Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (998)

Search Parameters:
Keywords = P21-activated kinase 1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 967 KiB  
Article
Biomarker Correlations in PTSD: IL-18, IRE1, pERK, and ATF6 via Courtauld Emotional Control Scale (CECS)
by Izabela Woźny-Rasała and Ewa Alicja Ogłodek
Int. J. Mol. Sci. 2025, 26(15), 7506; https://doi.org/10.3390/ijms26157506 (registering DOI) - 3 Aug 2025
Viewed by 44
Abstract
Post-traumatic stress disorder (PTSD) is a chronic mental health condition resulting from exposure to traumatic events. It is associated with long-term neurobiological changes and disturbances in emotional regulation. Understanding the sociodemographic profiles, biomarkers, and emotional control in patients with PTSD helps to better [...] Read more.
Post-traumatic stress disorder (PTSD) is a chronic mental health condition resulting from exposure to traumatic events. It is associated with long-term neurobiological changes and disturbances in emotional regulation. Understanding the sociodemographic profiles, biomarkers, and emotional control in patients with PTSD helps to better comprehend the impact of the disorder on the body and its clinical course. An analysis of biomarkers such as Interleukin-18 (IL-18), Inositol-Requiring Enzyme 1 (IRE1), Phosphorylated Extracellular Signal-Regulated Kinase (pERK), and Activating Transcription Factor–6 (ATF-6) in PTSD patients with varying durations of illness (≤5 years and >5 years) and a control group without PTSD revealed significant differences. Patients with recently diagnosed PTSD (≤5 years) showed markedly elevated levels of inflammatory and cellular stress markers, indicating an intense neuroinflammatory response during the acute phase of the disorder. In the chronic PTSD group (>5 years), the levels of these biomarkers were lower than in the recently diagnosed group, but still significantly higher than in the control group. An opposite trend was observed regarding the suppression of negative emotions, as measured by the Courtauld Emotional Control Scale (CECS): individuals with chronic PTSD exhibited a significantly greater suppression of anger, depression, and anxiety than those with recent PTSD or healthy controls. Correlations between biomarkers were strongest in individuals with chronic PTSD, suggesting a persistent neuroinflammatory dysfunction. However, the relationships between biomarkers and emotional suppression varied depending on the stage of PTSD. These findings highlight the critical role of PTSD duration in shaping the neurobiological and emotional mechanisms of the disorder, which may have important implications for therapeutic strategies and patient monitoring. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

20 pages, 17080 KiB  
Article
Exercise Ameliorates Dopaminergic Neurodegeneration in Parkinson’s Disease Mice by Suppressing Microglia-Regulated Neuroinflammation Through Irisin/AMPK/Sirt1 Pathway
by Bin Wang, Nan Li, Yuanxin Wang, Xin Tian, Junjie Lin, Xin Zhang, Haocheng Xu, Yu Sun and Renqing Zhao
Biology 2025, 14(8), 955; https://doi.org/10.3390/biology14080955 - 29 Jul 2025
Viewed by 320
Abstract
Although exercise is known to exert anti-inflammatory effects in neurodegenerative diseases, its specific impact and underlying mechanisms in Parkinson’s disease (PD) remain poorly understood. This study explores the effects of exercise on microglia-mediated neuroinflammation and apoptosis in a PD model, focusing on the [...] Read more.
Although exercise is known to exert anti-inflammatory effects in neurodegenerative diseases, its specific impact and underlying mechanisms in Parkinson’s disease (PD) remain poorly understood. This study explores the effects of exercise on microglia-mediated neuroinflammation and apoptosis in a PD model, focusing on the role of irisin signaling in mediating these effects. Using a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD mouse model, we found that a 10-week treadmill exercise regimen significantly enhanced motor function, reduced dopaminergic neuron loss, attenuated neuronal apoptosis, and alleviated neuroinflammation. Exercise also shifted microglia from a pro-inflammatory to an anti-inflammatory phenotype. Notably, levels of irisin, phosphorylated AMP-activated protein kinase (p-AMPK), and sirtuin 1 (Sirt1), which were decreased in the PD brain, were significantly increased following exercise. These beneficial effects were abolished by blocking the irisin receptor with cyclic arginine–glycine–aspartic acid–tyrosine–lysine (cycloRGDyk). Our results indicate that exercise promotes neuroprotection in PD by modulating microglial activation and the AMPK/Sirt1 pathway through irisin signaling, offering new insights into exercise-based therapeutic approaches for PD. Full article
Show Figures

