called Hubble tension. Full article
(This article belongs to the Special Issue Universe: Feature Papers 2023—Cosmology)
Show Figures

Figure 1

26 pages, 9055 KiB  
Article
A Simplified Limit-State Design and Verification for Prestressed Concrete Cylinder Pipes under Internal Water Pressure
by Pengran Shang, Fulai Qu, Jun Wang, Yunsheng Geng, Tianqiong Yan and Shunbo Zhao
Buildings 2023, 13(11), 2825; https://doi.org/10.3390/buildings13112825 - 10 Nov 2023
Cited by 4 | Viewed by 1902
Abstract
Ignoring the effect of a concrete core on bearing performance, the current design of prestressed concrete cylinder pipes (PCCPs) under internal water pressure only focuses on the fracture of prestressed steel wire, while the complexity of the AWWA C304 design method leads to [...] Read more.
Ignoring the effect of a concrete core on bearing performance, the current design of prestressed concrete cylinder pipes (PCCPs) under internal water pressure only focuses on the fracture of prestressed steel wire, while the complexity of the AWWA C304 design method leads to a strong dependence on software that cannot be sufficiently mastered by the designers. In view of these issues, a simplified limit-state design process was induced to eliminate a large number of iterative operations and was verified by a three-dimensional finite element model (FEM) with a prototype test of PCCPs under internal water pressure. Meanwhile, the bearing performance of PCCPs was investigated using the parametric simulations of the FEM. The results showed that the cross-sectional area of the prestressed steel wire is higher by about 10% than that designed using the AWWA C304 method. The FEM provides a complete evolution process of the mechanical response of the structural constituents and simulates the strain mutation phenomenon of the prototype test well. The internal water pressure of the PCCPs designed using the simplified limit-state design process has enough safety to reach 4.7 times the working pressure at serviceability and 5.5 times the pressure at the ultimate limit state. A burst in the PCCPs took place under an internal pressure greater than 6.75 times the working pressure. The result of the FEM shows that an increase in the tensile strength of the concrete core is of great significance for improving the bearing performance of the PCCPs. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

20 pages, 7051 KiB  
Article
Development of Real-Time Monitoring System Based on IoT Technology for Curing Compound Application Process during Cement Concrete Pavement Construction
by Soon Ho Baek, Kang In Lee and Seong-Min Kim
Sensors 2023, 23(19), 8187; https://doi.org/10.3390/s23198187 - 30 Sep 2023
Cited by 3 | Viewed by 2416
Abstract
Among the construction processes of Portland cement concrete pavement (PCCP), the curing compound spraying process is one of the most important processes. If the curing compound spraying amount does not meet the standard or if the curing compound is not applied evenly, distresses [...] Read more.
Among the construction processes of Portland cement concrete pavement (PCCP), the curing compound spraying process is one of the most important processes. If the curing compound spraying amount does not meet the standard or if the curing compound is not applied evenly, distresses occur at the early age of construction, ultimately causing deterioration in concrete pavement performance. The purpose of this study is to develop a real-time monitoring system for a curing compound spraying process based on the Internet of Things (IoT) and sensing technologies to improve the construction quality of concrete pavement. To achieve the goal of this research, we conducted various laboratory and field experiments. The curing compound spraying amount and sprayed status were measured and analyzed using flowmeters, image acquisition sensors, and an image processing program, and the data were provided to workers in real time and simultaneously transmitted to the IoT cloud to form a database. From this study, it is confirmed that the IoT-technology-based curing compound spraying amount and sprayed status monitoring systems can be successfully established to manage construction quality related to the curing of concrete pavement. Full article
Show Figures

Figure 1

18 pages, 3833 KiB  
Article
Thermodynamic and Dynamic Transitions and Interaction Aspects in Reorientation Dynamics of Molecular Probe in Organic Compounds: A Series of 1-alkanols with TEMPO
by Josef Bartoš and Helena Švajdlenková
Int. J. Mol. Sci. 2023, 24(18), 14252; https://doi.org/10.3390/ijms241814252 - 18 Sep 2023
Cited by 2 | Viewed by 1200
Abstract
The spectral and dynamic properties of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) in a series of 1-alkanols ranging from methanol to 1-decanol over a temperature range 100–300 K were investigated by electron spin resonance (ESR). The main characteristic ESR temperatures connected with slow to fast motion [...] Read more.
The spectral and dynamic properties of 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) in a series of 1-alkanols ranging from methanol to 1-decanol over a temperature range 100–300 K were investigated by electron spin resonance (ESR). The main characteristic ESR temperatures connected with slow to fast motion regime transition; T50G ‘s and TX1fast ‘s are situated above the corresponding glass temperatures, Tg, and for the shorter members, the T50G ‘s lie above or close to melting point, Tm, while the longer ones the T50G < Tm relationship indicates that the TEMPO molecules are in the local disordered regions of the crystalline media. The T50G ‘s and especially TX1fast ‘s are compared with the dynamic crossover temperatures, TXVISC = 8.72M0.66, as obtained by fitting the viscosity data in the liquid n-alkanols with the empirical power law. In particular, for NC > 6, the TX1fast ‘s lie rather close to the TXVISC resembling apolar n-alkanes [PCCP 2018,20,11145-11151], while for NC < 6, they are situated in the vicinity of Tm. The absence of a coincidence for lower1-alkanols indicates that the T50G is significantly influenced by the mutual interaction between the polar TEMPO and the protic polar medium due to the increased polarity and proticity destroyed by the larger-scale melting transition. Full article
(This article belongs to the Special Issue Glass Transition and Related Phenomena 2.0)
Show Figures

