Compare the Decrease in Visceral Adipose Tissue in People with Obesity and Prediabetes vs. Obesity and Type 2 Diabetes Treated with Liraglutide
Abstract
1. Introduction
1.1. Adipose Tissue
1.2. Body Composition
1.3. Treatments for Obesity
2. Materials and Methods
2.1. Inclusion Criteria
2.2. Non-Inclusion Criteria
2.3. Exclusion Criteria
2.4. Elimination Criteria
2.5. Univariate Analysis
2.6. Bivariate Analysis
2.7. Multivariate Analysis
2.8. Control for Bias
2.9. Sample Maintenance
2.10. Quality of the Maneuver
2.11. Transfer Control
2.12. Type of Analysis
2.13. Ethical Considerations
3. Results
3.1. Bivariate Analysis
3.1.1. Comparison Between Groups
3.1.2. Comparison Intragroup
4. Discussion
4.1. Normal Function of Incretins
4.2. Alterations in the Incretin Effect in Prediabetes and Type 2 Diabetes
4.3. Metabolic Alterations in Visceral Adipose Tissue (VAT)
- Dephosphorylation and inactivation of the MAP kinase (MAPK) pathway: This induces adipose tissue inflammation and insulin resistance (IR) by indirectly inactivating insulin receptor substrate 1 (IRS1) and peroxisome proliferator-activated receptor ɣ (PPAR-ɣ).
- Aberrant phosphatidylinositol-3 kinase (PI3K-AKT) pathway: PI3K transforms phosphatidylinositol 4,5-bisphosphate (PIP2) into phosphatidylinositol 3,4,5-trisphosphate (PIP3), which activates phosphoinositide-dependent kinases and AKT that regulate glycogen synthesis, glucose uptake, and adipogenesis. Excess VAT produces a selective inhibition of the PI3K pathway, which eliminates the effect of leptin (suppressing food intake in the hypothalamus) [33,34]. Furthermore, inhibition of the PI3K/AKT pathway degrades Sort1, a key element in the storage of glucose transporter 4 (GLUT4), decreasing insulin sensitivity [35].
- Janus kinase (JAK)/Signal transducer and activator of transcription (STAT) pathway suppression: In normal-weight individuals, the pathway activates propiomelanocortin (POMC) which suppresses food intake. In excess VAT, there is a suppression of the JAK/STAT pathway in the central nervous system (CNS) which reduces leptin sensitivity in POMC neurons. Furthermore, hepatic steatosis is caused by an aberration in the JAK/STAT pathway mediated by growth factors and cytokines, which is associated with IR and increased expression of gluconeogenesis genes [36].
- Elevated transforming growth factor β (TGF-β): It has a dual effect on adipogenesis and adipocyte differentiation. It inhibits mesenchymal stem cell (MSC) differentiation by phosphorylating and suppressing PPAR-ɣ, which increases adipose cell expansion in the bone marrow [37]. Excessive VAT presents elevated levels of TGF-β, and aerobic exercise suppresses these levels [38].
4.4. GLP-1 Receptor Analogs
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Obesity and Overweight [Internet]. Available online: https://www.who.int/es/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 30 September 2024).
- Diabetes [Internet]. Available online: https://www.who.int/es/news-room/fact-sheets/detail/diabetes (accessed on 30 September 2024).
- Barquera, S.; Hernández-Barrera, L.; Trejo-Valdivia, B.; Shamah, T.; Campos-Nonato, I.; Rivera-Dommarco, J. Obesity in Mexico, prevalence and trends in adults. Ensanut 2018–2019. Salud Publica Mex. 2020, 62, 682–692. Available online: https://pubmed.ncbi.nlm.nih.gov/33620965/ (accessed on 30 September 2024). [CrossRef]
- Bentham, J.; Di Cesare, M.; Bilano, V.; Bixby, H.; Zhou, B.; Stevens, G.A. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128 9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. Available online: https://pubmed.ncbi.nlm.nih.gov/29029897/ (accessed on 30 September 2024).
- Obesity [Internet]. Available online: https://www.who.int/health-topics/obesity#tab=tab_1 (accessed on 30 September 2024).
- Overweight and Obesity, Risk Factors for Developing Diabetes|Ministry of Health|Government|gob.mx [Internet]. Available online: https://www.gob.mx/salud/es/articulos/sobrepeso-y-obesidad-factores-de-riesgos-para-desarrollar-diabetes?idiom=es (accessed on 30 September 2024).
