Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,270)

Search Parameters:
Keywords = PA1b

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 5365 KiB  
Article
A 100 MHz 3 dB Bandwidth, 30 V Rail-to-Rail Class-AB Buffer Amplifier for Base Station ET-PA Hybrid Supply Modulator
by Min-Ju Kim, Donghwi Kang, Gyujin Choi, Seong-Jun Youn and Ji-Seon Paek
Electronics 2025, 14(15), 3036; https://doi.org/10.3390/electronics14153036 - 30 Jul 2025
Viewed by 118
Abstract
This paper presents the first hybrid supply modulator (HSM) designed for envelope tracking power amplifiers (ET-PAs) in base station applications. The focus is on a rail-to-rail Class-AB linear amplifier (LA) optimized for high-voltage and wide-bandwidth operation. The LA is designed using 130 nm [...] Read more.
This paper presents the first hybrid supply modulator (HSM) designed for envelope tracking power amplifiers (ET-PAs) in base station applications. The focus is on a rail-to-rail Class-AB linear amplifier (LA) optimized for high-voltage and wide-bandwidth operation. The LA is designed using 130 nm BCD technology, utilizing Laterally Diffused Metal-Oxide Semiconductor (LDMOS) transistors for high-voltage operation and incorporating shielding MOSFETs to protect the low-voltage devices. The circuit utilizes dual power supply domains (5 V and 30 V) to improve power efficiency. The proposed LA achieves a bandwidth of 100 MHz and a slew rate of +1003/−852 V/μs, with a quiescent power consumption of 0.89 W. Transient simulations using a 50 MHz bandwidth 5G NR envelope input demonstrate that the proposed HSM achieves a power efficiency of 83%. Consequently, the proposed HSM supports high-output (100 W) wideband 5G NR transmission with enhanced efficiency. Full article
(This article belongs to the Special Issue Analog/Mixed Signal Integrated Circuit Design)
Show Figures

Figure 1

19 pages, 3636 KiB  
Article
A High-Efficiency GaN-on-Si Power Amplifier Using a Rapid Dual-Objective Optimization Method for 5G FR2 Applications
by Lin Peng, Zuxin Ye, Yawen Zhang, Chenxuan Zhang, Yuda Fu, Jian Qin and Yuan Liang
Electronics 2025, 14(15), 2996; https://doi.org/10.3390/electronics14152996 - 27 Jul 2025
Viewed by 206
Abstract
A broadband, efficient monolithic microwave integrated circuit power amplifier (MMIC PA) in OMMIC’s 0.1 μm GaN-on-Si technology for 5G millimeter-wave communication is presented. This study concentrates on the output matching design, which has an important influence on the PA’s performance. A compact one-order [...] Read more.
A broadband, efficient monolithic microwave integrated circuit power amplifier (MMIC PA) in OMMIC’s 0.1 μm GaN-on-Si technology for 5G millimeter-wave communication is presented. This study concentrates on the output matching design, which has an important influence on the PA’s performance. A compact one-order synthesized transformer network (STN) is adopted to match the 50 Ω load to the extracted large-signal output model of the transistor. A dual-objective strategy is developed for parameter optimization, incorporating the impedance transformation trajectory inside the predefined optimal impedance domain (OID) that satisfies the required specifications, with approximation to selected optimal load impedances. By introducing a custom adjustment factor β into the error function, coupled with an automated iterative tuning process based on S-parameter simulations, desired broadband matching results can be rapidly achieved. The proposed two-stage PA occupies a small chip area of only 1.23 mm2 and demonstrates good frequency consistency over the 24–31 GHz band. Continuous-wave characterization shows a flat small-signal gain of 19.7 ± 0.5 dB; both the output power (Pout) and the power-added efficiency (PAE) at the 4 dB compression point remain smooth, ranging from 32.3 to 32.7 dBm and 35.5% to 37.8%, respectively. The peak PAE reaches up to nearly 40% at the center frequency. Full article
(This article belongs to the Special Issue Advanced RF/Microwave Circuits and System for New Applications)
Show Figures