Figure 1

16 pages, 3306 KiB  
Article
Specific Proton-Donor Properties of Glycine Betaine. Metric Parameters and Enthalpy of Noncovalent Interactions in its Dimer, Water Complexes and Crystalline Hydrate
by Nikita E. Frolov, Anastasia V. Shishkina and Mikhail V. Vener
Int. J. Mol. Sci. 2023, 24(16), 12971; https://doi.org/10.3390/ijms241612971 - 19 Aug 2023
Cited by 3 | Viewed by 1673
Abstract
Trimethylglycine (glycine betaine, GB) is an important organic osmolyte that accumulates in various plant species in response to environmental stresses and has significant potential as a bioactive agent with low environmental impact. It is assumed that the hydration of GB is playing an [...] Read more.
Trimethylglycine (glycine betaine, GB) is an important organic osmolyte that accumulates in various plant species in response to environmental stresses and has significant potential as a bioactive agent with low environmental impact. It is assumed that the hydration of GB is playing an important role in the protective mechanism. The hydration and aggregation properties of GB have not yet been studied in detail at the atomistic level. In this work, noncovalent interactions in the GB dimer and its complexes with water and crystalline monohydrate are studied. Depending on the object, periodic and non-periodic DFT calculations are used. Particular attention is paid to the metric parameters and enthalpies of intermolecular hydrogen bonds. The identification of noncovalent interactions is carried out by means of the Bader analysis of periodic or non-periodic electron density. The enthalpy of hydrogen bonds is estimated using the Rosenberg formula (PCCP 2 (2000) 2699). The specific proton donor properties of glycine betaine are due to its ability to form intermolecular C–H∙∙∙O bonds with the oxygen atom of a water molecule or the carboxylate group of a neighboring GB. The enthalpy of these bonds can be significantly greater than 10 kJ/mol. The water molecule that forms a hydrogen bond with the carboxylate group of GB also interacts with its CH groups through lone pairs of electrons. The C–H∙∙∙O bonds contribute up to 40% of the total entropy of the GB–water interaction, which is about 45 kJ/mol. The possibility of identifying C–H∙∙∙O bonds by the proton nuclear magnetic resonance method is discussed. Full article
(This article belongs to the Special Issue Non-covalent Interaction 2.0)
Show Figures

Figure 1

20 pages, 3808 KiB  
Article
A Lagrangian Method for Calculation of Passing Capacity on a Railway Hub Station
by Lu Yang, Leishan Zhou, Hanxiao Zhou, Chang Han and Wenqiang Zhao
Mathematics 2023, 11(6), 1418; https://doi.org/10.3390/math11061418 - 15 Mar 2023
Cited by 1 | Viewed by 1914
Abstract
This research paper proposes a Lagrangian method to address the passing capacity of the calculation problem (PCCP) for a hub station in a high-speed railway (HSR) system. The passing capacity of a hub station is critical for determining the train timetable and maximizing [...] Read more.
This research paper proposes a Lagrangian method to address the passing capacity of the calculation problem (PCCP) for a hub station in a high-speed railway (HSR) system. The passing capacity of a hub station is critical for determining the train timetable and maximizing the number of trains that can operate on different lines. The objective of this study is to determine the maximum number of trains that can pass through, start at, or end at a hub station. To achieve this objective, a mathematical model was introduced to solve the PCCP. The model was decomposed into two parts using a Lagrangian relaxation algorithm. The first part of the model was a simple train arrival problem (TAP) that reflected the timing of trains at the hub station with simultaneous arrival and departure time constraints. The second part of the model was a train spatio-temporal routing problem (TSRP) that aimed to solve the shortest spatio-temporal path of trains with free conflict with the train’s trajectory. A real instance was provided to demonstrate the feasibility of the proposed approach and the effectiveness of the Lagrangian method. The results showed that the proposed method can efficiently solve the PCCP and maximize the passing capacity of a hub station in an HSR system. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