Figure 1

22 pages, 83520 KiB  
Article
The Kinase Inhibitor GNF-7 Is Synthetically Lethal in Topoisomerase 1-Deficient Ewing Sarcoma
by Carly M. Sayers, Morgan B. Carter, Haiyan Lei, Arnulfo Mendoza, Steven Shema, Xiaohu Zhang, Kelli Wilson, Lu Chen, Carleen Klumpp-Thomas, Craig J. Thomas, Christine M. Heske and Jack F. Shern
Cancers 2025, 17(15), 2475; https://doi.org/10.3390/cancers17152475 - 26 Jul 2025
Viewed by 354
Abstract
Background/Objectives: Ewing sarcoma (ES), a highly aggressive bone and soft tissue cancer occurring in children and young adults, is defined by the ETS fusion oncoprotein EWS::FLI1. Although event-free survival rates remain high in ES patients with localized disease, those with metastatic or relapsed [...] Read more.
Background/Objectives: Ewing sarcoma (ES), a highly aggressive bone and soft tissue cancer occurring in children and young adults, is defined by the ETS fusion oncoprotein EWS::FLI1. Although event-free survival rates remain high in ES patients with localized disease, those with metastatic or relapsed disease face poor long-term survival odds. Topoisomerase 1 (TOP1) inhibitors are commonly used therapeutics in ES relapse regimens. Methods: In this work, we used a genome-wide CRISPR knockout library screen to identify the deletion of the TOP1 gene as a mechanism for resistance to topoisomerase 1 inhibitors. Using isogenic cell line models, we performed a high-throughput small-molecule screen to discover a small molecule, GNF-7, which had an IC50 that was 10-fold lower in TOP1-deficient cells when compared to the wild-type cells. Results: The characterization of GNF-7 demonstrated the molecule was highly active in the inhibition of CSK, p38α, EphA2, Lyn, and ZAK and specifically downregulated genes induced by the EWS::FLI1 fusion oncoprotein. Conclusions: Together, these results suggest that GNF-7 or small molecules with a similar kinase profile could be effective treatments for ES patients in combination with TOP1 inhibitors or for those patients who have developed resistance to TOP1 inhibitors. Full article
(This article belongs to the Special Issue Targeted Therapies for Pediatric Solid Tumors (2nd Edition))
Show Figures

Figure 1

12 pages, 1345 KiB  
Article
Do NGF and LPS Interact Synergistically to Modulate Inflammation in Sheep Endometrial Epithelial Cells?
by Gabriella Guelfi, Camilla Capaccia, Vicente Francisco Ratto, Cecilia Dall’Aglio, Francesca Mercati and Margherita Maranesi
Int. J. Mol. Sci. 2025, 26(14), 6862; https://doi.org/10.3390/ijms26146862 - 17 Jul 2025
Viewed by 193
Abstract
Neurotrophins and inflammatory mediators are known to influence endometrial function, but their interplay in luminal epithelial cells remains poorly characterized. In this study, sheep endometrial luminal epithelial cells (SELECs) were treated with nerve growth factor (NGF), lipopolysaccharide (LPS), or both, and the effects [...] Read more.
Neurotrophins and inflammatory mediators are known to influence endometrial function, but their interplay in luminal epithelial cells remains poorly characterized. In this study, sheep endometrial luminal epithelial cells (SELECs) were treated with nerve growth factor (NGF), lipopolysaccharide (LPS), or both, and the effects on gene expression and prostaglandin secretion were evaluated. NGF stimulation alone induced a clear transcriptional activation of NGF, neurotrophic receptor tyrosine kinase 1 (NTRK1), p75 neurotrophin receptor (p75NTR), cyclooxygenase 2 (COX2), and steroidogenic acute regulatory protein (STAR). LPS treatment selectively increased Toll-like receptor 4 (TLR4), COX2, and insulin-like growth factor binding protein 6 (IGFBP6). Combined NGF and LPS treatment did not enhance the transcriptional response beyond that induced by NGF alone, except for STAR. However, co-treatment resulted in a modest increase in prostaglandin production, particularly prostaglandin F2α (PGF2α), but not prostaglandin E2 (PGE2), compared to single treatments, suggesting a possible post-transcriptional modulation rather than a transcriptional synergy. These findings indicate that NGF acts as the primary transcriptional driver in SELECs, while LPS contributes selectively and may enhance prostaglandin output. The observed increase in prostaglandin production may involve post-transcriptional mechanisms, although this remains to be confirmed. Full article
(This article belongs to the Section Molecular Endocrinology and Metabolism)
Show Figures

Figure 1

21 pages, 4391 KiB  
Article
Thermal Cycling-Hyperthermia Attenuates Rotenone-Induced Cell Injury in SH-SY5Y Cells Through Heat-Activated Mechanisms
by Yu-Yi Kuo, Guan-Bo Lin, You-Ming Chen, Hsu-Hsiang Liu, Fang-Tzu Hsu, Yi Kung and Chih-Yu Chao
Int. J. Mol. Sci. 2025, 26(14), 6671; https://doi.org/10.3390/ijms26146671 - 11 Jul 2025
Viewed by 370
Abstract
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease. It is characterized by mitochondrial dysfunction, increased reactive oxygen species (ROS), α-synuclein (α-syn) and phosphorylated-tau protein (p-tau) aggregation, and dopaminergic neuron cell death. Current drug therapies only provide temporary symptomatic relief and fail [...] Read more.
Parkinson’s disease (PD) is the second most prevalent neurodegenerative disease. It is characterized by mitochondrial dysfunction, increased reactive oxygen species (ROS), α-synuclein (α-syn) and phosphorylated-tau protein (p-tau) aggregation, and dopaminergic neuron cell death. Current drug therapies only provide temporary symptomatic relief and fail to stop or reverse disease progression due to the severe side effects or the blood–brain barrier. This study aimed to investigate the neuroprotective effects of an intermittent heating approach, thermal cycling-hyperthermia (TC-HT), in an in vitro PD model using rotenone (ROT)-induced human neural SH-SY5Y cells. Our results revealed that TC-HT pretreatment conferred neuroprotective effects in the ROT-induced in vitro PD model using human SH-SY5Y neuronal cells, including reducing ROT-induced mitochondrial apoptosis and ROS accumulation in SH-SY5Y cells. In addition, TC-HT also inhibited the expression of α-syn and p-tau through heat-activated pathways associated with sirtuin 1 (SIRT1) and heat-shock protein 70 (Hsp70), involved in protein chaperoning, and resulted in the phosphorylation of Akt and glycogen synthase kinase-3β (GSK-3β), which inhibit p-tau formation. These findings underscore the potential of TC-HT as an effective treatment for PD in vitro, supporting its further investigation in in vivo models with focused ultrasound (FUS) as a feasible heat-delivery approach. Full article
Show Figures