Figure 1

17 pages, 3444 KiB  
Article
Multiphysics-Coupled Simulation of Ultrasound-Assisted Tailing Slurry Sedimentation
by Liang Peng and Congcong Zhao
Materials 2025, 18(15), 3430; https://doi.org/10.3390/ma18153430 - 22 Jul 2025
Viewed by 172
Abstract
This study establishes a multiphysics coupling model of acoustics, mechanics, and electrostatics through COMSOL, systematically explores the sound field distribution and stress–strain characteristics of tailing particles in sand silos under different frequencies of ultrasonic radiation, and proposes an optimization scheme for the sound [...] Read more.
This study establishes a multiphysics coupling model of acoustics, mechanics, and electrostatics through COMSOL, systematically explores the sound field distribution and stress–strain characteristics of tailing particles in sand silos under different frequencies of ultrasonic radiation, and proposes an optimization scheme for the sound field. The simulation results show that under 28 kHz ultrasonic radiation, the amplitude of sound pressure in the sand silo (173 Pa) is much lower than that at 40 kHz (1220 Pa), which can avoid damaging the original settlement mode of the tail mortar. At the same time, the periodic fluctuation amplitude of its longitudinal sound pressure is significantly greater than 25 kHz, which can promote settlement by enhancing particle tensile and compressive stress, achieving the best comprehensive effect. The staggered placement scheme of the transducer eliminates upward disturbance in the flow field by changing the longitudinal opposing sound field to oblique propagation, reduces energy dissipation, and increases the highest sound pressure level in the compartment to 130 dB. The sound pressure distribution density is significantly improved, further enhancing the settling effect. This study clarifies the correlation mechanism between ultrasound parameters and tailings’ settling efficiency, providing a theoretical basis for parameter optimization of ultrasound-assisted tailing treatment technology. Its results have important application value in the optimization of tailings settling in metal mine tailing filling. Full article
Show Figures

Figure 1

26 pages, 15143 KiB  
Article
Spatiotemporal Characteristics of and Factors Influencing CO2 Concentration During 2010–2023 in China
by Jiayi Zou, Huaixu Jiang, Tianshun Yang, Liqing Wu, Qi Zhang and Jianjun Xu
Remote Sens. 2025, 17(15), 2542; https://doi.org/10.3390/rs17152542 - 22 Jul 2025
Viewed by 411
Abstract
Human activities at unprecedented levels have exacerbated the greenhouse effect and escalated the frequency of extreme weather. In response, the Chinese government has pledged to reach “carbon peak” by 2030 and achieve “carbon neutrality” by 2060. Leveraging the GOSAT L3 and L4B CO [...] Read more.
Human activities at unprecedented levels have exacerbated the greenhouse effect and escalated the frequency of extreme weather. In response, the Chinese government has pledged to reach “carbon peak” by 2030 and achieve “carbon neutrality” by 2060. Leveraging the GOSAT L3 and L4B CO2 datasets, this study investigated the spatiotemporal and vertical characteristics of atmospheric carbon dioxide (CO2) concentration across China, alongside quantifying the relative importance of key influencing factors. The results show that there is a distinct regional disparity in CO2 column concentration, with eastern China having a higher concentration level (406.85 × 10−6) than the western regions (400.92 × 10−6). Vertically, the concentration of CO2 (390–420 × 10−6) reaches its peak at the near-surface layer (975 hPa) and then decreases with increasing altitude. High values of CO2 levels in the mid-lower layer are concentrated in eastern China, while those in the upper layer are mainly located in southern China. In addition, CO2 concentration shows seasonal variations, with the highest concentration occurring in spring (406.39 × 10−6) and the lowest in summer. Biospheric emissions and fossil fuel combustion emerge as the two most significant factors affecting CO2 variation, with relative importance of 24% and 22%, respectively. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