- Fujishima, Y.; Maeda, N.; Inoue, K.; Kashine, S.; Nishizawa, H.; Hirata, A.; Kozawa, J.; Yasuda, T.; Okita, K.; Imagawa, A.; et al. Efficacy of liraglutide, a glucagon-like peptide-1 (GLP-1) analogue, on body weight, eating behavior, and glycemic control, in Japanese obese type 2 diabetes. Cardiovasc. Diabetol. 2012, 11, 107. Available online: https://pubmed.ncbi.nlm.nih.gov/22973968/ (accessed on 30 September 2024). [CrossRef]
- American Diabetes Association. Standards of Care in Diabetes—2023 Abridged for Primary Care Providers. Clin. Diabetes 2023, 41, 4–31. [Google Scholar] [CrossRef]
- Prediabetes: Your Chance to Prevent Type 2 Diabetes|Diabetes|CDC [Internet]. Available online: https://www.cdc.gov/diabetes/prevention-type-2/prediabetes-prevent-type-2.html (accessed on 30 September 2024).
- CDC Centers for Disease Control and Prevention. CDC 24/7 Saving Lives. Protecting PeopleTM. The National Diabetes Statistics Report, 2020. Estimates of Diabetes and Its Burden in the United States. Available online: https://www.cdc.gov/diabetes/php/data-research/index.html (accessed on 30 September 2024).
- González-Gallegos, N.; Valadez-Figueroa, I.; Morales-Sánchez, A.; Romero, N.A.R. Underdiagnosis of diabetes and prediabetes in a rural population. RESPYN Public Health Nutr. J. 2016, 15, 9–13. Available online: https://respyn.uanl.mx/index.php/respyn/article/view/19 (accessed on 30 September 2024).
- Zhang, Y.; Dall, T.M.; Chen, Y.; Baldwin, A.; Yang, W.; Mann, S.; Moore, V.; Le Nestour, E.; Quick, W.W. Medical cost associated with prediabetes. Popul. Health Manag. 2009, 12, 157–163. Available online: https://pubmed.ncbi.nlm.nih.gov/19534580/ (accessed on 30 September 2024). [CrossRef]
- Gil, A.; Olza, J.; Gil-Campos, M.; Gomez-Llorente, C.; Aguilera, C.M. Is adipose tissue metabolically different at different sites? Int. J. Pediatr. Obes. 2011, 6 (Suppl. 1), 13–20. Available online: https://pubmed.ncbi.nlm.nih.gov/21905811/ (accessed on 30 September 2024).
- Neeland, I.J.; Marso, S.P.; Ayers, C.R.; Lewis, B.; Oslica, R.; Francis, W.; Pandey, A.; Joshi, P.H. Effects of liraglutide on visceral and ectopic fat in adults with overweight and obesity at high cardiovascular risk: A randomized, double-blind, placebo-controlled, clinical trial. Lancet Diabetes Endocrinol. 2021, 9, 595–605. Available online: https://pubmed.ncbi.nlm.nih.gov/34358471/ (accessed on 30 September 2024). [CrossRef]
- Rosenwald, M.; Wolfrum, C. The origin and definition of brite versus white and classical brown adipocytes. Adipocyte 2013, 3, 4. [Google Scholar] [CrossRef] [PubMed]
- Biondi, G.; Marrano, N.; Borrelli, A.; Rella, M.; Palma, G.; Calderoni, I.; Siciliano, E.; Lops, P.; Giorgino, F.; Natalicchio, A. Adipose Tissue Secretion Pattern Influences β-Cell Wellness in the Transition from Obesity to Type 2 Diabetes. Int. J. Mol. Sci. 2022, 23, 5522. Available online: https://pubmed.ncbi.nlm.nih.gov/35628332/ (accessed on 30 September 2024). [CrossRef]
- Wajchenberg, B.L.; Giannella-Neto, D.; Da Silva, M.E.R.; Santos, R.F. Depot-specific hormonal characteristics of subcutaneous and visceral adipose tissue and their relationship to the metabolic syndrome. Horm. Metab. Res. 2002, 34, 616–621. Available online: https://pubmed.ncbi.nlm.nih.gov/12660870/ (accessed on 30 September 2024). [CrossRef]