Figure 1

22 pages, 17031 KiB  
Article
AZU1 as a DNA Methylation-Driven Gene: Promoting Oxidative Stress in High-Altitude Pulmonary Edema
by Qiong Li, Zhichao Xu, Qianhui Gong, Liyang Chen, Xiaobing Shen and Xiaowei Chen
Antioxidants 2025, 14(7), 835; https://doi.org/10.3390/antiox14070835 - 8 Jul 2025
Viewed by 391
Abstract
High-altitude pulmonary edema (HAPE) is a severe condition associated with high-altitude environments, and its molecular mechanism has not been fully elucidated. This study systematically analyzed the DNA methylation status of HAPE patients and healthy controls using reduced-representation bisulfite sequencing (RRBS) and 850K DNA [...] Read more.
High-altitude pulmonary edema (HAPE) is a severe condition associated with high-altitude environments, and its molecular mechanism has not been fully elucidated. This study systematically analyzed the DNA methylation status of HAPE patients and healthy controls using reduced-representation bisulfite sequencing (RRBS) and 850K DNA methylation chips, identifying key differentially methylated regions (DMRs). Targeted bisulfite sequencing (TBS) revealed significant abnormalities in DMRs of five genes, azurocidin 1 (AZU1), growth factor receptor bound protein 7 (GRB7), mannose receptor C-type 2 (MRC2), RUNX family transcription factor 3 (RUNX3), and septin 9 (SEPT9). The abnormal expression of AZU1 was validated using peripheral blood leukocytes from HAPE patients and normal controls, as well as rat lung tissue, indicating its potential importance in the pathogenesis of HAPE. To further validate the function of AZU1, we conducted experimental studies using a hypobaric hypoxia injury model in Human Umbilical Vein Endothelial Cells (HUVEC). The results showed that AZU1 was significantly upregulated under hypobaric hypoxia. Knocking down AZU1 mitigates the reduction in HUVEC proliferation, angiogenesis, and oxidative stress damage induced by acute hypobaric hypoxia. AZU1 induces cellular oxidative stress via the p38/mitogen-activated protein kinase (p38/MAPK) signaling pathway. This study is the first to elucidate the mechanism of AZU1 in HAPE via the p38/MAPK pathway, offering novel insights into the molecular pathology of HAPE and laying a foundation for future diagnostic and therapeutic strategies. Full article
Show Figures

Graphical abstract

19 pages, 1867 KiB  
Article
Compare the Decrease in Visceral Adipose Tissue in People with Obesity and Prediabetes vs. Obesity and Type 2 Diabetes Treated with Liraglutide
by Rosa Nayely Hernández-Flandes, María de los Ángeles Tapia-González, Liliana Hernández-Lara, Eduardo Osiris Madrigal-Santillán, Ángel Morales-González, Liliana Aguiano-Robledo and José A. Morales-González
Diabetology 2025, 6(7), 67; https://doi.org/10.3390/diabetology6070067 - 4 Jul 2025
Viewed by 819
Abstract
Obesity is considered a global pandemic. In Mexico, 7/10 adults, 4/10 adolescents, and 1/3 children are overweight or obese, and it is estimated that 90% of cases of type 2 diabetes (T2D) are attributable to these pathologies. Visceral adipose tissue (VAT) presents increased [...] Read more.
Obesity is considered a global pandemic. In Mexico, 7/10 adults, 4/10 adolescents, and 1/3 children are overweight or obese, and it is estimated that 90% of cases of type 2 diabetes (T2D) are attributable to these pathologies. Visceral adipose tissue (VAT) presents increased lipolysis, lower insulin sensitivity, and greater metabolic alterations. Glucagon-like peptide-1 (GLP-1) is a polypeptide incretin hormone that stimulates insulin secretion dependent on the amount of oral glucose consumed, reduces plasma glucagon concentrations, slows gastric emptying, suppresses appetite, improves insulin synthesis and secretion, and increases the sensitivity of β cells to glucose. Liraglutide is a synthetic GLP-1 analog that reduces VAT and improves the expression of Glucose transporter receptor type 4 (GLUT 4R), Mitogen-activated protein (MAP kinases), decreases Fibroblast growth factor type β (TGF-β), reactivates the peroxisome proliferator-activated receptor type ɣ (PPAR-ɣ) pathway, and decreases chronic inflammation. Currently, there are many studies that explain the decrease in VAT with these medications, but there are no studies that compare the decrease in patients with obesity and prediabetes vs. obesity and type 2 diabetes to know which population obtains a greater benefit from treatment with this pharmacological group; this is the reason for this study. The primary objective was to compare the difference in the determination of visceral adipose tissue in people with obesity and type 2 diabetes vs. obesity and prediabetes treated with liraglutide. Methods: A quasi-experimental, analytical, prolective, non-randomized, non-blinded study was conducted over a period of 6 months in a tertiary care center. A total of 36 participants were divided into two arms; group 1 (G1: Obesity and prediabetes) and group 2 (G2: Obesity and type 2 diabetes) for 6 months. Inclusion criteria: men and women ≥18 years with type 2 diabetes, prediabetes, and obesity. Exclusion criteria: Glomerular filtration rate (GFR) < 60 mL/min/1.73 m2 elevated transaminases (>5 times the upper limit of normal), and use of non-weight-modifying antidiabetic agents. Conclusions: No statistically significant difference was found in the decrease in visceral adipose tissue when comparing G1 (OB and PD) with G2 (OB and T2D). When comparing intragroup in G2 (OB and T2D), greater weight loss was found [(−3.78 kg; p = 0.012) vs. (−3.78 kg; p = 0.012)], as well differences in waist circumference [(−3.9 cm; p = 0.049) vs. (−3.09 cm; p = 0.017)], and glucose levels [(−1.75 mmol/L; p = 0.002) vs. (−0.56 mmol/L; p = 0.002)], A1c% [(−1.15%; p = 0.001) vs. (−0.5%; p = 0.000)]. Full article
Show Figures