24 pages, 4099 KiB  
Article
Dynamic Control of Coating Accumulation Model in Non-Stationary Environment Based on Visual Differential Feedback
by Chengzhi Su, Danyang Yu, Wenyu Song, Huilin Tian, Haifeng Bao, Enguo Wang and Mingzhen Li
Coatings 2025, 15(7), 852; https://doi.org/10.3390/coatings15070852 - 19 Jul 2025
Viewed by 292
Abstract
To address the issue of coating accumulation model failure in unstable environments, this paper proposes a dynamic control method based on visual differential feedback. An image difference model is constructed through online image data modeling and real-time reference image feedback, enabling real-time correction [...] Read more.
To address the issue of coating accumulation model failure in unstable environments, this paper proposes a dynamic control method based on visual differential feedback. An image difference model is constructed through online image data modeling and real-time reference image feedback, enabling real-time correction of the coating accumulation model. Firstly, by combining the Arrhenius equation and the Hagen–Poiseuille equation, it is demonstrated that pressure regulation and temperature changes are equivalent under dataset establishment conditions, thereby reducing data collection costs. Secondly, online paint mist image acquisition and processing technology enables real-time modeling, overcoming the limitations of traditional offline methods. This approach reduces modeling time to less than 4 min, enhancing real-time parameter adjustability. Thirdly, an image difference model employing a CNN + MLP structure, combined with feature fusion and optimization strategies, achieved high prediction accuracy: R2 > 0.999, RMSE < 0.79 kPa, and σe < 0.74 kPa on the test set for paint A; and R2 > 0.997, RMSE < 0.67 kPa, and σe < 0.66 kPa on the test set for aviation paint B. The results show that the model can achieve good dynamic regulation for both types of typical aviation paint used in the experiment: high-viscosity polyurethane enamel (paint A, viscosity 22 s at 25 °C) and epoxy polyamide primer (paint B, viscosity 18 s at 25 °C). In summary, the image difference model can achieve dynamic regulation of the coating accumulation model in unstable environments, ensuring the stability of the coating accumulation model. This technology can be widely applied in industrial spraying scenarios with high requirements for coating uniformity and stability, especially in occasions with significant fluctuations in environmental parameters or complex process conditions, and has important engineering application value. Full article
Show Figures

Figure 1

20 pages, 5781 KiB  
Article
Performance Evaluation of Uplink Cell-Free Massive MIMO Network Under Weichselberger Rician Fading Channel
by Birhanu Dessie, Javed Shaikh, Georgi Iliev, Maria Nenova, Umar Syed and K. Kiran Kumar
Mathematics 2025, 13(14), 2283; https://doi.org/10.3390/math13142283 - 16 Jul 2025
Viewed by 306
Abstract
Cell-free massive multiple-input multiple-output (CF M-MIMO) is one of the most promising technologies for future wireless communication such as 5G and beyond fifth-generation (B5G) networks. It is a type of network technology that uses a massive number of distributed antennas to serve a [...] Read more.
Cell-free massive multiple-input multiple-output (CF M-MIMO) is one of the most promising technologies for future wireless communication such as 5G and beyond fifth-generation (B5G) networks. It is a type of network technology that uses a massive number of distributed antennas to serve a large number of users at the same time. It has the ability to provide high spectral efficiency (SE) as well as improved coverage and interference management, compared to traditional cellular networks. However, estimating the channel with high-performance, low-cost computational methods is still a problem. Different algorithms have been developed to address these challenges in channel estimation. One of the high-performance channel estimators is a phase-aware minimum mean square error (MMSE) estimator. This channel estimator has high computational complexity. To address the shortcomings of the existing estimator, this paper proposed an efficient phase-aware element-wise minimum mean square error (PA-EW-MMSE) channel estimator with QR decomposition and a precoding matrix at the user side. The closed form uplink (UL) SE with the phase MMSE and proposed estimators are evaluated using MMSE combining. The energy efficiency and area throughput are also calculated from the SE. The simulation results show that the proposed estimator achieved the best SE, EE, and area throughput performance with a substantial reduction in the complexity of the computation. Full article
Show Figures