- Meijssen, S.; Castro Cabezas, M.; Ballieux, C.G.M.; Derksen, R.J.; Bilecen, S.; Erkelens, D.W. Insulin mediated inhibition of hormone sensitive lipase activity in vivo in relation to endogenous catecholamines in healthy subjects. J. Clin. Endocrinol. Metab. 2001, 86, 4193–4197. Available online: https://pubmed.ncbi.nlm.nih.gov/11549649/ (accessed on 30 September 2024). [CrossRef] [PubMed]
- Cantley, J. The control of insulin secretion by adipokines: Current evidence for adipocyte-beta cell endocrine signaling in metabolic homeostasis. Mamm. Genome 2014, 25, 442–454. Available online: https://pubmed.ncbi.nlm.nih.gov/25146550/ (accessed on 30 September 2024). [CrossRef]
- Berneis, K.; Keller, U. Bioelectrical impedance analysis during acute changes of extracellular osmolality in man. Clin. Nutr. 2000, 19, 361–366. [Google Scholar] [CrossRef]
- Archivos de Medicina del Deporte—“Methods for Assessing Body Composition: An Updated Review of Description, Application, Advantages and Disadvantages” [Internet]. Available online: https://archivosdemedicinadeldeporte.com/articulo/es/105/2001/1310/ (accessed on 30 September 2024).
- Quesada Leyva, L.; Cira Cecilia León Ramentol, D.; Betancourt Bethencourt, J.; Nicolau Pestana, E. Theoretical and practical facts about health electric bioimpedance. Rev. Arch Med Camagüey 2016, 20, 565–578. [Google Scholar]
- Rodón Ortega, A.; Vallejo Castillo, F.J.; García Falcón, M.E. Nutritional assessment using impedance techniques. Advantages and disadvantages of nutritional eating disorders. Eat. Disord. 2014, 19, 2090–2114. Available online: https://dialnet.unirioja.es/servlet/articulo?codigo=6250754&info=resumen&idioma=ENG (accessed on 30 September 2024).
- Garvey, W.T.; Birkenfeld, A.L.; Dicker, D.; Mingrone, G.; Pedersen, S.D.; Satylganova, A.; Skovgaard, D.; Sugimoto, D.; Jensen, C.; Mosenzon, O. Efficacy and safety of liraglutide 3.0 mg in individuals with overweight or obesity and type 2 diabetes treated with basal insulin: The SCALE insulin randomized controlled trial. Diabetes Care 2020, 43, 1085–1093. [Google Scholar] [CrossRef]
- Santilli, F.; Simeone, P.G.; Guagnano, M.T.; Leo, M.; Maccarone, M.T.; Castelnuovo, A.D.; Sborgia, C.; Bonadonna, R.C.; Angelucci, E.; Federico, V.; et al. Effects of Liraglutide on Weight Loss, Fat Distribution, and β-Cell Function in Obese Subjects with Prediabetes or Early Type 2 Diabetes. Diabetes Care 2017, 40, 1556–1564. Available online: https://pubmed.ncbi.nlm.nih.gov/28912305/ (accessed on 30 September 2024). [CrossRef]
- Vendrell, J.; El Bekay, R.; Peral, B.; Garcia-Fuentes, E.; Megia, A.; Macías-González, M.; Fernández Real, J.; Jiménez-Gómez, Y.; Escoté, X.; Pachón, G.; et al. Study of the potential association of adipose tissue GLP-1 receptor with obesity and insulin resistance. Endocrinology 2011, 152, 4072–4079. Available online: https://pubmed.ncbi.nlm.nih.gov/21862620/ (accessed on 30 September 2024). [CrossRef] [PubMed]
- Cornu, M.; Yang, J.Y.; Jaccard, E.; Poussin, C.; Widmann, C.; Thorens, B. Glucagon-like Peptide-1 Protects β-Cells Against Apoptosis by Increasing the Activity of an Igf-2/Igf-1 Receptor Autocrine Loop. Diabetes 2009, 58, 1816. Available online: https://pmc.ncbi.nlm.nih.gov/articles/PMC2712796/ (accessed on 30 September 2024). [CrossRef]
- Mexican Official Standard NOM-008-SSA3-2010; For the Comprehensive Treatment of Overweight and Obesity. Norma Oficial Mexicana: México City, Mexico, 2025. Available online: https://www.dof.gob.mx/normasOficiales/4127/Salud/Salud.htm (accessed on 30 September 2024).