Graphical abstract

23 pages, 3705 KiB  
Article
Revealing the Multi-Target Mechanisms of Fespixon Cream in Diabetic Foot Ulcer Healing: Integrated Network Pharmacology, Molecular Docking, and Clinical RT-qPCR Validation
by Tianbo Li, Dehua Wei, Jiangning Wang and Lei Gao
Curr. Issues Mol. Biol. 2025, 47(7), 485; https://doi.org/10.3390/cimb47070485 - 25 Jun 2025
Viewed by 746
Abstract
Objective: This study aims to elucidate the potential mechanisms by which Fespixon cream promotes diabetic foot ulcer (DFU) healing using network pharmacology, molecular docking, and RT-qPCR validation in clinical tissue samples. Methods: Active components of Fespixon cream were screened from the Traditional Chinese [...] Read more.
Objective: This study aims to elucidate the potential mechanisms by which Fespixon cream promotes diabetic foot ulcer (DFU) healing using network pharmacology, molecular docking, and RT-qPCR validation in clinical tissue samples. Methods: Active components of Fespixon cream were screened from the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP) and relevant literature, and their corresponding targets were standardized using the Universal Protein Resource (UniProt) database. Diabetic foot ulcer (DFU)-related targets were retrieved and filtered from the GeneCards database and the Online Mendelian Inheritance in Man (OMIM) database. The intersection of drug and disease targets was identified, and a protein–protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database. The interaction network was visualized using Cytoscape version 3.7.2 software. The potential mechanisms of the shared targets were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis using R software packages, and results were visualized through Bioinformatics online tools. Molecular docking was performed to validate the binding between key active compounds of Fespixon cream and core DFU targets using AutoDock Vina version 1.1.2 and PyMOL software. Furthermore, RT-qPCR analysis was performed on wound edge tissue samples from DFU patients treated with Fespixon cream to experimentally verify the mRNA expression levels of predicted hub genes. Results: Network pharmacology analysis identified eight active compounds in Fespixon cream, along with 153 potential therapeutic targets related to diabetic foot ulcer (DFU). Among these, 21 were determined as core targets, with the top five ranked by degree value being RAC-αserine/threonine-protein kinase (AKT1), Cellular tumor antigen p53 (TP53), Tumor necrosis factor (TNF), Interleukin-6 (IL6), and Mitogen-activated protein kinase 1 (MAPK1). GO enrichment analysis indicated that the targets of Fespixon cream were primarily involved in various biological processes related to cellular stress responses. KEGG pathway enrichment revealed that these targets were significantly enriched in pathways associated with diabetic complications, atherosclerosis, inflammation, and cancer. Molecular docking confirmed stable binding interactions between the five major active compounds—quercetin, apigenin, rosmarinic acid, salvigenin, and cirsimaritin—and the five core targets (AKT1, TP53, TNF, IL6, MAPK1). Among them, quercetin exhibited the strongest binding affinity with AKT1. RT-qPCR validation in clinical DFU tissue samples demonstrated consistent expression trends with computational predictions: AKT1 was significantly upregulated, while TP53, TNF, IL6, and MAPK1 were markedly downregulated in the Fespixon-treated group compared to controls (p < 0.001), supporting the proposed multi-target therapeutic mechanism. Conclusions: Our study reveals the potential mechanisms by which Fespixon cream exerts therapeutic effects on DFUs. The efficacy of Fespixon cream in treating DFUs is attributed to the synergistic actions of its bioactive components through multiple targets and multiple signaling pathways. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Figure 1