Figure 1

31 pages, 3523 KiB  
Article
Sustainable Tunable Anisotropic Ultrasound Medical Phantoms for Skin, Skeletal Muscle, and Other Fibrous Biological Tissues Using Natural Fibers and a Bio-Elastomeric Matrix
by Nuno A. T. C. Fernandes, Diana I. Alves, Diana P. Ferreira, Maria Monteiro, Ana Arieira, Filipe Silva, Betina Hinckel, Ana Leal and Óscar Carvalho
J. Compos. Sci. 2025, 9(7), 370; https://doi.org/10.3390/jcs9070370 - 16 Jul 2025
Viewed by 456
Abstract
Medical phantoms are essential to imaging calibration, clinician training, and the validation of therapeutic procedures. However, most ultrasound phantoms prioritize acoustic realism while neglecting the viscoelastic and anisotropic properties of fibrous soft tissues. This gap limits their effectiveness in modeling realistic biomechanical behavior, [...] Read more.
Medical phantoms are essential to imaging calibration, clinician training, and the validation of therapeutic procedures. However, most ultrasound phantoms prioritize acoustic realism while neglecting the viscoelastic and anisotropic properties of fibrous soft tissues. This gap limits their effectiveness in modeling realistic biomechanical behavior, especially in wave-based diagnostics and therapeutic ultrasound. Current materials like gelatine and agarose fall short in reproducing the complex interplay between the solid and fluid components found in biological tissues. To address this, we developed a soft, anisotropic composite whose dynamic mechanical properties resemble fibrous biological tissues such as skin and skeletal muscle. This material enables wave propagation and vibration studies in controllably anisotropic media, which are rare and highly valuable. We demonstrate the tunability of damping and stiffness aligned with fiber orientation, providing a versatile platform for modeling soft-tissue dynamics and validating biomechanical simulations. The phantoms achieved Young’s moduli of 7.16–11.04 MPa for skin and 0.494–1.743 MPa for muscles, shear wave speeds of 1.51–5.93 m/s, longitudinal wave speeds of 1086–1127 m/s, and sound absorption coefficients of 0.13–0.76 dB/cm/MHz, with storage, loss, and complex moduli reaching 1.035–6.652 kPa, 0.1831–0.8546 kPa, and 2.138–10.82 kPa. These values reveal anisotropic response patterns analogous to native tissues. This novel natural fibrous composite system affords sustainable, low-cost ultrasound phantoms that support both mechanical fidelity and acoustic realism. Our approach offers a route to next-gen tissue-mimicking phantoms for elastography, wave propagation studies, and dynamic calibration across diverse clinical and research applications. Full article
Show Figures

Figure 1

19 pages, 6665 KiB  
Article
Enhanced Flame Retardancy of Silica Fume-Based Geopolymer Composite Coatings Through In Situ-Formed Boron Phosphate from Doped Zinc Phytate and Boric Acid
by Yachao Wang, Yufei Qu, Chuanzhen Wang and Juan Dou
Minerals 2025, 15(7), 735; https://doi.org/10.3390/min15070735 - 14 Jul 2025
Viewed by 172
Abstract
Silica fume-based geopolymer composite coatings, an approach to using metallurgical solid waste, exert flame retardancy with ecological, halogen-free, and environmentally friendly advantages, but their fire resistance needs to be improved further. Herein, a silica fume-based geopolymer composite flame-retardant coating was designed by doping [...] Read more.
Silica fume-based geopolymer composite coatings, an approach to using metallurgical solid waste, exert flame retardancy with ecological, halogen-free, and environmentally friendly advantages, but their fire resistance needs to be improved further. Herein, a silica fume-based geopolymer composite flame-retardant coating was designed by doping boric acid (BA), zinc phytate (ZnPA), and melamine (MEL). The results of a cone calorimeter demonstrated that appropriate ZnPA and BA significantly enhanced its flame retardancy, evidenced by the peak heat release rate (p-HRR) decreasing from 268.78 to 118.72 kW·m−2, the fire performance index (FPI) increasing from 0.59 to 2.83 s·m2·kW−1, and the flame retardancy index increasing from 1.00 to 8.48, respectively. Meanwhile, the in situ-formed boron phosphate (BPO4) facilitated the residual resilience of the fire-barrier layer. Furthermore, the pyrolysis kinetics indicated that the three-level chemical reactions governed the pyrolysis of the coatings. BPO4 made the pyrolysis Eα climb from 94.28 (P5) to 127.08 (B3) kJ·mol−1 with temperatures of 731–940 °C, corresponding to improved thermal stability. Consequently, this study explored the synergistic flame-retardant mechanism of silica fume-based geopolymer coatings doped with ZnPA, BA, and MEL, providing an efficient strategy for the high-value-added recycling utilization of silica fume. Full article
(This article belongs to the Topic Innovative Strategies to Mitigate the Impact of Mining)
Show Figures