- De Graaf, C.; Donnelly, D.; Wootten, D.; Lau, J.; Sexton, P.M.; Miller, L.J.; Ahn, J.-M.; Liao, J.; Fletcher, M.M.; Yang, D.; et al. Glucagon-like Peptide-1 and Its Class B G Protein–Coupled Receptors: A Long March to Therapeutic Successes. Pharmacol. Rev. 2016, 68, 954. [Google Scholar] [CrossRef]
- Rowlands, J.; Heng, J.; Newsholme, P.; Carlessi, R. Pleiotropic Effects of GLP-1 and Analogs on Cell Signaling, Metabolism, and Function. Front. Endocrinol. 2018, 9, 420454. [Google Scholar] [CrossRef] [PubMed]
- Peyot, M.-L.; Gray, J.P.; Lamontagne, J.; Smith, P.J.S.; Holz, G.G.; Madiraju, S.R.M.; Prentki, M.; Heart, E.; Maedler, K. Glucagon-like Peptide-1 Induced Signaling and Insulin Secretion Do Not Drive Fuel and Energy Metabolism in Primary Rodent Pancreatic β-Cells. PLoS ONE 2009, 4, e6221. Available online: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0006221 (accessed on 30 September 2024). [CrossRef] [PubMed]
- Carlessi, R.; Chen, Y.; Rowlands, J.; Cruzat, V.F.; Keane, K.N.; Egan, L.; Mamotte, C.; Stokes, R.; Gunton, J.E.; de Bittencourt, P.I.H.; et al. GLP-1 receptor signalling promotes β-cell glucose metabolism via mTOR-dependent HIF-1α activation. Sci. Rep. 2017, 7, 2661. Available online: https://www.nature.com/articles/s41598-017-02838-2 (accessed on 30 September 2024). [CrossRef]
- Huang, R.; Ding, X.; Fu, H.; Cai, Q. Potential mechanisms of sleeve gastrectomy for reducing weight and improving metabolism in patients with obesity. Surg. Obes. Relat. Dis. 2019, 15, 1861–1871. Available online: https://pubmed.ncbi.nlm.nih.gov/31375442/ (accessed on 30 September 2024). [CrossRef]
- Friedrichsen, M.; Poulsen, P.; Richter, E.A.; Hansen, B.F.; Birk, J.B.; Ribel-Madsen, R.; Stender-Petersen, K.; Nilsson, E.; Beck-Nielsen, H.; Vaag, A.; et al. Differential aetiology and impact of phosphoinositide 3-kinase (PI3K) and Akt signalling in skeletal muscle on in vivo insulin action. Diabetologia 2010, 53, 1998–2007. Available online: https://pubmed.ncbi.nlm.nih.gov/20512309/ (accessed on 30 September 2024). [CrossRef] [PubMed]
- Zhong, X.; Ke, C.; Cai, Z.; Wu, H.; Ye, Y.; Liang, X.; Yu, L.; Jiang, S.; Shen, J.; Wang, L.; et al. LNK deficiency decreases obesity-induced insulin resistance by regulating GLUT4 through the PI3K-Akt-AS160 pathway in adipose tissue. Aging 2020, 12, 17150–17166. Available online: https://www.aging-us.com/article/103658 (accessed on 30 September 2024). [CrossRef]
- Chen, T.; Zhang, Y.; Liu, Y.; Zhu, D.; Yu, J.; Li, G.; Sun, Z.; Wang, W.; Jiang, H.; Hong, Z. MiR-27a promotes insulin resistance and mediates glucose metabolism by targeting PPAR-γ-mediated PI3K/AKT signaling. Aging 2019, 11, 7510–7524. Available online: https://www.aging-us.com/article/102263 (accessed on 30 September 2024). [CrossRef]