18 pages, 3115 KiB  
Article
Comparative Analysis of Different Body Composition, Mucus Biochemical Indices, and Body Color in Five Strains of Larimichthys crocea
by Hongjin Deng, Quanyou Guo, Banghong Wei, Jiehui Zhong, Mengyao Zheng, Yao Zheng, Na Lin and Shengyang Zheng
Fishes 2025, 10(7), 305; https://doi.org/10.3390/fishes10070305 - 25 Jun 2025
Viewed by 285
Abstract
The large yellow croaker, or Larimichthys crocea, is highly prized for its golden color and nutritional content. The purpose of this study was to investigate the differences in body composition, mucus biochemical indices and body color in five strains of large yellow [...] Read more.
The large yellow croaker, or Larimichthys crocea, is highly prized for its golden color and nutritional content. The purpose of this study was to investigate the differences in body composition, mucus biochemical indices and body color in five strains of large yellow croakers (body weight: 347.01 ± 5.86 g). To conduct genetic diversity analyses of the populations, a total of 50 tailfin samples were randomly chosen from the following populations of large yellow croakers: wild (LYC1), Dai-qu population (LYC2), Yongdai 1 (LYC3), Min-yuedong population (LYC4), and Fufa 1 (LYC5). The findings demonstrated that the LYC3 group’s pigment contents, crude protein, crude lipid, and chromatic values were comparable to those of the LYC1 group (p > 0.05). There was no significant difference between the LYC1 and LYC5 groups’ mucus superoxide dismutase (SOD) and catalase (CAT) activities (p > 0.05). The alkaline phosphatases (ALP), acid phosphatases (ACP), and lysozyme (LYS) activities of the mucus in the LYC1 group were not significantly different from the LYC3 group (p > 0.05). The back skin mRNA expressions of tyrosinase (tyr), tyrosinase-related protein 1 (tyrp1), dopachrome tautomerase (dct), microphtalmia-associated transcription factor (mitf), and melanocortin 1 receptor (mc1r) were significantly up-regulated in the LYC2 and LYC4 groups compared to the LYC1, LYC3, and LYC5 groups (p < 0.05). Forkhead box d3 (foxd3), paired box 3 (pax3), purine nucleoside phosphorylase 4a (pnp4a), aristaless-like homeobox 4a (alx4a), cAMP dependent protein kinase (pka), anaplastic lymphoma kinase (alk), leukocyte receptor tyrosine kinase (ltk), and colony stimulating factor (fms) were among the mRNA expressions of the abdominal skin in the LYC1, LYC3, and LYC5 groups significantly higher than those in the LYC2 and LYC4 groups (p < 0.05). In conclusion, the LYC3 group’s crude protein, crude lipid, carotenoid, and lutein contents were most similar to those of the large yellow croaker found in the wild. Furthermore, the molecular mechanism underlying the variations in body color among the various strains of large yellow croakers was supplied for additional research. Full article
(This article belongs to the Section Genetics and Biotechnology)
Show Figures

Figure 1

18 pages, 4066 KiB  
Article
Furosemide Promotes Inflammatory Activation and Myocardial Fibrosis in Swine with Tachycardia-Induced Heart Failure
by Nisha Plavelil, Robert Goldstein, Michael G. Klein, Luke Michaelson, Mark C. Haigney and Maureen N. Hood
Int. J. Mol. Sci. 2025, 26(13), 6088; https://doi.org/10.3390/ijms26136088 - 25 Jun 2025
Viewed by 272
Abstract
Loop diuretics like furosemide are commonly used in heart failure (HF) treatment, but their effects on disease progression are still unclear. Furosemide treatment accelerates HF deterioration in a swine model, but the mechanism of acceleration is poorly understood. We hypothesized that furosemide activates [...] Read more.
Loop diuretics like furosemide are commonly used in heart failure (HF) treatment, but their effects on disease progression are still unclear. Furosemide treatment accelerates HF deterioration in a swine model, but the mechanism of acceleration is poorly understood. We hypothesized that furosemide activates inflammatory signaling in the failing left ventricular (LV) myocardium, leading to adverse remodeling of the extracellular matrix (ECM). A total of 14 Yorkshire pigs underwent permanent transvenous pacemaker implantation and were paced at 200 beats per minute; 9 non-instrumented pigs provided controls. Seven paced animals received normal saline, and seven received furosemide at a dose of 1 mg/kg intramuscularly. Weekly echocardiograms were performed. Furosemide-treated animals reached the HF endpoint a mean of 3.2 days sooner than saline-treated controls (mean 28.9 ± 3.8 SEM for furosemide and 32.1 ± 2.5 SEM for saline). The inflammatory signaling protein transforming growth factor-beta (TGF-β) and its downstream proteins were significantly (p ≤ 0.05) elevated in the LV after furosemide treatment. The regulatory factors in cell proliferation, mitogen-activated protein kinase signaling pathway proteins, and matrix metalloproteinases were elevated in the furosemide-treated animals (p ≤ 0.05). Our data showed that furosemide treatment increased ECM remodeling and myocardial fibrosis, reflecting increased TGF-β signaling factors, supporting prior results showing worsened HF. Full article
Show Figures