17 pages, 5569 KiB  
Article
A YOLOX-Based Automatic Monitoring Approach of Broken Wires in Prestressed Concrete Cylinder Pipe Using Fiber-Optic Distributed Acoustic Sensors
by Baolong Ma, Ruizhen Gao, Jingjun Zhang and Xinmin Zhu
Sensors 2023, 23(4), 2090; https://doi.org/10.3390/s23042090 - 13 Feb 2023
Cited by 18 | Viewed by 2775
Abstract
Wire breakage is a major factor in the failure of prestressed concrete cylinder pipes (PCCP). In the presented work, an automatic monitoring approach of broken wires in PCCP using fiber-optic distributed acoustic sensors (DAS) is investigated. The study designs a 1:1 prototype wire [...] Read more.
Wire breakage is a major factor in the failure of prestressed concrete cylinder pipes (PCCP). In the presented work, an automatic monitoring approach of broken wires in PCCP using fiber-optic distributed acoustic sensors (DAS) is investigated. The study designs a 1:1 prototype wire break monitoring experiment using a DN4000 mm PCCP buried underground in a simulated test environment. The test combines the collected wire break signals with the previously collected noise signals in the operating pipe and transforms them into a spectrogram as the wire break signal dataset. A deep learning-based target detection algorithm is developed to detect the occurrence of wire break events by extracting the spectrogram image features of wire break signals in the dataset. The results show that the recall, precision, F1 score, and false detection rate of the pruned model reach 100%, 100%, 1, and 0%, respectively; the video detection frame rate reaches 35 fps and the model size is only 732 KB. It can be seen that this method greatly simplifies the model without loss of precision, providing an effective method for the identification of PCCP wire break signals, while the lightweight model is more conducive to the embedded deployment of a PCCP wire break monitoring system. Full article
(This article belongs to the Section Optical Sensors)
Show Figures

Figure 1

24 pages, 22504 KiB  
Article
Numerical Study of the Performance of Existing Prestressed Cylindrical Concrete Pipes Strengthened with Reinforced Concrete or Carbon-Reinforced Fiber Polymer Jackets—Part B
by Konstantinos Katakalos, Lazaros Melidis, George Manos and Vassilios Soulis
Fibers 2022, 10(11), 93; https://doi.org/10.3390/fib10110093 - 28 Oct 2022
Cited by 2 | Viewed by 2338
Abstract
A popular water pipe system, used in many countries, is one formed by prestressed cylindrical concrete pipes (PCCP). This study used the results of an experimental investigation on ten (10) PCCP samples taken from an existing water pipeline. The objective was to investigate [...] Read more.
A popular water pipe system, used in many countries, is one formed by prestressed cylindrical concrete pipes (PCCP). This study used the results of an experimental investigation on ten (10) PCCP samples taken from an existing water pipeline. The objective was to investigate their bearing capacity under three-edge bending or internal hydraulic pressure loads to check the capability of specific retrofitting/strengthening schemes to upgrade this bearing capacity and thus enhance the operational period (Part A). In this part B study, the measured response of the PCCP pipes was made to validate a numerical approach aimed at numerically simulating the behavior of the original and retrofitted PCCP pipes under hydraulic internal pressure. From the obtained numerical results, it was seen that the assumed nonlinear mechanisms for the concrete volume and steel membrane were verified by comparing numerical predictions with measurements in terms of strain response of the steel membrane, damage patterns of the concrete volume, and the overall internal pressure versus radial expansion response. The numerical predictions of the bearing capacity contribution of the fully active prestress as well as the three specific jacketing schemes, including carbon fiber reinforced polymer (CFRP) or reinforced concrete (RC) jackets, were also verified from comparisons with the corresponding measured response. Full article
Show Figures

Figure 1

18 pages, 7641 KiB  
Article
Full-Scale Test and Bearing Capacity Evaluation of Large Diameter Prestressed Concrete Cylinder Pipe under Internal Water Pressure
by Fulai Qu, Di Zhang, Pengran Shang, Hao Wang, Wenkui Zheng and Shunbo Zhao
Buildings 2022, 12(11), 1791; https://doi.org/10.3390/buildings12111791 - 26 Oct 2022
Cited by 5 | Viewed by 2417
Abstract
In practical applications, the safe operation of large-diameter prestressed concrete cylinder pipes (PCCPs) depends on the loading performance under internal water pressure. However, there is lack of damage tests for the full-scale large-diameter PCCPs due to economic cost and experimental difficulty. In this [...] Read more.
In practical applications, the safe operation of large-diameter prestressed concrete cylinder pipes (PCCPs) depends on the loading performance under internal water pressure. However, there is lack of damage tests for the full-scale large-diameter PCCPs due to economic cost and experimental difficulty. In this paper, a full-scale PCCP with diameter of 3.2 m was tested to verify the bearing capacity for applying to an actual water transfer project. The PCCP was designed by the limit state method and manufactured in a prefabrication plant. During the test, the strains of concrete, prestressed steel wire, and mortar were detected to evaluate the limit state of bearing capacity under internal water pressure. Based on the test results and the strain analysis at the limit state, it was found that when the water pressure reached 1.9 MPa, the concrete outside the steel cylinder was at the serviceability limit state, and the prestressed steel wire was in elastic, while some protective mortar exceeded the serviceability limit state due to the appearance of visible cracks. A good accuracy of the theoretical calculation with the predicted results lower about 9.4% and 8% than tested pressures at decompression and cracking states. Moreover, the cracking pressure of concrete and bursting pressure of pipe were 2.5 and 6 times of the working pressure according to the calculation results. This indicated that the PCCP used in this study had sufficient safety in actual operation. However, it should be noted that the tensile control strain of mortar may be overestimated by the current code. Full article
(This article belongs to the Topic Pipeline and Underground Space Technology)
Show Figures

Figure 1

Back to TopTop