- Roh, H.C.; Kumari, M.; Taleb, S.; Tenen, D.; Jacobs, C.; Lyubetskaya, A.; Tsai, L.T.-Y.; Rosen, E.D. Adipocytes fail to maintain cellular identity during obesity due to reduced PPARγ activity and elevated TGFβ-SMAD signaling. Mol. Metab. 2020, 42. Available online: https://pubmed.ncbi.nlm.nih.gov/32992037/ (accessed on 30 September 2024). [CrossRef]
- Pfeiffer, A.; Drewes, C.; Middelberg-Bisping, K.; Schatz, H. Elevated plasma levels of transforming growth factor-beta 1 in NIDDM. Diabetes Care 1996, 19, 1113–1117. Available online: https://pubmed.ncbi.nlm.nih.gov/8886558/ (accessed on 30 September 2024). [CrossRef]
- Knudsen, L.B.; Lau, J. The discovery and development of liraglutide and semaglutide. Front. Endocrinol. 2019, 10, 440904. [Google Scholar] [CrossRef]
- Alharbi, S.H. Anti-inflammatory role of glucagon-like peptide 1 receptor agonists and its clinical implications. Therapeutic Advances in Endocrinology and Metabolism. Ther. Adv. Endocrinol. Metab. 2024, 15, 1–18. [Google Scholar] [CrossRef]
- Temple, N.J. The Origins of the Obesity Epidemic in the USA-Lessons for Today. Nutrients 2022, 14, 4253. Available online: https://pubmed.ncbi.nlm.nih.gov/36296935/ (accessed on 30 September 2024). [CrossRef] [PubMed]
- Wen, X.; Zhang, B.; Wu, B.; Xiao, H.; Li, Z.; Li, R.; Xu, X.; Li, T. Signaling pathways in obesity: Mechanisms and therapeutic interventions. Signal Transduct. Target. Ther. 2022, 7, 298. Available online: https://www.nature.com/articles/s41392-022-01149-x (accessed on 30 September 2024).
- Xu, F.; Lin, B.; Zheng, X.; Chen, Z.; Cao, H.; Xu, H.; Liang, H.; Weng, J. GLP-1 receptor agonist promotes brown remodelling in mouse white adipose tissue through SIRT1. Diabetologia 2016, 59, 1059–1069. Available online: https://pubmed.ncbi.nlm.nih.gov/26924394/ (accessed on 30 September 2024). [CrossRef] [PubMed]
- Davies, M.J.; Bergenstal, R.; Bode, B.; Kushner, R.F.; Lewin, A.; Skjøth, T.V.; Andreasen, A.H.; Jensen, C.B.; DeFronzo, R.A.; NN8022-1922 Study Group. Efficacy of Liraglutide for Weight Loss Among Patients with Type 2 Diabetes: The SCALE Diabetes Randomized Clinical Trial. JAMA 2015, 314, 687–699. Available online: https://pubmed.ncbi.nlm.nih.gov/26284720/ (accessed on 30 September 2024). [CrossRef]
Variable | Total n = 36 |
---|---|
Sociodemographic variables | |
Age, years 1 | 48.36 ± 10.85 |
Sex | |
Men, n (%) | 13 (36.1%) |
Women, n (%) | 23 (63.9%) |
Anthropometry | |
Height, mts 1 | 1.65 ± 0.08 |
Weight, kg 1 | 99.28 ± 19.39 |
Waist circumference, cm 1 | 115.75 ± 12.72 |
BMI, kg/m2 | |
| 12 (33.3%) |
| 15.0 (41.7%) |
| 9.0 (25.0%) |
Bioimpedance | |
Body fat, % 1 | 43.90 ± 9.76 |
Muscle, % 1 | 24.72 ± 4.49 |