Graphical abstract

25 pages, 1387 KiB  
Article
Glycine Supplementation Enhances the Growth of Sow-Reared Piglets with Intrauterine Growth Restriction
by Shengdi Hu, David W. Long, Fuller W. Bazer, Robert C. Burghardt, Gregory A. Johnson and Guoyao Wu
Animals 2025, 15(13), 1855; https://doi.org/10.3390/ani15131855 - 23 Jun 2025
Viewed by 650
Abstract
Glycine has the greatest rate of deposition in whole-body proteins among all amino acids in neonates, but its provision from sow’s milk meets only 20% of the requirement of suckling piglets. The results of our recent studies indicate that piglets with intrauterine growth [...] Read more.
Glycine has the greatest rate of deposition in whole-body proteins among all amino acids in neonates, but its provision from sow’s milk meets only 20% of the requirement of suckling piglets. The results of our recent studies indicate that piglets with intrauterine growth restriction (IUGR) have a reduced ability to synthesize glycine. The present study determined the role of glycine in the growth of sow-reared IUGR piglets. In Experiment 1, 56 newborn piglets (postnatal day 0) with a low birth weight (<1.10 kg) were selected from 14 litters, providing 4 IUGR piglets/litter that were allotted randomly into one of four treatment groups (14 piglets/group). Piglets received oral administration of either 0, 0.1, 0.2 or 0.4 g glycine/kg body weight (BW) twice daily (i.e., 0, 0.2, 0.4 or 0.8 g glycine/kg BW/day) between 0 and 14 days of age. L-Alanine was used as the isonitrogenous control. The BWs of all piglets were recorded each week during the experiment. Two weeks after the initiation of glycine supplementation, blood and tissue samples were collected for biochemical analyses. In Experiment 2, rates of muscle protein synthesis in tissues were determined on day 14 using the 3H-phenylalanine flooding dose technique. Compared with piglets in the control group, oral administration of 0.2, 0.4 and 0.8 g glycine/kg BW/day did not affect their milk intake (p > 0.05) but increased (p < 0.05) concentrations of glycine in plasma by 1.52-, 1.94-, and 2.34-fold, respectively, and body weight by 20%, 37%, and 34%, respectively. The dose of 0.4 g glycine/kg BW/day was the most cost-effective. Consistent with its growth-promoting effect, glycine supplementation stimulated (p < 0.05) the phosphorylation of mechanistic target of rapamycin (MTOR), eukaryotic initiation factor 4E binding protein 1 (4E-BP1), and ribosomal protein S6 kinase beta-1 (p70S6K) as well as protein synthesis in skeletal muscle, compared with the control group. Collectively, oral administration of glycine activated the MTOR signaling pathway in skeletal muscle and enhanced the growth performance of IUGR piglets. These results indicate that endogenous synthesis of glycine is inadequate to meet the needs of IUGR piglets during the suckling period and that oral supplementation with glycine to these compromized neonates can improve their growth performance. Full article
(This article belongs to the Special Issue Amino Acid Nutrition for Swine Production)
Show Figures

Figure 1

18 pages, 3152 KiB  
Article
Luteolin Potentially Alleviates Methamphetamine Withdrawal-Induced Negative Emotions and Cognitive Deficits Through the AKT/FOXO1/HO-1 Signaling Pathway in the Prefrontal Cortex and Caudate Putamen
by Baoyao Gao, Ran An, Min Liang, Xinglin Wang, Jianhang Peng, Xingyao Chen, Zijun Liu, Tao Li, Xinshe Liu, Jianbo Zhang and Wei Han
Int. J. Mol. Sci. 2025, 26(12), 5739; https://doi.org/10.3390/ijms26125739 - 15 Jun 2025
Viewed by 583
Abstract
Methamphetamine (METH) misuse-induced affective and cognitive dysfunctions cause severe global health and economic burdens. However, the mechanisms underlying METH withdrawal-induced negative emotions and cognitive deficits, as well as the treatment strategies for them, remain elusive. Previous findings suggest that METH use triggers neuroinflammation [...] Read more.
Methamphetamine (METH) misuse-induced affective and cognitive dysfunctions cause severe global health and economic burdens. However, the mechanisms underlying METH withdrawal-induced negative emotions and cognitive deficits, as well as the treatment strategies for them, remain elusive. Previous findings suggest that METH use triggers neuroinflammation and neuronal apoptosis, and protein kinase B (AKT), forkhead box protein 1 (FOXO1), and heme-oxygenase-1 (HO-1) are implicated in these processes. In the present study, we aimed to reveal the role and potential mechanisms of luteolin, a flavonoid phytochemical with anti-inflammatory and antioxidative properties, in METH withdrawal-induced negative emotions and cognitive deficits. We found that prolonged METH withdrawal led to an increase in neuronal activity and a decrease in the protein expression of phosphorylated AKT (p-AKT) and HO-1 in the prefrontal cortex (PFC) and caudate putamen (CPu). Luteolin pretreatment partially mitigated these METH withdrawal-induced negative emotions and cognitive deficits, and prevented the abnormal activation of PFC and CPu as well as the downregulation of AKT/HO-1 expression. Notably, we further observed that luteolin inhibited the METH-induced nuclear translocation of FOXO1. Our findings suggest that luteolin may alleviate METH withdrawal-induced affective and cognitive dysfunctions by reducing oxidative injury in the brain through the AKT/FOXO1/HO-1 pathway, highlighting its potential for treating drug addiction-related health issues. Full article
(This article belongs to the Special Issue Toxicology of Psychoactive Drugs)
Show Figures