Figure 1

12 pages, 1668 KiB  
Article
The PAS-B Domain of BMAL1 Controls Proliferation, Cellular Energetics, and Inflammatory Response in Human Monocytic Cell Line THP-1
by Yoko Gozu, Junichi Hosoi, Hiroaki Nagatomo, Kayako Ishimaru and Atsuhito Nakao
Int. J. Mol. Sci. 2025, 26(14), 6737; https://doi.org/10.3390/ijms26146737 - 14 Jul 2025
Viewed by 250
Abstract
Brain muscle ARNT-like1 (Bmal1) is a transcriptional factor, consisting of basic helix–loop–helix (bHLH) and PER-ARNT-SIM (PAS) domains, that plays a central role in circadian clock activity. However, the precise roles of the BMAL1-PAS domain, a circadian rhythm-regulating structure, remain unexplored in [...] Read more.
Brain muscle ARNT-like1 (Bmal1) is a transcriptional factor, consisting of basic helix–loop–helix (bHLH) and PER-ARNT-SIM (PAS) domains, that plays a central role in circadian clock activity. However, the precise roles of the BMAL1-PAS domain, a circadian rhythm-regulating structure, remain unexplored in monocytes. Here, we highlight the BMAL1-PAS domain as a key structure in monocyte pleiotropic functions by using human monocytic cell line THP-1. THP-1 cells lacking the BMAL1-PAS-B domain (THP-1#207) abrogated the circadian expression of core clock genes. THP-1#207 cells exhibited less proliferation, glycolysis and oxidative phosphorylation activity, and LPS-induced IL-1β production, but exhibited more production of LPS-induced IL-10 than THP-1 cells. A quantitative proteomics analysis revealed significant expression changes in ~10% metabolic enzymes in THP-1#207 cells compared to THP-1 cells, including reduction in a rate-limiting enzyme hexokinase2 (HK2) in the glycolytic pathway. Importantly, treatment of THP-1 with 2-deoxy-D-glucose (2-DG), an HK2 inhibitor, largely recapitulated the phenotypes of THP-1#207 cells. These findings suggest that the BMAL1-PAS-B domain is an important structure for the regulation of proliferation, cellular energetics, and inflammatory response in THP-1 cells, at least in part, via the control of glycolytic activity. Thus, the BMAL1-PAS-B domain may become a promising pharmacological target to control inflammation. Full article
(This article belongs to the Special Issue The Importance of Molecular Circadian Rhythms in Health and Disease)
Show Figures