Visceral fat, % 1 | 15.20 ± 5.91 |
Laboratory | |
Glucose, mmol/L 2 | 6.25 (3.55–16.44) |
Glycated hemoglobin (A1c), % 2 | 6.05 (5.7–12.3) |
Cholesterol, mmol/L 1 | 44.30 ± 11.01 |
Triglycerides, mmol/L 2 | 1.90 (0.80–6.89) |
High-density lipoprotein (HDL) cholesterol, mmol/L 2 | 1.03 (0.71–1.66) |
Low-density lipoprotein (LDL) cholesterol, mmol/L 1 | 2.58 ± 0.82 |
Variable | Total n = 36 | Obesity and Prediabetes n = 18 | Obesity and Type 2 Diabetes n = 18 | p |
---|---|---|---|---|
Sociodemographic variables | ||||
Age, years 1 | 48.36 ± 10.85 | 50.06 ± 9.32 | 46.67 ± 12.23 | 0.356 ᵻ |
Sex 2 | 0.053 ≠ | |||
Men, n (%) | 13.00 (36.1%) | 7.00 (38.9%) | 6.00 (33.3%) | |
Women, n (%) | 23.00 (63.9%) | 11.0 (61.1%) | 12.0 (66.7%) | |
Time of evolution of diabetes 2 | 0.968 ≠ | |||
<5 years | 12.00 (66.6%) | |||
5 a 10 years | 4.00 (22.2%) | |||
>10 years | 2.00 (11.1%) | |||
Anthropometry | ||||
Height, m, mts 1 | 1.65 ± 0.08 | 1.64 ± 0.08 | 1.65 ± 0.08 | 0.582 ᵻ |
Weight, kg 1 | 99.28 ± 19.39 | 105.21 ± 20.94 | 98.10 ± 11.80 | 0.280 ᵻ |
Waist circumference, cm 1 | 115.75 ± 12.72 | 119.22 ± 15.20 | 112.28 ± 8.76 | 0.102 ᵻ |
BMI, kg/m2 | 0.222 ≠ | |||
Grade 1 obesity (30–34.9) | 12 (33.3%) | 7.0 (38.9%) | 5.0 (29.4%) | |
Grade 2 obesity (35.0–39.9) | 15.0 (41.7%) | 3.0 (16.67%) | 12.0 (70.6%) | |
Grade 3 obesity (>40) | 9.0 (25.0%) | 8.0 (4.44%) | 1 (5.56%) | |
Bioimpedance | ||||
Body fat, % 1 | 43.90 ± 9.76 | 44.83 ± 8.60 | 44.67 ± 8.91 | 0.956 ᵻ |
Muscle, % 1 | 24.72 ± 4.49 | 24.58 ± 4.16 | 24.87 ±4.92 | 0.850 ᵻ |
Visceral fat, % 1 | 15.20 ± 5.91 | 17.00 ±7.18 | 13.41 ± 3.69 | 0.009 ᵻ |
Laboratory | ||||
Glucose, mmol/L 2 | 6.25 (3.55–16.44) | 5.5 (3.55–6.68) | 7.68 (4.44–16.44) | <0.005 *§ |
Glycated hemoglobin (A1c), % 2 | 6.05 (4.9–12.3) | 5.9 (5.7–6.20) | 7.60 (5.40–12.30) | <0.005 *§ |
Cholesterol, mmol/L 1 | 44.30 ± 11.01 | 44.01 ± 10.67 | 44.65 ± 10.68 | 0.870 ᵻ |
Triglycerides, mmol/L 2 | 1.90 (0.80–6.89) | 1.76 (0.98–6.89) | 2.33 (0.80–6.05) | 0.401 § |
High-density lipoprotein (HDL) cholesterol, mmol/L 2 | 1.03 (0.71–1.66) | 1.01 (0.71–1.29) | 1.03 (0.78–1.66) | 0.407 § |
Low-density lipoprotein (LDL) cholesterol, mg/dL 1 | 2.58 ± 0.82 | 2.30 ± 0.90 | 2.86 ± 0.65 | <0.042 *ᵻ |
Analysis of Unrelated Samples (Between Groups) | |||||||||
---|---|---|---|---|---|---|---|---|---|
Variable | Month 0 n = 36 | Month 3 n = 36 | Month 6 n = 36 | ||||||
Obesity and Prediabetes n = 18 | Obesity and Type 2 Diabetes n = 18 | p | Obesity and Prediabetes n = 18 | Obesity and Type 2 Diabetes n = 18 | p | Obesity and Prediabetes n = 18 | Obesity and Type 2 Diabetes n = 18 | p | |
Anthropometric | |||||||||
Weight, kg 1 | 105.21 ± 20.94 | 98.10 ± 11.80 | 0.226 | 101.33 ± 22.31 | 95.77 ± 12.28 | 0.352 ᵻ | 101.81 ± 23.89 | 94.32 ± 12.30 | 0.269 ᵻ |