Figure 1

8 pages, 854 KiB  
Communication
Onvansertib-Based Second-Line Therapies in Combination with Gemcitabine and Carboplatin in Patient-Derived Platinum-Resistant Ovarian Carcinomas
by Federica Guffanti, Ilaria Mengoli, Francesca Ricci, Ludovica Perotti, Elena Capellini, Laura Sala, Simone Canesi, Chu-Chiao Wu, Robert Fruscio, Maya Ridinger, Giovanna Damia and Michela Chiappa
Int. J. Mol. Sci. 2025, 26(12), 5708; https://doi.org/10.3390/ijms26125708 - 14 Jun 2025
Viewed by 565
Abstract
Platinum resistance represents an urgent medical need in the management of ovarian cancer. The activity of the combinations of onvansertib, an inhibitor of polo-like kinase 1, with gemcitabine or carboplatin was tested using patient-derived xenografts of high-grade serous ovarian carcinoma resistant to cisplatin [...] Read more.
Platinum resistance represents an urgent medical need in the management of ovarian cancer. The activity of the combinations of onvansertib, an inhibitor of polo-like kinase 1, with gemcitabine or carboplatin was tested using patient-derived xenografts of high-grade serous ovarian carcinoma resistant to cisplatin (DDP). Two PDX models were selected from our xenobank: one with acquired resistance to DDP (#266R) and the other (#315) with intrinsic DDP resistance. Tumor-bearing mice were randomized to receive vehicle, single onvansertib, gemcitabine and carboplatin, and their combinations. Onvansertib/gemcitabine and onvansertib/carboplatin combinations were well tolerated. In the #266R model, single drug treatments were completely inactive, while the combinations of onvansertib/gemcitabine and onvansertib/carboplatin resulted in a significant increase in survival compared to controls and single drugs (p < 0.001 versus control, onvansertib, gemcitabine and carboplatin). Similar efficacy was observed in the s.c. #315 PDX model; indeed, onvansertib and carboplatin monotherapies were inactive, gemcitabine monotherapy was marginally active, while both combinations were highly active. The molecular mechanism underlying the efficacy of the combinations suggests a higher induction of DNA damage which seems plausible considering that, in both cases, gemcitabine and carboplatin, respectively, interfere with DNA metabolism and induce alkylation damage. The results suggest that the combinations of onvansertib/gemcitabine and onvansertib/carboplatin are safe and were shown to be of therapeutic value in the platinum-resistant setting of ovarian carcinoma, strongly supporting their clinical translatability. Full article
(This article belongs to the Special Issue Resistance to Therapy in Ovarian Cancers)
Show Figures

Graphical abstract

43 pages, 4992 KiB  
Article
Restorative Effects of Synbiotics on Colonic Ultrastructure and Oxidative Stress in Dogs with Chronic Enteropathy
by Dipak Kumar Sahoo, Tracey Stewart, Emily M. Lindgreen, Bhakti Patel, Ashish Patel, Jigneshkumar N. Trivedi, Valerie Parker, Adam J. Rudinsky, Jenessa A. Winston, Agnes Bourgois-Mochel, Jonathan P. Mochel, Karin Allenspach, Romy M. Heilmann and Albert E. Jergens
Antioxidants 2025, 14(6), 727; https://doi.org/10.3390/antiox14060727 - 13 Jun 2025
Viewed by 2485
Abstract
Synbiotics can be used to reduce intestinal inflammation and mitigate dysbiosis in dogs with chronic inflammatory enteropathy (CIE). Prior research has not assessed the colonic mucosal ultrastructure of dogs with active CIE treated with synbiotics, nor has it determined a possible association between [...] Read more.
Synbiotics can be used to reduce intestinal inflammation and mitigate dysbiosis in dogs with chronic inflammatory enteropathy (CIE). Prior research has not assessed the colonic mucosal ultrastructure of dogs with active CIE treated with synbiotics, nor has it determined a possible association between morphologic injury and signaling pathways. Twenty client-owned dogs diagnosed with CIE were randomized to receive either a hydrolyzed diet (placebo; PL) or a hydrolyzed diet supplemented with synbiotic-IgY (SYN) for 6 weeks. Endoscopic biopsies of the colon were obtained for histopathologic, ultrastructural, and molecular analyses and were compared before and after treatment. Using transmission electron microscopy (TEM), an analysis of the ultrastructural alterations in microvilli length (MVL), mitochondria (MITO), and rough endoplasmic reticulum (ER) was compared between treatment groups. To explore potential signaling pathways that might modulate MITO and ER stress, a transcriptomic analysis was also performed. The degree of mucosal ultrastructural pathology differed among individual dogs before and after treatment. Morphologic alterations in enterocytes, MVL, MITO, and ER were detected without significant differences between PL and SYN dogs prior to treatment. Notable changes in ultrastructural alterations were identified post-treatment, with SYN-treated dogs exhibiting significant improvement in MVL, MITO, and ER injury scores compared to PL-treated dogs. Transcriptomic profiling showed many pathways and key genes to be associated with MITO and ER injury. Multiple signaling pathways and their associated genes with protective effects, including fibroblast growth factor 2 (FGF2), fibroblast growth factor 7 (FGF7), fibroblast growth factor 10 (FGF10), synaptic Ras GTPase activating protein 1 (SynGAP1), RAS guanyl releasing protein 2 (RASGRP2), RAS guanyl releasing protein 3 (RASGRP3), thrombospondin 1 (THBS1), colony stimulating factor 1 (CSF1), colony stimulating factor 3 (CSF3), interleukin 21 receptor (IL21R), collagen type VI alpha 6 chain (COL6A6), ectodysplasin A receptor (EDAR), forkhead box P3 (FoxP3), follistatin (FST), gremlin 1 (GREM1), myocyte enhancer factor 2B (MEF2B), neuregulin 1 (NRG1), collagen type I alpha 1 chain (COL1A1), hepatocyte growth factor (HGF), 5-hydroxytryptamine receptor 7 (HTR7), and platelet derived growth factor receptor beta (PDGFR-β), were upregulated with SYN treatment. Differential gene expression was associated with improved MITO and ER ultrastructural integrity and a reduction in oxidative stress. Conversely, other genes, such as protein kinase cAMP-activated catalytic subunit beta (PRKACB), phospholipase A2 group XIIB (PLA2G12B), calmodulin 1 (CALM1), calmodulin 2 (CALM2), and interleukin-18 (IL18), which have harmful effects, were downregulated following SYN treatment. In dogs treated with PL, genes including PRKACB and CALM2 were upregulated, while other genes, such as FGF2, FGF10, SynGAP1, RASGRP2, RASGRP3, and IL21R, were downregulated. Dogs with CIE have colonic ultrastructural pathology at diagnosis, which improves following synbiotic treatment. Ultrastructural improvement is associated with an upregulation of protective genes and a downregulation of harmful genes that mediate their effects through multiple signaling pathways. Full article
Show Figures