Figure 1

15 pages, 1845 KiB  
Article
In Vitro Investigation of Statin Effects on Genes Associated with Severe COVID-19 in Cancerous and Non-Cancerous Cells
by Adriana Kapustová, Patrik Macášek, Bibiána Baďurová, Jana Melegová, Silvie Rimpelová, Jan Kubovčiak, Jana Šáchová, Miluše Hradilová, Michal Kolář, Libor Vítek, Tomáš Ruml and Helena Gbelcová
Biomedicines 2025, 13(7), 1714; https://doi.org/10.3390/biomedicines13071714 - 14 Jul 2025
Viewed by 296
Abstract
Background: The progressive course of coronavirus disease 2019 (COVID-19) is more frequently observed in individuals with obesity, diabetes, pulmonary and cardiovascular disease, or arterial hypertension. Many patients with these conditions are prescribed statins to treat hypercholesterolaemia. However, statins exhibit additional pleiotropic effects. The [...] Read more.
Background: The progressive course of coronavirus disease 2019 (COVID-19) is more frequently observed in individuals with obesity, diabetes, pulmonary and cardiovascular disease, or arterial hypertension. Many patients with these conditions are prescribed statins to treat hypercholesterolaemia. However, statins exhibit additional pleiotropic effects. The present study aims to investigate the effects of all eight currently existing statins on the expression of genes whose products have been reported to be directly associated with complicated COVID-19 disease. Methods: We extended the interpretation of the whole-genome DNA microarray analyses of pancreatic cancer cells MiaPaCa-2 and whole-transcriptome analyses of adipose tissue-derived mesenchymal stem cells AD-MSC that we had performed in the past. From the number of genes with altered expression induced by statins, we focused on those reported to be involved in a complicated course of COVID-19, including APOE and ACE2, genes encoding proteins involved in innate antiviral immunity and respiratory failure genes. Results: Although we did not observe statin-induced changes in the expression of APOE, ACE2 and any of the six genes clustered in the locus associated with respiratory failure in patients with COVID-19, some statins induced changes in the expression of genes encoding their interaction partners. Among genes associated with the immune system, all statins, which are effective in vitro affected the expression of genes encoding IL-6 and IL-8 and interaction partners of NF-kB, which may influence the duration of viral persistence. Conclusions: Statins act on multiple pathways simultaneously, some of which support COVID-19 development, while others suppress it. Full article
Show Figures

Figure 1

29 pages, 1341 KiB  
Article
GaN Power Amplifier with DPD for Enhanced Spectral Integrity in 2.3–2.5 GHz Wireless Systems
by Mfonobong Uko
Technologies 2025, 13(7), 299; https://doi.org/10.3390/technologies13070299 - 11 Jul 2025
Viewed by 471
Abstract
The increasing need for high-data-rate wireless applications in 5G and IoT networks requires sophisticated power amplifier (PA) designs in the sub-6 GHz spectrum. This work introduces a high-efficiency Gallium Nitride (GaN)-based power amplifier optimized for the 2.3–2.5 GHz frequency band, using digital pre-distortion [...] Read more.
The increasing need for high-data-rate wireless applications in 5G and IoT networks requires sophisticated power amplifier (PA) designs in the sub-6 GHz spectrum. This work introduces a high-efficiency Gallium Nitride (GaN)-based power amplifier optimized for the 2.3–2.5 GHz frequency band, using digital pre-distortion (DPD) to improve spectral fidelity and reduce distortion. The design employs load modulation and dynamic biasing to optimize power-added efficiency (PAE) and linearity. Simulation findings indicate a gain of 13 dB, a 3 dB compression point at 29.7 dBm input power, and 40 dBm output power, with a power-added efficiency of 60% and a drain efficiency of 65%. The power amplifier achieves a return loss of more than 15 dB throughout the frequency spectrum, ensuring robust impedance matching and consistent performance. Electromagnetic co-simulations confirm its stability under high-frequency settings, rendering it appropriate for next-generation high-efficiency wireless communication systems. Full article
(This article belongs to the Section Information and Communication Technologies)
Show Figures

Figure 1

15 pages, 3836 KiB  
Article
Porous-Cladding Polydimethylsiloxane Optical Waveguide for Biomedical Pressure Sensing Applications
by Koffi Novignon Amouzou, Alberto Alonso Romero, Dipankar Sengupta, Camila Aparecida Zimmermann, Aashutosh Kumar, Normand Gravel, Jean-Marc Lina, Xavier Daxhelet and Bora Ung
Sensors 2025, 25(14), 4311; https://doi.org/10.3390/s25144311 - 10 Jul 2025
Viewed by 296
Abstract
We report a new concept of a pressure sensor fully made from polydimethylsiloxane with a solid core and porous cladding that operates through (frustrated) total internal reflection. A flexible and sensitive rectangular cross-section waveguide was fabricated via the casting and molding method. The [...] Read more.
We report a new concept of a pressure sensor fully made from polydimethylsiloxane with a solid core and porous cladding that operates through (frustrated) total internal reflection. A flexible and sensitive rectangular cross-section waveguide was fabricated via the casting and molding method. The waveguide’s optical losses can be temperature-controlled during the fabrication process by controlling the quantity of microbubbles incorporated (2% approximately for samples made at 70 °C). By controlling the precuring temperature, the microbubbles are incorporated into the waveguides during the simple and cost-effective fabrication process through the casting and molding method. For these samples, we measured good optical loss tradeoff of the order of 1.85 dB/cm, which means that it is possible to fabricate a solid-core/clad waveguide with porous cladding able to guide light properly. We demonstrated the microbubble concentration control in the waveguide, and we measured an average diameter of 239 ± 16 µm. A sensitivity to pressure of 0.1035 dB/kPa optical power loss was measured. The results show that in a biomedical dynamic pressure range (0 to 13.3 kPa), this new device indicates the critical pressure threshold level, which constitutes a crucial asset for potential applications such as pressure injury prevention. Full article
Show Figures