Waist circumference, cm 1 | 119.22 ± 15.20 | 112.28 ± 8.76 | 0.098 | 115.41 ± 16.33 | 110.56 ± 9.57 | 0.273 ᵻ | 116.13 ± 17.64 | 108.38 ±8.90 | 0.129 ᵻ |
BMI, kg/m2 2 | 37.30 (30.46–54.83) | 35.77 (30.10–42.17) | 0.401 | 35.56 (28.08–53.61) | 34.69 (29.51–41.93) | 0.673 § | 37.65 (27.47–54.53) | 34.05 (29.51–41.93) | 0.573 § |
Bioimpedance | |||||||||
Body fat, % 1 | 44.83 ± 8.60 | 44.67 ± 8.91 | 0.910 | 44.77 ± 8.81 | 42.38 ± 10.43 | 0.414 ᵻ | 45.57 ± 7.82 | 43.53 ± 6.89 | 0.427 ᵻ |
Muscle, % 1 | 24.58 ± 4.16 | 24.87 ± 4.92 | 0.820 | 24.28 ± 3.83 | 24.63 ± 3.91 | 0.760 ᵻ | 24.48 ± 3.74 | 25.46 ± 3.97 | 0.463 ᵻ |
Visceral fat, % 1 | 17.00 ± 7.18 | 13.41 ± 3.69 | 0.081 | 15.00 ± 6.69 | 12.42 ± 3.77 | 0.218 § | 15.33 ± 7.20 | 14.00 ± 4.47 | 0.626 ᵻ |
Laboratory | |||||||||
Glucose, mg/dL 2 | 5.50 (3.55–6.68) | 7.68(4.44–16.44) | 0.002 * | 4.76 (4.04–6.15) | 6.12 (3.83–9.78) | 0.001 * | 4.94 (3.99–6.21) | 5.93 (4.13–8.24) | 0.012 *§ |
Glycated hemoglobin (A1c), % 2 | 5.90 (5.70–6.30) | 7.60 (5.7–12.30) | 0.010 * | 5.50 (4.9–6.0) | 6.25 (42.20 ± 13.00 | <0.005 * | 5.40 (4.90–5.80) | 6.45 (5.0–9.10) | 0.000 *§ |
Cholesterol, mmol/L 1 | 44.01 ± 10.67 | 44.65 ± 10.68 | 0.949 | 43.63 ± 10.19 | 42.20 ± 13.00 | 0.715 ᵻ | 43.57 ± 11.49 | 43.06 ± 10.90 | 0.541 § |
Triglycerides, mmol/L 2 | 1.76 (0.98–6.89) | 2.33 (0.80–6.05) | 0.178 | 1.35 (0.72–10.65) | 1.49 (0.83–5.00) | 0.389 § | 1.46 (0.49–7.58) | 1.54 (0.74–6.04) | 0.925 ᵻ |
High-density lipoprotein (HDL) cholesterol, mmol/L 2 | 1.01 (0.71–1.29) | 1.03 (0.78–1.66) | 0.849 | - | - | - | 1.05 (0.81–1.60) | 1.30 (0.71–1.76) | 0.005 *§ |
Low-density lipoprotein (LDL) cholesterol, mmol/L 1 | 2.30 ± 0.90 | 2.86 ± 0.65 | 0.105 | - | - | 0.659 ᵻ | 2.01 ± 0.53 | 2.69 ± 0.74 | 0.056 ᵻ |
Analysis of related samples (intragroup) | |||||||||
Variable | Obesity and Prediabetes n = 18 | Obesity and Type 2 Diabetes n = 18 | |||||||
Month 0 | Month 3 | Month 6 | p | Month 0 | Month 3 | Month 6 | p | ||
Anthropometric | |||||||||
Weight, kg 1 | 105.21 ± 20.94 | 101.33 ± 22.31 | 101.81 ± 23.89 | 0.000 *€ | 98.10 ± 11.80 | 95.77 ± 12.28 | 94.32 ± 12.30 | 0.012 *€ | |
Waist circumference, cm 1 | 119.22 ± 15.20 | 115.41 ± 16.33 | 116.13 ± 17.64 | 0.017 *€ | 112.28 ± 8.76 | 110.56 ± 9.57 | 108.38 ± 8.90 | 0.049 *€ | |
BMI, kg/m2 2 | 37.30 (30.46–54.83) | 35.56 (28.08–53.61) | 37.65 (27.47–54.53) | 0.002 *© | 37.30 (30.46–54.83) | 35.56 (28.08–53.61) | 37.65 (27.47–54.53) | 0.002 *© | |
Bioimpedance | |||||||||
Body fat, % 1 | 44.83 ± 8.60 | 44.77 ± 8.81 | 44.77 ± 8.81 | 0.77 6 € | 44.67 ± 8.91 | 42.38 ± 10.43 | 43.53 ± 6.89 | 0.389 € | |
Muscle, % 1 | 24.58 ± 4.16 | 24.28 ± 3.83 | 24.28 ± 3.83 | 0.771 € | 24.87 ± 16.0 | 24.63 ± 3.91 | 25.46 ± 3.97 | 0.154 € | |