Figure 1

31 pages, 5466 KiB  
Article
Truncated DAPK Variants Restore Tumor Suppressor Activity and Synergize with Standard Therapies in High-Grade Serous Ovarian Cancer
by Monika Raab, Khayal Gasimli, Balázs Győrffy, Samuel Peña-Llopis, Sven Becker, Mourad Sanhaji and Klaus Strebhardt
Cancers 2025, 17(12), 1910; https://doi.org/10.3390/cancers17121910 - 8 Jun 2025
Viewed by 888
Abstract
Background/Objectives: Death-associated protein kinase 1 (DAPK1) is a serine/threonine kinase that plays a crucial role in cancer by regulating apoptosis through interactions with TP53. Aberrant expression of DAPK1 was shown in certain types of human cancer contributing to tumor progression and chemoresistance. This [...] Read more.
Background/Objectives: Death-associated protein kinase 1 (DAPK1) is a serine/threonine kinase that plays a crucial role in cancer by regulating apoptosis through interactions with TP53. Aberrant expression of DAPK1 was shown in certain types of human cancer contributing to tumor progression and chemoresistance. This study aimed to investigate the role of DAPK1 in high-grade serous ovarian cancer (HGSOC) and to evaluate the therapeutic potential of restoring its kinase activity, including the use of truncated DAPK1 variants, to overcome chemoresistance and enhance tumor suppression. Methods: Gene expression analysis was performed on ovarian cancer tissues compared to benign controls to assess DAPK1 downregulation and its epigenetic regulation. Prognostic relevance was evaluated in a cohort of 1436 HGSOC patient samples. Functional restoration of DAPK1 was conducted in HGSOC cell lines and patient-derived primary tumor cells using vector-based expression or in vitro-transcribed (IVT) DAPK1 mRNA, including the application of truncated DAPK1 (ΔDAPK1) forms. To assess apoptosis, Caspase activation assays, 2D-colony formation assays, and cell survival assays were performed. To analyze the reactivation of DAPK1 downstream signaling, phosphorylation of p53 at Ser20 and the expression of p53 target proteins were examined. Chemosensitivity to Paclitaxel and Cisplatin was quantified by changes in IC50 values. Results: DAPK1 expression was significantly downregulated in ovarian cancer compared to benign tissue, correlating with epigenetic silencing, and showed prognostic value in early-stage HGSOC. Restoration of DAPK1 activity, including ΔDAPK1 variants, led to phosphorylation of p53 Ser20, increased expression of p53 target proteins, and Caspase-dependent apoptosis. Reactivation of DAPK1 sensitized both established HGSOC cell lines and patient-derived ascites cells to Paclitaxel and Cisplatin. These effects occurred through both p53-dependent and p53-independent pathways, enabling robust tumor suppression even in p53-mutant contexts. Conclusions: Reactivation of DAPK1, particularly through truncated variants, represents a promising therapeutic strategy to overcome chemoresistance in HGSOC. The dual mechanisms of tumor suppression provide a strong rationale for developing DAPK1-based therapies to enhance the efficacy of standard chemotherapy, especially in patients with chemoresistant or p53-deficient tumors. Future work should focus on optimizing delivery approaches for DAPK1 variants and assessing their synergistic potential with emerging targeted treatments in clinical settings. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

Back to TopTop