Graphical abstract

38 pages, 25146 KiB  
Article
Driplines Layout Designs Comparison of Moisture Distribution in Clayey Soils, Using Soil Analysis, Calibrated Time Domain Reflectometry Sensors, and Precision Agriculture Geostatistical Imaging for Environmental Irrigation Engineering
by Agathos Filintas
AgriEngineering 2025, 7(7), 229; https://doi.org/10.3390/agriengineering7070229 - 10 Jul 2025
Viewed by 388
Abstract
The present study implements novel innovative geostatistical imaging using precision agriculture (PA) under sugarbeet field conditions. Two driplines layout designs (d.l.d.) and soil water content (SWC)–irrigation treatments (A: d.l.d. = 1.00 m driplines spacing × 0.50 m emitters inline spacing; B: d.l.d. = [...] Read more.
The present study implements novel innovative geostatistical imaging using precision agriculture (PA) under sugarbeet field conditions. Two driplines layout designs (d.l.d.) and soil water content (SWC)–irrigation treatments (A: d.l.d. = 1.00 m driplines spacing × 0.50 m emitters inline spacing; B: d.l.d. = 1.50 m driplines spacing × 0.50 m emitters inline spacing) were applied, with two subfactors of clay loam and clay soils (laboratory soil analysis) for modeling (evaluation of seven models) TDR multi-sensor network measurements. Different sensor calibration methods [method 1(M1) = according to factory; method 2 (M2) = according to Hook and Livingston] were applied for the geospatial two-dimensional (2D) imaging of accurate GIS maps of rootzone soil moisture profiles, soil apparent dielectric Ka profiles, and granular and hydraulic parameters profiles, in multiple soil layers (0–75 cm depth). The modeling results revealed that the best-fitted geostatistical model for soil apparent dielectric Ka was the Gaussian model, while spherical and exponential models were identified to be the most appropriate for kriging modelling, and spatial and temporal imaging was used for accurate profile SWC θvTDR (m3·m−3) M1 and M2 maps using TDR sensors. The resulting PA profile map images depict the spatio-temporal soil water and apparent dielectric Ka variability at very high resolutions on a centimeter scale. The best geostatistical validation measures for the PA profile SWC θvTDR maps obtained were MPE = −0.00248 (m3·m−3), RMSE = 0.0395 (m3·m−3), MSPE = −0.0288, RMSSE = 2.5424, ASE = 0.0433, Nash–Sutcliffe model efficiency NSE = 0.6229, and MSDR = 0.9937. Based on the results, we recommend d.l.d. A and sensor calibration method 2 for the geospatial 2D imaging of PA GIS maps because these were found to be more accurate, with the lowest statistical and geostatistical errors, and the best validation measures for accurate profile SWC imaging were obtained for clay loam over clay soils. Visualizing sensors’ soil moisture results via geostatistical maps of rootzone profiles have practical implications that assist farmers and scientists in making informed, better and timely environmental irrigation engineering decisions, to save irrigation water, increase water use efficiency and crop production, optimize energy, reduce crop costs, and manage water resources sustainably. Full article
(This article belongs to the Section Sensors Technology and Precision Agriculture)
Show Figures