Visceral fat, % 1 | 17.00 ± 7.18 | 15.00 ± 6.69 | 15.00 ± 6.69 | 0.077 € | 13.41 ± 3.69 | 12.42 ± 3.77 | 14.00 ± 4.47 | 0.107 € | |
Laboratory | |||||||||
Glucose, mmol/L 2 | 5.50 (3.55–6.68) | 4.76 (4.04–6.15) | 4.94 (3.99–6.21) | 0.002 *© | 7.68 (4.44–16.44) | 6.12 (3.83–9.78) | 5.93 (4.13–8.24) | 0.002 *© | |
Glycated hemoglobin (A1c), % 2 | 5.90 (5.70–6.30) | 5.50 (4.9–6.0) | 5.40 (4.90–5.80) | 0.000 *© | 7.60 (5.40–12.13) | 6.25 (5.5–9.5) | 6.45 (5.0–9.10) | 0.001 *© | |
Cholesterol, mmol/L 1 | 44.01 ± 10.67 | 43.63 ± 10.19 | 43.57 ± 11.49 | 0.969 € | 44.65 ± 10.68 | 42.20 ± 13.00 | 43.06 ± 10.90 | 0.556 € | |
Triglycerides, mg/dL 2 | 1.76 (0.98–6.89) | 1.35 (0.72–10.65) | 1.46 (0.49–7.58) | 0.906 © | 2.33 (0.80–6.05) | 1.49 (0.83–5.00) | 1.46 (0.49–7.58) | 0.141 © | |
High-density lipoprotein (HDL) cholesterol, mmol/L 2 | 1.01 (0.71–1.29) | - | 1.05 (0.81–1.60) | 0.049 *ɷ | 1.03 (0.78–1.66) | - | 1.30 (0.71–1.76) | 0.001 *ɷ | |
Low-density lipoprotein (LDL) cholesterol, mmol/L 1 | 2.30 ± 0.90 | - | 2.01 ± 0.53 | 0.069 ᵻ | 2.86 ± 0.65 | - | 2.69 ± 0.74 | 0.004 *€ᵻ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Flandes, R.N.; Tapia-González, M.d.l.Á.; Hernández-Lara, L.; Madrigal-Santillán, E.O.; Morales-González, Á.; Aguiano-Robledo, L.; Morales-González, J.A. Compare the Decrease in Visceral Adipose Tissue in People with Obesity and Prediabetes vs. Obesity and Type 2 Diabetes Treated with Liraglutide. Diabetology 2025, 6, 67. https://doi.org/10.3390/diabetology6070067
Hernández-Flandes RN, Tapia-González MdlÁ, Hernández-Lara L, Madrigal-Santillán EO, Morales-González Á, Aguiano-Robledo L, Morales-González JA. Compare the Decrease in Visceral Adipose Tissue in People with Obesity and Prediabetes vs. Obesity and Type 2 Diabetes Treated with Liraglutide. Diabetology. 2025; 6(7):67. https://doi.org/10.3390/diabetology6070067
Chicago/Turabian StyleHernández-Flandes, Rosa Nayely, María de los Ángeles Tapia-González, Liliana Hernández-Lara, Eduardo Osiris Madrigal-Santillán, Ángel Morales-González, Liliana Aguiano-Robledo, and José A. Morales-González. 2025. "Compare the Decrease in Visceral Adipose Tissue in People with Obesity and Prediabetes vs. Obesity and Type 2 Diabetes Treated with Liraglutide" Diabetology 6, no. 7: 67. https://doi.org/10.3390/diabetology6070067
APA StyleHernández-Flandes, R. N., Tapia-González, M. d. l. Á., Hernández-Lara, L., Madrigal-Santillán, E. O., Morales-González, Á., Aguiano-Robledo, L., & Morales-González, J. A. (2025). Compare the Decrease in Visceral Adipose Tissue in People with Obesity and Prediabetes vs. Obesity and Type 2 Diabetes Treated with Liraglutide. Diabetology, 6(7), 67. https://doi.org/10.3390/diabetology6070067