Figure 1

25 pages, 14195 KiB  
Article
Maize Classification in Arid Regions via Spatiotemporal Feature Optimization and Multi-Source Remote Sensing Integration
by Guang Yang, Jun Wang and Zhengyuan Qi
Agronomy 2025, 15(7), 1667; https://doi.org/10.3390/agronomy15071667 - 10 Jul 2025
Viewed by 331
Abstract
This study addresses the challenges of redundant crop identification features and low computational efficiency in complex agricultural environments, particularly in arid regions. Focusing on the Hexi region of Gansu Province, we utilized the Google Earth Engine (GEE) to integrate Sentinel-2 optical imagery (10 [...] Read more.
This study addresses the challenges of redundant crop identification features and low computational efficiency in complex agricultural environments, particularly in arid regions. Focusing on the Hexi region of Gansu Province, we utilized the Google Earth Engine (GEE) to integrate Sentinel-2 optical imagery (10 bands) and Sentinel-1 radar data (VV/VH polarization), constructing a 96-feature set that comprises spectral, vegetation index, red-edge, and texture variables. The recursive feature elimination random forest (RF-RFE) algorithm was employed for feature selection and model optimization. Key findings include: (1) Variables driven by spatiotemporal differentiation were effectively selected, with red-edge bands (B5–B7) during the grain-filling stage in August accounting for 56.7% of the top 30 features, which were closely correlated with canopy chlorophyll content (p < 0.01). (2) A breakthrough in lightweight modeling was achieved, reducing the number of features by 69%, enhancing computational efficiency by 62.5% (from 8 h to 3 h), and decreasing memory usage by 66.7% (from 12 GB to 4 GB), while maintaining classification accuracy (PA: 97.69%, UA: 97.20%, Kappa: 0.89). (3) Multi-source data fusion improved accuracy by 11.54% compared to optical-only schemes, demonstrating the compensatory role of radar in arid, cloudy regions. This study offers an interpretable and transferable lightweight framework for precision crop monitoring in arid zones. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

21 pages, 5148 KiB  
Article
Research on Buckwheat Weed Recognition in Multispectral UAV Images Based on MSU-Net
by Jinlong Wu, Xin Wu and Ronghui Miao
Agriculture 2025, 15(14), 1471; https://doi.org/10.3390/agriculture15141471 - 9 Jul 2025
Viewed by 273
Abstract
Quickly and accurately identifying weed areas is of great significance for improving weeding efficiency, reducing pesticide residues, protecting soil ecological environment, and increasing crop yield and quality. Targeting low detection efficiency in complex agricultural environments and inability of multispectral input in weed recognition [...] Read more.
Quickly and accurately identifying weed areas is of great significance for improving weeding efficiency, reducing pesticide residues, protecting soil ecological environment, and increasing crop yield and quality. Targeting low detection efficiency in complex agricultural environments and inability of multispectral input in weed recognition of minor grain based on unmanned aerial vehicles (UAVs), a semantic segmentation model for buckwheat weeds based on MSU-Net (multispectral U-shaped network) was proposed to explore the influence of different band optimizations on recognition accuracy. Five spectral features—red (R), blue (B), green (G), red edge (REdge), and near-infrared (NIR)—were collected in August when the weeds were more prominent. Based on the U-net image semantic segmentation model, the input module was improved to adaptively adjust the input bands. The neuron death caused by the original ReLU activation function may lead to misidentification, so it was replaced by the Swish function to improve the adaptability to complex inputs. Five single-band multispectral datasets and nine groups of multi-band combined data were, respectively, input into the improved MSU-Net model to verify the performance of our method. Experimental results show that in the single-band recognition results, the B band performs better than other bands, with mean pixel accuracy (mPA), mean intersection over union (mIoU), Dice, and F1 values of 0.75, 0.61, 0.87, and 0.80, respectively. In the multi-band recognition results, the R+G+B+NIR band performs better than other combined bands, with mPA, mIoU, Dice, and F1 values of 0.76, 0.65, 0.85, and 0.78, respectively. Compared with U-Net, DenseASPP, PSPNet, and DeepLabv3, our method achieved a preferable balance between model accuracy and resource consumption. These results indicate that our method can adapt to multispectral input bands and achieve good results in weed segmentation tasks. It can also provide reference for multispectral data analysis and semantic segmentation in the field of minor grain crops. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

Back to TopTop